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Abstract

In order to evaluate the complexity of generalized quantifiers, we look at the string
languages they can be associated to through the lens of the subregular hierarchy. This
approach shows fine-grained complexity distinctions, which we compare to those made by
the semantic automata model. The cognitive reality of these predictions will be tested in an
eye-tracking study.

1 Introduction
In the study of generalized quantifiers (GQs), it is essential to have an insightful theory of how
their meaning is computed. In particular, a sound computational model of quantifier verification
should provide a theoretical framework in which to understand the cognitive requirements that
have been reportedly associated to different quantified sentences (Lidz et al., 2011; McMillan
et al., 2005; Szymanik and Zajenkowski, 2010).

1.1 Semantic Automata
In this perspective, van Benthem’s (van Benthem, 1986) semantic automata (SA) model makes
testable predictions about the resources involved in the verification of quantified sentences.
Essentially, a generalized quantifier is a function taking two sets A and B, and returning a truth
value based on the relation holding between those sets. This relation can be encoded in a
binary string, by sending elements of A∩B to 1 and elements of A\B to 0. Thus, the SA model
equates each quantifier Q with a specific string language, and checks whether the language
corresponding to Q(A,B) is contained in LQ. In this perspective, complexity can be measured
according the well-known Chomsky hierarchy of string languages (Chomsky, 1956):

regular ( context-free ( context-sensitive ( recursively enumerable

Building on this classification, the computational complexity of GQs is then related to the type
of automaton that can recognize these languages, and to number of states the automaton needs.

∗Presented at the ESSLLI 2017 workshop QUAD: Quantifiers and Determiners (Retoré, Steedman)



2 The Subregular Complexity of GQs
Since the automata perspective treats regular (REG) languages as a monolithic unit, the SA
model can only explain differences among regular quantifiers by equating complexity to number
of states. We argue that a better understanding of these quantifiers can be gained by mapping
their string languages to levels in the Subregular Hierarchy (SH), which splits REG languages
into nested regions of decreasing complexity (McNaughton and Papert, 1971).
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Figure 1: Proper inclusion relationships among subregular language classes.

Consider the sentence Every A is B: every(A,B) returns true iff A ⊆ B, which implies
that the binary string sab encoding the (A,B) relation contains only 1s. Thus, Levery is the
string language of just 1s and every(A,B) is true iff sab ∈ Levery. In formal language terms,
this can be verified with a strictly 1-local (SL) grammar, scanning every symbol in sab and
checking that it is not labelled 0. Another example of SL quantifiers is No, associated to the
language of all strings with only 0s. At the bottom of the subregular hierarchy, strictly lo-
cal grammars essentially translate the requirements of a quantifier language into a ban against
certain string sequences, encoded as classical n-grams models. However, not all quantifiers
can be reduced to this very simple class. Consider now the sentence Some A are B, which
is true iff there is at least one b ∈ A ∩ B. Thus, Lsome is the language of all strings con-
taining at least one 1. Consider any arbitrary strings s1 := 0n10n ∈ L(some) and s0 := 0n /∈
L(some). All the n-grams in s0 are also part of s1, so a strictly n-local grammar cannot block
0n without also incorrectly blocking 0n10n. Thus, L(some) cannot be SL. But it can be de-
scribed by a slightly more complex subregular class: the tier-based strictly local (TSL) lan-
guages. A TSL grammar combines a SL grammar with a mechanism for making specific
non-adjacent symbols in the string adjacent via a tier. The main payoff of this property for
GQs is the ability to do some limited counting, as checking the occurrence of at least one 1.
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Consider again s0 and s1.
Using {o,n} to mark the
start/end of a string, a TSL
grammar can express the re-
quirement of Lsome by disal-
lowing the empty string on the tier of only 1s: Gsome =< T = {1},S= {¬on}>. The counting
power of TSL grammars can be extended to any cardinal quantifier. For instance, Lat most 3 is
obtained by replacing the bigram on in S with the 4-gram 1111 — thus blocking all strings
with four or more 1s. Unfortunately, while TSL grammars describe a good number of quanti-
fiers, there are many that cannot be captured this way. The trivial case is that of proportional
quantifiers, since they are described by languages that are not even regular. Moreover, there
are regular GQs that are not TSL. Take an even number of. Every string in Leven has an even
number of 1s, thus a TSL would need to project all 1s, and ban strings with tiers of odd length.
This requirement cannot be fulfilled by n-grams constraints. Consider the string s = 1n ∈ Leven.
Since s ∈ Leven, n must be an even number and the result of adding one more 1 to it will result
in the ill-formed string s′. To disallow s′, a TSL grammar G should ban one of the n-grams in s′
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from the tier. But s and s′ contain exactly the same tier n-grams — {o1n−1,1n,1n−1n}— thus
G would end up also disallowing s. Since n is arbitrary, no TSL grammar generates Leven.

Quantifier String Constraint Complexity Grammar

every |s0|= 0 SL-1 T := {0,1}, S := {¬0}
no |s1|= 0 SL-1 T := {0,1}, S := {¬1}

some |s1| ≥ 1 TSL-2 T := {1}, S := {¬on}
not all |s0| ≥ 1 TSL-2 T := {0}, S := {¬on}

(at least) n |s1| ≥ n TSL-(n+1) T := {1}, S :=
{
¬o1kn

}
k≤n

(at most) n |s1| ≤ n TSL-(n+1) T := {1}, S :=
{
¬1k+1}

all but n |s0|= n TSL-(n+1) T := {0}, S :=
{
¬0n+1,¬o0kn

}
k≤n

even number |s1|= 2n, n≥ 0 regular
most |s1| ≥ |s0| context-free

Table 1: Characterization of some GQ in English based on their string complexity.

Note that these characterization results do not depend on the particular order of 0s and 1s in
the string. This is crucial, since the way the binary string is built from the encoding of a
scene depends on the enumeration adopted by humans during the verification task, and is thus
arbitrary.

3 Psycholinguistic Predictions
Clearly, the computational differences highlighted by the subregular approach need to be tested
empirically. From a psycholinguistic perspective, this characterization results in specific pre-
dictions about the cognitive requirement of different GQs.

{All}< {Some, Less than n, More than n}< {Even, Odd}< {Less than half, More than half}
SL TSL REG CF

These results partially diverge from what predicted by the SA model:

{All, Some}< {even, odd}< {Less than n, More than n}< {Less than half, More than half}
FSA PSA

Notably, while the subregular view links the complexity distinctions between parity and cardinal
quantifiers to intrinsic properties of the quantifiers themselves, the SA model relies on succinct-
ness claims about the number of states instantiated by the automata generating the quantifier
languages. Recent works have extensively shown that — if the use of the approximate number
system (ANS) is discouraged by the experimental setup — the ranking predicted by the SA
model generally matches working memory predictions (measured as response times (RTs)) for
verification tasks involving quantified sentences (Szymanik, 2016). However, the link between
RTs and cognitive load can be inaccurate, especially when a visual task is involved (Attar et al.,
2016). Thus, we plan to evaluate the cognitive complexity of GQs by measuring the increase
in subjects’ pupil size during the verification of different quantified sentences. Variations in
pupil size have been widely used as an estimate of working memory load in visual search tasks
(Just et al., 2003), and have been shown to be sensitive to local resource demands imposed by
sentence comprehension (Engelhardt et al., 2010).
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3.1 Method
The experimental design and the time course of individual trials are shown in the figure on the
right. Participants are asked to judge auditory stimulus sentences of the type <Q> of the dots
are <Color>, against a visual display showing systematically varied proportions of two sets of
colored dots. The total number of dots in the display is kept constant. The onset of the visual
display is delayed until the onset of the disambiguating predicate. This will allow us to measure
possible cognitive shifts due just to the encoding of the quantifier.

+ +

RT

<Q> dots are <C>

1000 ms 2000 ms 1800 ms 500 ms

of the quantifier “many,” for example, as compared to its close relatives like “more than
half,” is greater in terms of interindividual variability. Hackl (2009) in his investigation
put forth that the proportional quantifier “most” triggers a distinct behavioral strategy when
compared to “more than half,” which can be attributed to the semantic differences between
them. “Most” can be assumed to be the superlative form of “many” while “more than half”
is its comparative form. From a numerical perspective, for “more than half” there is a
fixed reference to compare between sets, namely, “half.” Therefore, although the compre-
hension strategy for “more than half” triggers complex strategies, one could assume simi-
larity in the processing steps across individuals. However, for “many” no such reference is
provided externally and thus could depend on the subjective interpretation of each individ-
ual regarding its meaning. It is conceivable that participants might adopt the most common
strategy to focus on the reference set, that is, the target color mentioned in the quantifier

(A)

(B)

Fig. 1. Experimental design of the study (A). Auditory stimulus sentences included numerical quantifiers (at
least seven, at least thirteen, at most seven, and at most thirteen) or proportional quantifiers (many, few) and
were of the type “<Quantifier> of the circles are <color>,” followed by a visual display, showing varied
proportions of yellow and blue circles with a constant total (n) of 20. The proportion of yellow circles and
blue circles was systematically varied, characterized by the number of circles (c) to be estimated in the target
color (TarCol) and ranging from 5 up to 15, as well as the complementary non-target color characterized by
the estimation parameter (r) ranging from 15 to 5. Time course of individual trials (B). Each trial starts with
a fixation cross, followed by the auditory sentence for 2.6 s. Then a visual display with the parametrically
varied proportions is presented for 1 s, followed by a visual mask for 2 s. Participants are asked to respond
per trial, if the auditory sentence matches the visual display or not, via a button press on one of two response
keys. RTs are recorded from the onset of the visual display until the offset of the visual mask (maximum
time for response: 3 s). The overall duration of a trial is 6.6 s.

S. Shikhare et al. / Cognitive Science 39 (2015) 1511

<Q> dots

We made sure that the quantifier onset is equal across all stimuli, and that the onset of the color
predicate is the same for each quantifier (Degen and Tanenhaus, 2016). As a comparison to
existing results, of which we expect a general replication, RTs are also collected.

4 Conclusions
The subregular classification we presented highlights a finer range of complexity differences
among quantifiers. The eye-tracking experiment, almost ready to run, will provide insights into
the cognitive reality of these differences. Should the subregular prediction be correct, it would
show intriguing parallels to the computational complexity of linguistics dependencies cross-
domains (Rogers et al., 2013). A negative result would instead add support to the complexity
characterization of GQs as established by the SA model. Given the relative ease of subregu-
lar analysis for GQs, such result would also open questions about the actual nature of these
computational distictions.
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