Learning Commonalities in RDF and SPARQL François Goasdoué (fg@irisa.fr) Joint work with: Sara El Hassad Hélène Jaudoin Reasoning on Data (RoD), Thursday 27th, 2019 # RDF/SPARQL and data management ### RDF/SPARQL: the prominent standards for the Semantic Web W3C recommendations Introduction •00 - RDF: graph data model - Lightweight incomplete, deductive databases - SPARQL: powerful SQL-like query language for RDF - Interrogates both data and schema/ontology of RDF graphs - Requires reasoning to answer queries ## RDF/SPARQL raises a timely data management challenge • Efficient query answering in the presence of updates #### RDF/SPARQL is widely adopted for semantic-rich data applications • Linked Open Data: # Learning commonalities and data management ### Learning commonalities: a variety of data management applications - Exploration - Identification of common data and query patterns - Clustering of datasets and queries - Optimization - Multi-Query Optimization - View selection - Recommendation - User-to-user suggestions - Search suggestions # Learning commonalities in RDF and SPARQL ## Least general generalization (1gg), a.k.a. least common subsumer - Machine Learning (ILP) since the early 70's - Clauses 000 - Knowledge Representation since the early 90's - Description logics - Semantic Web [Lehmann and Bühmann, 2011], [Colucci et al., 2013], [Colucci et al., 2016] - RDF: rooted RDF graphs, purely structural approaches - SPARQL: tree queries, purely structural approaches # Learning commonalities in RDF and SPARQL ## Least general generalization (1gg), a.k.a. least common subsumer - Machine Learning (ILP) since the early 70's - Clauses Introduction 000 - Knowledge Representation since the early 90's - Description logics - Semantic Web [Lehmann and Bühmann, 2011], [Colucci et al., 2013], [Colucci et al., 2016] - RDF: rooted RDF graphs, purely structural approaches - SPARQL: tree queries, purely structural approaches #### Our contributions: - 4 lgg of RDF graphs w.r.t. the entire RDF standard [ESWC17,ILP17] - ② lgg of SPARQL conjunctive queries w.r.t. ontological knowledge [BDA17,ESWC17,ISWC17] ## Outline - Introduction - 2 Preliminaries - 3 Lgg in RDF - Defining the lgg in RDF - Computing the lgg in RDF - 4 Lgg in SPARQL - Defining the lgg in SPARQL - Computing the lgg in SPARQL - Experimental results - Related work - 6 Conclusion & Perspectives # Towards defining the notion of lgg in RDF #### G. Plotkin A least general generalization (1gg) of n descriptions d_1, \ldots, d_n is a most specific description d generalizing every $d_{1 \le i \le n}$ for some generalization/specialization relation between descriptions. ### 1gg in RDF - descriptions are RDF graphs - the generalization/specialization relation is entailment between RDF graphs ### 1gg in our SPARQL setting - descriptions are Basic Graph Pattern Queries (BGPQs) - the generalization/specialization relation is entailment between BGPQs RDF graphs are made of triples: $$(\mathtt{s},\mathtt{p},\mathtt{o}) \in (\mathcal{U} \cup \mathcal{B}) \times \mathcal{U} \times (\mathcal{U} \cup \mathcal{L} \cup \mathcal{B})$$ • Built-in property URIs to make RDF statements | RDF statement | Triple | |--------------------|--------------------------------| | Class assertion | (s, τ, o) | | Property assertion | (s, p, o) with $p \neq \tau$ | RDF graphs are made of triples: $$(\mathtt{s},\mathtt{p},\mathtt{o}) \in (\mathcal{U} \cup \mathcal{B}) imes \mathcal{U} imes (\mathcal{U} \cup \mathcal{L} \cup \mathcal{B})$$ • Built-in property URIs to make RDF statements | RDF statement | Triple | |--------------------|------------------------------| | Class assertion | (s, τ, o) | | Property assertion | (s, p, o) with $p \neq \tau$ | # Adding ontological knowledge to RDF graphs Built-in property URIs to declare RDF Schema statements, i.e., ontological constraints. | RDFS statement | Triple | |----------------|---------------------------------| | Subclass | (s, \leq_{sc}, o) | | Subproperty | (s, ≼ _{sp} , o) | | Domain typing | $ (s, \leftarrow_d, o) $ | | Range typing | $ (s, \hookrightarrow_r, o) $ | ## Adding ontological knowledge to RDF graphs Built-in property URIs to declare RDF Schema statements, i.e., ontological constraints. | RDFS statement | Triple | |----------------|---------------------------------| | Subclass | $(s, \leq_{\mathrm{sc}}, o)$ | | Subproperty | $(s, \preceq_{\mathrm{sp}}, o)$ | | Domain typing | (s, \leftarrow_d, o) | | Range typing | (s,\hookrightarrow_r,o) | Introduction Let us consider the following RDF graph: Introduction How to derive implicit triples of an RDF graph? ## Entailment rules Introduction | Rule [W3C-RDFS, 2014] | Entailment rule | |-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------| | rdfs2 | $(\mathtt{p}, \hookleftarrow_{d}, \mathtt{o}), (\mathtt{s}_{1}, \mathtt{p}, \mathtt{o}_{1}) ightarrow (\mathtt{s}_{1}, au, \mathtt{o})$ | | rdfs3 | $(p,\hookrightarrow_r,o),(s_1,p,o_1)\to(o_1, au,o)$ | | rdfs5 | $(p_1, \preceq_{\operatorname{sp}}, p_2), (p_2, \preceq_{\operatorname{sp}}, p_3) \to (p_1, \preceq_{\operatorname{sp}}, p_3)$ | | rdfs7 | $(\mathtt{p}_1, \preceq_{\mathrm{sp}}, \mathtt{p}_2), (\mathtt{s}, \mathtt{p}_1, \mathtt{o}) o (\mathtt{s}, \mathtt{p}_2, \mathtt{o})$ | | rdfs9 | $(\mathtt{s}, \preceq_{\mathrm{sc}}, \mathtt{o}), (\mathtt{s}_1, \tau, \mathtt{s}) o (\mathtt{s}_1, \tau, \mathtt{o})$ | | rdfs11 | $(\mathtt{s}, \preceq_{\mathrm{sc}}, \mathtt{o}), (\mathtt{o}, \preceq_{\mathrm{sc}}, \mathtt{o}_1) o (\mathtt{s}, \preceq_{\mathrm{sc}}, \mathtt{o}_1)$ | | ext1 | $(\mathtt{p}, \hookleftarrow_d, \mathtt{o}), (\mathtt{o}, \preceq_{\mathrm{sc}}, \mathtt{o}_1) \rightarrow (\mathtt{p}, \hookleftarrow_d, \mathtt{o}_1)$ | | ext2 | $(p,\hookrightarrow_r,o),(o,\preceq_{\mathrm{sc}},o_1)\to(p,\hookrightarrow_r,o_1)$ | | ext3 | $(\mathtt{p}, \preceq_{\operatorname{sp}}, \mathtt{p}_1), (\mathtt{p}_1, \hookleftarrow_d, \mathtt{o}) \to (\mathtt{p}, \hookleftarrow_d, \mathtt{o})$ | | ext4 | $(\mathtt{p}, \preceq_{\mathrm{sp}}, \mathtt{p_1}), (\mathtt{p_1}, \hookrightarrow_{r}, \mathtt{o}) \rightarrow (\mathtt{p}, \hookrightarrow_{r}, \mathtt{o})$ | Table: Sample RDF entailment rules R. $$\textit{rdfs}9: (\mathtt{s}, \preceq_{\mathrm{sc}}, \mathtt{o}), (\mathtt{s}_1, \tau, \mathtt{s}) \rightarrow (\mathtt{s}_1, \tau, \mathtt{o})$$ RDF graph \mathcal{G} $$\textit{rdfs}9: (\mathtt{s}, \preceq_{\mathrm{sc}}, \mathtt{o}), (\mathtt{s}_1, \tau, \mathtt{s}) \rightarrow (\mathtt{s}_1, \tau, \mathtt{o})$$ RDF graph ${\cal G}$ $$\textit{rdfs}9: (\mathtt{s}, \preceq_{\mathrm{sc}}, \mathtt{o}), (\mathtt{s}_1, \tau, \mathtt{s}) \rightarrow (\mathtt{s}_1, \tau, \mathtt{o})$$ RDF graph $\mathcal G$ $$\textit{rdfs}9: (\mathtt{s}, \preceq_{\mathrm{sc}}, \mathtt{o}), (\mathtt{s}_1, \tau, \mathtt{s}) \rightarrow (\mathtt{s}_1, \tau, \mathtt{o})$$ RDF graph \mathcal{G} $$\textit{rdfs7}: (p_1, \preceq_{\mathrm{sp}}, p_2), (s, p_1, o) \rightarrow (s, p_2, o)$$ RDF graph $\mathcal G$ rdfs7 : $$(p_1, \preceq_{sp}, p_2), (s, p_1, o) \rightarrow (s, p_2, o)$$ RDF graph $\mathcal G$ $$\textit{rdfs7}: (p_1, \preceq_{\mathrm{sp}}, p_2), (s, p_1, o) \rightarrow (s, p_2, o)$$ RDF graph $\mathcal G$ $$\textit{rdfs7}: (p_1, \preceq_{\mathrm{sp}}, p_2), (s, p_1, o) \rightarrow (s, p_2, o)$$ RDF graph \mathcal{G} $$rdfs3: (p, \hookrightarrow_r, o), (s_1, p, o_1) \rightarrow (o_1, \tau, o)$$ RDF graph $\mathcal G$ $$ext4: (p, \leq_{sp}, p_1), (p_1, \hookrightarrow_r, o) \rightarrow (p, \hookrightarrow_r, o)$$ RDF graph $\mathcal G$ $$ext3: (p, \leq_{sp}, p_1), (p_1, \hookleftarrow_d, o) \rightarrow (p, \hookleftarrow_d, o)$$ RDF graph $\mathcal G$ ## Semantics of an RDF graph \mathcal{G}^{∞} materializes the semantic of \mathcal{G} . # Towards defining the notion of lgg in RDF #### G. Plotkin A least general generalization (1gg) of n descriptions d_1, \ldots, d_n is a most specific description d generalizing every $d_{1 \le i \le n}$ for some generalization/specialization relation between descriptions. #### 1gg in RDF - descriptions are RDF graphs - the generalization/specialization relation is entailment between RDF graphs ### lgg in our SPARQL setting - descriptions are BGP Queries - the generalization/specialization relation is entailment between BGPQs # Entailment between RDF graphs $$\mathcal{G}\models_{\mathcal{R}}\mathcal{G}'\Longleftrightarrow\mathcal{G}^{\infty}\models\mathcal{G}'$$ Introduction i.e., there exists a graph homomorphism from \mathcal{G}' to \mathcal{G}^{∞} . $$\mathcal{G} \models^{?}_{\mathcal{R}} \mathcal{G}'$$ # Entailment between RDF graphs $$\mathcal{G}\models_{\mathcal{R}}\mathcal{G}'\Longleftrightarrow\mathcal{G}^{\infty}\models\mathcal{G}'$$ Introduction i.e., there exists a graph homomorphism from \mathcal{G}' to \mathcal{G}^{∞} . $$\mathcal{G}\models_{\mathcal{R}}\mathcal{G}'\equiv\mathcal{G}^{\infty}\stackrel{?}{\models}\mathcal{G}'$$ # Entailment between RDF graphs $$\mathcal{G} \models_{\mathcal{R}} \mathcal{G}' \iff \mathcal{G}^{\infty} \models \mathcal{G}'$$ Introduction i.e., there exists a graph homomorphism from \mathcal{G}' to \mathcal{G}^{∞} . \mathcal{G} is more specific than \mathcal{G}' ! ### Towards defining the notion of lgg in SPARQL #### G. Plotkin A least general generalization (1gg) of n descriptions d_1, \ldots, d_n is a most specific description d generalizing every $d_{1 \le i \le n}$ for some generalization/specialization relation between descriptions. #### 1gg in RDF - descriptions are RDF graphs - the generalization/specialization relation is entailment between RDF graphs #### 1gg in our SPARQL setting - descriptions are Basic Graph Pattern Queries (BGPQs) - the generalization/specialization relation is entailment between BGPQs ### Basic Graph Pattern Queries (BGPQs) - BGPQs: SPARQL conjunctive queries, i.e., select-project-join queries - $(s, p, o) \in (\mathcal{V} \cup \mathcal{U}) \times (\mathcal{V} \cup \mathcal{U}) \times (\mathcal{V} \cup \mathcal{U} \cup \mathcal{L})$ ## Basic Graph Pattern Queries (BGPQs) • BGPQs: SPARQL conjunctive queries, i.e., select-project-join queries • $$(s, p, o) \in (\mathcal{V} \cup \mathcal{U}) \times (\mathcal{V} \cup \mathcal{U}) \times (\mathcal{V} \cup \mathcal{U} \cup \mathcal{L})$$ ### Entailing and answering queries Query entailment $$\mathcal{G} \models_{\mathcal{R}} q \iff \mathcal{G}^{\infty} \models q$$ ### Entailing and answering queries Query entailment $$\mathcal{G} \models_{\mathcal{R}} q \iff \mathcal{G}^{\infty} \models q$$ ## Query answering $q(\mathcal{G}) = \{(\bar{x})_{\phi} \mid \mathcal{G} \models_{\mathcal{P}}^{\phi} q\}$ Introduction $q(\mathcal{G}) = \{(b, \text{ConfPaper}), (b, \text{Publication}), (b_1, \text{Researcher})\}$ # Query answering $q(\mathcal{G}) = \{(\bar{x})_{\phi} \mid \mathcal{G} \models^{\phi}_{\mathcal{P}} q\}$ Introduction $q(\mathcal{G}) = \{(b, \text{ConfPaper}), (b, \text{Publication}), (b_1, \text{Researcher})\}$ Query answering $$q(\mathcal{G}) = \{(\bar{x})_{\phi} \mid \mathcal{G} \models_{\mathcal{R}}^{\phi} q\}$$ $q(\mathcal{G}) = \{(b, \text{ConfPaper}), (b, \text{Publication}), (b_1, \text{Researcher})\}$ ### Entailing and answering queries Query answering $$q(\mathcal{G}) = \{(\bar{x})_{\phi} \mid \mathcal{G} \models_{\mathcal{R}}^{\phi} q\}$$ $$q(\mathcal{G}) = \{(b, \text{ConfPaper}), (b, \text{Publication}), (b_1, \text{Researcher})\}$$ ### Towards defining the notion of lgg in SPARQL #### G. Plotkin A least general generalization (lgg) of n descriptions d_1, \ldots, d_n is a most specific description d generalizing every $d_{1 \le i \le n}$ for some generalization/specialization relation between descriptions. #### lgg in RDF - descriptions are RDF graphs - the generalization/specialization relation is entailment between RDF graphs #### 1gg in our SPARQL setting - descriptions are Basic Graph Pattern Queries (BGPQs) - the generalization/specialization relation is entailment between **BGPQs** ### Entailment between BGPQs $$q \models_{\mathcal{R}} q' \iff q^{\infty} \models q'$$ $q'(x_2)$ ### Entailment between BGPQs $$q \models_{\mathcal{R}} q' \iff q^{\infty} \models q'$$ ### Outline Introduction - 1 Introduction - 2 Preliminaries - 3 Lgg in RDF - 4 Lgg in SPARQL - Related work - 6 Conclusion & Perspectives #### Definition (1gg of RDF graphs) Let $\mathcal{G}_1, \dots, \mathcal{G}_n$ be RDF graphs and \mathcal{R} a set of RDF entailment rules. - A generalization of $\mathcal{G}_1, \dots, \mathcal{G}_n$ is an RDF graph \mathcal{G}_g such that $\mathcal{G}_i \models_{\mathcal{R}} \mathcal{G}_g$ holds for $1 \leq i \leq n$. - A least general generalization (1gg) of $\mathcal{G}_1, \ldots, \mathcal{G}_n$ is a generalization \mathcal{G}_{1gg} of $\mathcal{G}_1, \ldots, \mathcal{G}_n$ such that for any other generalization \mathcal{G}_g of $\mathcal{G}_1, \ldots, \mathcal{G}_n$, $\mathcal{G}_{1gg} \models_{\mathcal{R}} \mathcal{G}_g$ holds. #### **Theorem** Introduction An 1gg of RDF graphs always exists; it is unique up to entailment. #### Definition (1gg of RDF graphs) Let G_1, \ldots, G_n be RDF graphs and R a set of RDF entailment rules. - A generalization of $\mathcal{G}_1, \dots, \mathcal{G}_n$ is an RDF graph \mathcal{G}_g such that $\mathcal{G}_i \models_{\mathcal{R}} \mathcal{G}_g$ holds for $1 \leq i \leq n$. - A least general generalization (1gg) of $\mathcal{G}_1, \ldots, \mathcal{G}_n$ is a generalization \mathcal{G}_{1gg} of $\mathcal{G}_1, \ldots, \mathcal{G}_n$ such that for any other generalization \mathcal{G}_g of $\mathcal{G}_1, \ldots, \mathcal{G}_n$, $\mathcal{G}_{\text{1gg}} \models_{\mathcal{R}} \mathcal{G}_g$ holds. Result: Igg of n RDF graphs vs Igg of two RDF graphs $$\begin{array}{ll} \ell_3(\mathcal{G}_1, \mathcal{G}_2, \mathcal{G}_3) & \equiv_{\mathcal{R}} & \ell_2(\ell_2(\mathcal{G}_1, \mathcal{G}_2), \mathcal{G}_3) \\ \dots & \dots \\ \ell_n(\mathcal{G}_1, \dots, \mathcal{G}_n) & \equiv_{\mathcal{R}} & \ell_2(\ell_{n-1}(\mathcal{G}_1, \dots, \mathcal{G}_{n-1}), \mathcal{G}_n) \\ & \equiv_{\mathcal{R}} & \ell_2(\ell_2(\dots \ell_2(\ell_2(\mathcal{G}_1, \mathcal{G}_2), \mathcal{G}_3) \dots, \mathcal{G}_{n-1}), \mathcal{G}_n) \end{array}$$ We focus on computing the $\lg g$ of two RDF graphs Introduction Introduction How to compute this graph ? ### The cover graph of RDF graphs #### Definition (Cover graph) The cover graph \mathcal{G} of two RDF graphs \mathcal{G}_1 and \mathcal{G}_2 is the RDF graph such that for every property p in both \mathcal{G}_1 and \mathcal{G}_2 : $(t_1,p,t_2)\in\mathcal{G}_1$ and $(t_3,p,t_4)\in\mathcal{G}_2$ iff $(\varsigma(t_1,t_3),p,\varsigma(t_2,t_4))\in\mathcal{G}$ with $\varsigma(t_1,t_3)=t_1$ if $t_1=t_3$ and $t_1\in\mathcal{U}\cup\mathcal{L}$, else $\varsigma(t_1,t_3)$ is the blank node $b_{t_1t_3}$, and, similarly $\varsigma(t_2,t_4)=t_2$ if $t_2=t_4$ and $t_2\in\mathcal{U}\cup\mathcal{L}$, else $\varsigma(t_2,t_4)$ is the blank node $b_{t_2t_4}$. ### The cover graph of RDF graphs #### Definition (Cover graph) The cover graph \mathcal{G} of two RDF graphs \mathcal{G}_1 and \mathcal{G}_2 is the RDF graph such that for every property p in both \mathcal{G}_1 and \mathcal{G}_2 : $$(t_1,p,t_2)\in\mathcal{G}_1$$ and $(t_3,p,t_4)\in\mathcal{G}_2$ iff $(\varsigma(t_1,t_3),p,\varsigma(t_2,t_4))\in\mathcal{G}$ with $\varsigma(t_1,t_3)=t_1$ if $t_1=t_3$ and $t_1\in\mathcal{U}\cup\mathcal{L}$, else $\varsigma(t_1,t_3)$ is the blank node $b_{t_1t_3}$, and, similarly $\varsigma(t_2,t_4)=t_2$ if $t_2=t_4$ and $t_2\in\mathcal{U}\cup\mathcal{L}$, else $\varsigma(t_2,t_4)$ is the blank node $b_{t_2t_4}$. #### Example (Anti-unification) - $(i1, hasAuthor, SA) \in \mathcal{G}_1$ and $(i2, hasAuthor, SA) \in \mathcal{G}_2$ iff $(b_{i1i2}, hasAuthor, SA) \in \mathcal{G}$ - $(i1, hasAuthor, SA) \in \mathcal{G}_1$ and $(i2, hasContactAuthor, SA) \in \mathcal{G}_2$ but $(b_{i1i2}, b_{hAhCA}, SA) \notin \mathcal{G}$ ### Cover graph-based 1gg #### Theorem Introduction Let \mathcal{G}_1 and \mathcal{G}_2 be two RDF graphs, and \mathcal{R} a set of RDF entailment rules. The *cover graph* \mathcal{G} of \mathcal{G}_1^{∞} and \mathcal{G}_2^{∞} is an lgg of \mathcal{G}_1 and \mathcal{G}_2 . #### Proposition An lgg of two RDF graphs \mathcal{G}_1 and \mathcal{G}_2 can be computed in $O(|\mathcal{G}_1^{\infty}| \times |\mathcal{G}_2^{\infty}|)$ and its size is bounded by $|\mathcal{G}_1^{\infty}| \times |\mathcal{G}_2^{\infty}|$. ### Outline Introduction - 1 Introduction - 2 Preliminaries - 3 Lgg in RDF - 4 Lgg in SPARQL - 5 Related work - 6 Conclusion & Perspectives ### Defining the 1gg of queries #### 1gg of BGPQs Introduction Let q_1, \ldots, q_n be BGPQs with the same arity and \mathcal{R} a set of RDF entailment rules. - A generalization of q_1, \ldots, q_n is a BGPQ q_g such that $q_i \models_{\mathcal{R}} q_g$ for $1 \le i \le n$. - A least general generalization of q_1, \ldots, q_n is a generalization q_{lgg} of q_1, \ldots, q_n such that for any other generalization q_g of q_1, \ldots, q_n : $q_{\text{lgg}} \models_{\mathcal{R}} q_g$. ### Defining the 1gg of queries ### 1gg of BGPQs Let q_1, \ldots, q_n be BGPQs with the same arity and \mathcal{R} a set of RDF entailment rules. - A generalization of q_1, \ldots, q_n is a BGPQ q_g such that $q_i \models_{\mathcal{R}} q_g$ for $1 \le i \le n$. - A least general generalization of q_1, \ldots, q_n is a generalization q_{lgg} of q_1, \ldots, q_n such that for any other generalization q_g of q_1, \ldots, q_n : $q_{\text{lgg}} \models_{\mathcal{R}} q_g$. ### Defining the 1gg of queries #### 1gg of BGPQs Let q_1, \ldots, q_n be BGPQs with the same arity and \mathcal{R} a set of RDF entailment rules. - A generalization of q_1, \ldots, q_n is a BGPQ q_g such that $q_i \models_{\mathcal{R}} q_g$ for $1 \leq i \leq n$. - A least general generalization of q_1, \ldots, q_n is a generalization q_{1gg} of q_1, \ldots, q_n such that for any other generalization q_g of q_1, \ldots, q_n : $q_{1gg} \models_{\mathcal{R}} q_g$. ### Enriching queries w.r.t. background knowledge ### Enriching queries w.r.t. background knowledge ### Saturation of a query Introduction #### BGPQ saturation w.r.t. RDFS constraints Let $\mathcal R$ be a set of RDF entailment rules, $\mathcal O$ a set of RDFS statements, and q a BGPQ. The *saturation* of q w.r.t. $\mathcal O$, noted $q_{\mathcal O}^{\infty}$, is the BGPQ with the same answer variables as q and whose body, noted $body(q_{\mathcal O}^{\infty})$, is the maximal subset of $(body(q) \cup \mathcal O)^{\infty}$ such that for any of its subset $\mathcal S$: if $\mathcal O \models_{\mathcal R} \mathcal S$ holds then $body(q) \models_{\mathcal R} \mathcal S$ holds. ### Entailment between BGPQs w.r.t. background knowledge #### Entailment between BGPQs w.r.t. \mathcal{R}, \mathcal{O} Given a set \mathcal{R} of RDF entailment rules, a set \mathcal{O} of RDFS statements, and two BGPQs q_1 and q_2 with the same arity, q_1 entails q_2 w.r.t. \mathcal{O} , denoted $q_1 \models_{\mathcal{R},\mathcal{O}} q_2$, iff $q_1^{\infty} \models q_2$ holds. Well-founded relation : $q_1 \models_{\mathcal{R},\mathcal{O}} q_2$ - Query entailment: if $\mathcal{G} \models_{\mathcal{R}} q_1$ holds then $\mathcal{G} \models_{\mathcal{R}} q_2$ holds, - Query answering: $q_1(\mathcal{G}) \subseteq q_2(\mathcal{G})$ holds for any graph \mathcal{G} whose set of RDFS constraints is \mathcal{O} . #### Definition (1gg of BGPQs w.r.t. RDFS constraints) Let \mathcal{R} be a set of RDF entailment rules, \mathcal{O} a set of RDFS statements, and q_1, \ldots, q_n n BGPQs with the same arity. - A generalization of q_1, \ldots, q_n w.r.t. \mathcal{O} is a BGPQ q_g such that $q_i \models_{\mathcal{R},\mathcal{O}} q_g$ for $1 \leq i \leq n$. - A least general generalization of q_1, \ldots, q_n w.r.t. \mathcal{O} is a generalization q_{1gg} of q_1, \ldots, q_n w.r.t. \mathcal{O} such that for any other generalization q_g of q_1, \ldots, q_n w.r.t. \mathcal{O} : $q_{1gg} \models_{\mathcal{R}, \mathcal{O}} q_g$. #### **Theorem** Introduction An 1gg of BGPQs w.r.t. RDFS statements may not exist for some set of RDF entailment rules; when it exists, it is unique up to entailment $(\models_{\mathcal{R},\mathcal{O}})$. # Defining the 1gg of queries w.r.t. background knowledge ### Definition (1gg of BGPQs w.r.t. RDFS constraints) Let \mathcal{R} be a set of RDF entailment rules, \mathcal{O} a set of RDFS statements, and q_1, \ldots, q_n n BGPQs with the same arity. - A generalization of q_1, \ldots, q_n w.r.t. \mathcal{O} is a BGPQ q_g such that $q_i \models_{\mathcal{R}, \mathcal{O}} q_g$ for $1 \leq i \leq n$. - A least general generalization of q_1, \ldots, q_n w.r.t. \mathcal{O} is a generalization q_{1gg} of q_1, \ldots, q_n w.r.t. \mathcal{O} such that for any other generalization q_g of q_1, \ldots, q_n w.r.t. \mathcal{O} : $q_{1gg} \models_{\mathcal{R}, \mathcal{O}} q_g$. Result: Igg of n BGPQ queries vs Igg of two BGPQ queries $$\begin{array}{l} \ell_{3}(q_{1}, q_{2}, q_{3}) \equiv_{\mathcal{R}, \mathcal{O}} \ell_{2}(\ell_{2}(q_{1}, q_{2}), q_{3}) \\ \dots \\ \ell_{n}(q_{1}, \dots, q_{n}) \equiv_{\mathcal{R}, \mathcal{O}} \ell_{2}(\ell_{n-1}(q_{1}, \dots, q_{n-1}), q_{n}) \\ \equiv_{\mathcal{R}, \mathcal{O}} \ell_{2}(\ell_{2}(\dots \ell_{2}(\ell_{2}(q_{1}, q_{2}), q_{3}) \dots, q_{n-1}), q_{n}) \end{array}$$ We focus on computing 1gg of two BGPQ queries ## Defining the 1gg of queries # Defining the 1gg of queries # Defining the 1gg of queries How to compute this query ? # Definition (Cover query) Let q_1 , q_2 be two BGPQs with the same arity n. If there exists the BGPQ q such that - $head(q_1) = q_1(x_1^1, \dots, x_1^n)$ and $head(q_2) = q_2(x_2^1, \dots, x_2^n)$ iff $head(q) = q(v_{x_1^1 x_2^1}, \dots, v_{x_1^n x_2^n})$ - $(t_1, t_2, t_3) \in body(q_1)$ and $(t_4, t_5, t_6) \in body(q_2)$ iff $(\varsigma(t_1, t_4), \varsigma(t_2, t_5), \varsigma(t_3, t_6)) \in body(q)$ with, for $1 \le i \le 3$, $\varsigma(t_i, t_{i+3}) = t_i$ if $t_i = t_{i+3}$ and $t_i \in \mathcal{U} \cup \mathcal{L}$, otherwise $\varsigma(t_i, t_{i+3})$ is the variable $v_{t_i t_{i+3}}$ then q is the cover query of q_1, q_2 . # The cover of SPARQL queries ### Definition (Cover query) Let q_1, q_2 be two BGPQs with the same arity n. If there exists the BGPQ a such that - $head(q_1) = q_1(x_1^1, \dots, x_1^n)$ and $head(q_2) = q_2(x_2^1, \dots, x_2^n)$ iff $head(q) = q(v_{x_1^1 x_2^1}, \dots, v_{x_1^n x_2^n})$ - $(t_1, t_2, t_3) \in body(q_1)$ and $(t_4, t_5, t_6) \in body(q_2)$ iff $(\varsigma(t_1, t_4), \varsigma(t_2, t_5), \varsigma(t_3, t_6)) \in body(q)$ with, for 1 < i < 3, $\zeta(t_i, t_{i+3}) = t_i$ if $t_i = t_{i+3}$ and $t_i \in \mathcal{U} \cup \mathcal{L}$, otherwise $\zeta(t_i, t_{i+3})$ is the variable $v_{t:t:}$ then q is the cover query of q_1, q_2 . ### Example Introduction • $(x_1, hasContactAuthor, y_1) \in body(q_1)$ and $(x_2, hasAuthor, y_2) \in body(q_2)$ iff $(v_{x_1x_2}, v_{hCAhA}, v_{y_1y_2}) \in body(q)$ ### Theorem Given a set \mathcal{R} of RDF entailment rules, a set \mathcal{O} of RDFS statements and two BGPQs q_1, q_2 with the same arity, - **1** the cover query q of $q_{1_{\mathcal{O}}}^{\infty}$, $q_{2_{\mathcal{O}}}^{\infty}$ exists iff an lgg of q_1 , q_2 w.r.t. \mathcal{O} exists: - **2** the cover query q of q_{10}^{∞} , q_{20}^{∞} is an lgg of q_1 , q_2 w.r.t. \mathcal{O} . #### Proposition A cover query-based 1gg of two BGPQs q_1 and q_2 is computed in $O(|body(q_1^{\infty})| \times |body(q_2^{\infty})|)$ and its size is $|body(q_1^{\infty})| \times |body(q_2^{\infty})|$. ## Cover query-based 1gg of SPARQL queries $$q(v_{x1x2})$$ # Cover query-based 1gg of SPARQL queries $$q(v_{x1x2})$$ $$q(v_{x1x2})$$ ## Cover query-based 1gg of SPARQL queries Introduction # Experimentation: BGPQs (DBPedia) #### Goal Introduction • How much more precise 1ggs are when entailment between BGPQs w.r.t. background knowledge ($\models_{\mathcal{R},\mathcal{O}}$) are utilized instead of just simple entailment (\models). #### Result $$q_{1 \leq i \leq n}, \ q_i \models_{\mathcal{R}} q_{\text{lgg}}^{\models_{\mathcal{R},\mathcal{O}}} \models_{\mathcal{R}} q_{\text{lgg}}^{\models}$$ #### Goal Introduction • How much more precise 1ggs are when entailment between BGPQs w.r.t. background knowledge ($\models_{\mathcal{R},\mathcal{O}}$) are utilized instead of just simple entailment (\models). #### Result $$q_{1 \leq i \leq n}, \ q_i \models_{\mathcal{R}} q_{\mathrm{lgg}}^{\models_{\mathcal{R},\mathcal{O}}} \models_{\mathcal{R}} q_{\mathrm{lgg}}^{\models}$$ | DBpedia query $Q_{1 \le i \le 8}$: | Q_1 | Q_2 | Q_3 | Q_4 | Q_5 | Q_6 | Q ₇ | Q ₈ | |-----------------------------------------------------------|-------|-------|--------|-------|-------|-------|----------------|----------------| | Q _i 's shape | tree | tree | tree | graph | graph | graph | graph | graph | | $ body(Q_i) $ | 4 | 6 | 4 | 6 | 4 | 6 | 6 | 6 | | Number of URI/variable occurrences in Q_i | 7/5 | 9/9 | 5/7 | 7/11 | 5/7 | 9/9 | 9/9 | 9/9 | | $ Q_i(\mathcal{G}_{\mathtt{DBpedia}}) $ | 77 | 0 | 41 695 | 13 | 6 | 0 | 1 | 0 | | $ body(Q_{i_{\mathcal{O}_{\mathrm{DBpedia}}}}^{\infty}) $ | 16 | 19 | 19 | 23 | 16 | 23 | 23 | 23 | Table: Characteristics of our test BGPQs (top) and of their saturations w.r.t. DBpedia constraints (bottom); times are in ms. # Experimentation: 1gg of BGPQs (DBPedia) Introduction | 1gg of 2 DBpedia BGPQs: | $Q_1 Q_2$ | Q_1Q_3 | $Q_1 Q_4$ | Q_2Q_3 | $Q_4 Q_5$ | Q_5Q_6 | $Q_5 Q_7$ | Q_7Q_8 | |---------------------------------------------------------------------|-----------|------------|------------|------------|-----------|----------|-----------|----------| | Time to compute q_{1gg} | 3 | 3 | 5 | 4 | 4 | 5 | 6 | 5 | | $ q_{ ext{lgg}}(\mathcal{G}_{ ext{DBpedia}}) $ | 477,455 | 34,747,102 | 34,901,117 | 34,747,102 | 1,977 | 1,221 | 35 | 70 | | Time to compute $q_{ ext{lgg}}^{\mathcal{O}_{ ext{DBpedia}}}$ | 13 | 14 | 14 | 15 | 15 | 14 | 17 | 18 | | $ q_{ t lgg}^{\mathcal{O}_{ t DBpedia}}(\mathcal{G}_{ t DBpedia}) $ | 10,637 | 7,874,768 | 456,690 | 4,537,824 | 1,701 | 780 | 34 | 36 | | Gain in precision | 97.77 | 77.33 | 98.69 | 86.94 | 13.96 | 36.11 | 2.85 | 48.57 | Table: Characteristics of cover query-based 1ggs of test queries, w/ or w/o using the DBpedia RDFS constraints; times are in ms. | 1gg of 3 DBpedia BGPQs : | $Q_1 Q_2 Q_3$ | $Q_1 Q_2 Q_4$ | $Q_1 Q_3 Q_4$ | $Q_2 Q_3 Q_4$ | $Q_4Q_7Q_8$ | $Q_5 Q_7 Q_8$ | $Q_6 Q_7 Q_8$ | |---------------------------------------------------------------------|---------------|---------------|---------------|---------------|-------------|---------------|---------------| | Time to compute q_{1gg} | 5 | 4 | 5 | 6 | 10 | 11 | 12 | | $ q_{ ext{lgg}}(\mathcal{G}_{ ext{DBpedia}}) $ | 34,747,102 | 34,901,117 | 34,901,117 | 34,901,117 | 70 | 1,977 | 4,969 | | Time to compute $q_{1gg}^{\mathcal{O}_{ t DBpedia}}$ | 19 | 20 | 20 | 24 | 27 | 27 | 33 | | $ q_{ t lgg}^{\mathcal{O}_{ t DBpedia}}(\mathcal{G}_{ t DBpedia}) $ | 7,874,768 | 615,339 | 7,874,779 | 4,537,824 | 36 | 1,701 | 335 | | Gain in precision | 77.33 | 98.23 | 77.43 | 86.99 | 48.57 | 13.96 | 93.25 | Table: Characteristics of cover query-based 1ggs of 3 test queries, w/ or w/o using the DBpedia RDFS constraints; times are in ms. - - Defining the lgg in RDF - Computing the lgg in RDF - - Defining the lgg in SPARQL - Computing the lgg in SPARQL - Experimental results - Related work ## Structural approaches - Description Logics - [Baader et al., 1999]. - [Zarrieß and Turhan, 2013]. - RDF: Rooted graphs, ignore RDF entailment - [Colucci et al., 2016]. - SPARQL : tree queries, ignore RDF entailment - [Lehmann and Bühmann, 2011]. #### Approaches independent of the structure - First Order Clauses - [Plotkin, 1970]. - [Nienhuys-Cheng and de Wolf, 1996]. - Conceptual Graphs - [Chein and Mugnier, 2009]. ### Our contributions on learning commonalities in RDF and SPARQL - We revisited the problem of computing a least general generalization in the entire setting of RDF & SPARQL conjunctive queries. - We defined a **new** entailment relationship between BGPQs w.r.t. background knowledge. - We devise algorithms to compute 1ggs of conjunctive queries and small-to-huge RDF graphs: - In-memory - Data management system - MapReduce - We studied the added-value of considering entailment rules when learning lggs of RDF graphs and entailment rules plus external ontology when learning lggs of BGPQs, using synthetic LUBM data and real DBpedia data. ## Perspectives Introduction #### Learning commonalities in DL-Lite We study the problem of learning the 1gg of KBs or queries w.r.t. an ontology, in the setting of the *DL-Lite_R* which underpins the OWL2 QL profile of the *Web Ontology Language*, the other Semantic Web data model by W3C. Thank you! ### References I Introduction ``` [Baader et al., 1999] Baader, F., Kiisters, R., and Molitor, R. (1999). Computing least common subsumers in description logics with existential restrictions. In IJCAI. ``` [Chein and Mugnier, 2009] Chein, M. and Mugnier, M. (2009). Graph-based Knowledge Representation - Computational Foundations of Conceptual Graphs. Springer. [Colucci et al., 2016] Colucci, S., Donini, F., Giannini, S., and Sciascio, E. D. (2016). Defining and computing least common subsumers in RDF. J. Web Semantics, 39(0). [Colucci et al., 2013] Colucci, S., Donini, F. M., and Sciascio, E. D. (2013). Common subsumbers in RDF. In AI*IA. [Lehmann and Bühmann, 2011] Lehmann, J. and Bühmann, L. (2011). Autospargl: Let users query your knowledge base. In ESWC. [Nienhuys-Cheng and de Wolf, 1996] Nienhuys-Cheng, S. and de Wolf, R. (1996). Least generalizations and greatest specializations of sets of clauses. J. Artif. Intell. Res. [Plotkin, 1970] Plotkin, G. D. (1970). A note on inductive generalization. Machine Intelligence, 5. [W3C-RDFS, 2014] W3C-RDFS (2014). RDF 1.1 semantics. https://www.w3.org/TR/rdf11-mt/. [Zarrieß and Turhan, 2013] Zarrieß, B. and Turhan, A. (2013). Most specific generalizations w.r.t. general EL-TBoxes. In IJCAI.