

Learning Commonalities in RDF and SPARQL

François Goasdoué (fg@irisa.fr)

Joint work with:

Sara El Hassad

Hélène Jaudoin

Reasoning on Data (RoD), Thursday 27th, 2019

RDF/SPARQL and data management

RDF/SPARQL: the prominent standards for the Semantic Web

W3C recommendations

Introduction

•00

- RDF: graph data model
 - Lightweight incomplete, deductive databases
- SPARQL: powerful SQL-like query language for RDF
 - Interrogates both data and schema/ontology of RDF graphs
 - Requires reasoning to answer queries

RDF/SPARQL raises a timely data management challenge

• Efficient query answering in the presence of updates

RDF/SPARQL is widely adopted for semantic-rich data applications

• Linked Open Data:

Learning commonalities and data management

Learning commonalities: a variety of data management applications

- Exploration
 - Identification of common data and query patterns
 - Clustering of datasets and queries
- Optimization
 - Multi-Query Optimization
 - View selection
- Recommendation
 - User-to-user suggestions
 - Search suggestions

Learning commonalities in RDF and SPARQL

Least general generalization (1gg), a.k.a. least common subsumer

- Machine Learning (ILP) since the early 70's
 - Clauses

000

- Knowledge Representation since the early 90's
 - Description logics
- Semantic Web [Lehmann and Bühmann, 2011], [Colucci et al., 2013], [Colucci et al., 2016]
 - RDF: rooted RDF graphs, purely structural approaches
 - SPARQL: tree queries, purely structural approaches

Learning commonalities in RDF and SPARQL

Least general generalization (1gg), a.k.a. least common subsumer

- Machine Learning (ILP) since the early 70's
 - Clauses

Introduction

000

- Knowledge Representation since the early 90's
 - Description logics
- Semantic Web [Lehmann and Bühmann, 2011], [Colucci et al., 2013], [Colucci et al., 2016]
 - RDF: rooted RDF graphs, purely structural approaches
 - SPARQL: tree queries, purely structural approaches

Our contributions:

- 4 lgg of RDF graphs w.r.t. the entire RDF standard [ESWC17,ILP17]
- ② lgg of SPARQL conjunctive queries w.r.t. ontological knowledge [BDA17,ESWC17,ISWC17]

Outline

- Introduction
- 2 Preliminaries
- 3 Lgg in RDF
 - Defining the lgg in RDF
 - Computing the lgg in RDF
- 4 Lgg in SPARQL
 - Defining the lgg in SPARQL
 - Computing the lgg in SPARQL
 - Experimental results
- Related work
- 6 Conclusion & Perspectives

Towards defining the notion of lgg in RDF

G. Plotkin

A least general generalization (1gg) of n descriptions d_1, \ldots, d_n is a most specific description d generalizing every $d_{1 \le i \le n}$ for some generalization/specialization relation between descriptions.

1gg in RDF

- descriptions are RDF graphs
- the generalization/specialization relation is entailment between RDF graphs

1gg in our SPARQL setting

- descriptions are Basic Graph Pattern Queries (BGPQs)
- the generalization/specialization relation is entailment between BGPQs

RDF graphs are made of triples:

$$(\mathtt{s},\mathtt{p},\mathtt{o}) \in (\mathcal{U} \cup \mathcal{B}) \times \mathcal{U} \times (\mathcal{U} \cup \mathcal{L} \cup \mathcal{B})$$

• Built-in property URIs to make RDF statements

RDF statement	Triple
Class assertion	(s, τ, o)
Property assertion	(s, p, o) with $p \neq \tau$

RDF graphs are made of triples:

$$(\mathtt{s},\mathtt{p},\mathtt{o}) \in (\mathcal{U} \cup \mathcal{B}) imes \mathcal{U} imes (\mathcal{U} \cup \mathcal{L} \cup \mathcal{B})$$

• Built-in property URIs to make RDF statements

RDF statement	Triple
Class assertion	(s, τ, o)
Property assertion	(s, p, o) with $p \neq \tau$

Adding ontological knowledge to RDF graphs

 Built-in property URIs to declare RDF Schema statements, i.e., ontological constraints.

RDFS statement	Triple
Subclass	(s, \leq_{sc}, o)
Subproperty	(s, ≼ _{sp} , o)
Domain typing	$ (s, \leftarrow_d, o) $
Range typing	$ (s, \hookrightarrow_r, o) $

Adding ontological knowledge to RDF graphs

 Built-in property URIs to declare RDF Schema statements, i.e., ontological constraints.

RDFS statement	Triple
Subclass	$(s, \leq_{\mathrm{sc}}, o)$
Subproperty	$(s, \preceq_{\mathrm{sp}}, o)$
Domain typing	(s, \leftarrow_d, o)
Range typing	(s,\hookrightarrow_r,o)

Introduction

Let us consider the following RDF graph:

Introduction

How to derive implicit triples of an RDF graph?

Entailment rules

Introduction

Rule [W3C-RDFS, 2014]	Entailment rule
rdfs2	$(\mathtt{p}, \hookleftarrow_{d}, \mathtt{o}), (\mathtt{s}_{1}, \mathtt{p}, \mathtt{o}_{1}) ightarrow (\mathtt{s}_{1}, au, \mathtt{o})$
rdfs3	$(p,\hookrightarrow_r,o),(s_1,p,o_1)\to(o_1, au,o)$
rdfs5	$(p_1, \preceq_{\operatorname{sp}}, p_2), (p_2, \preceq_{\operatorname{sp}}, p_3) \to (p_1, \preceq_{\operatorname{sp}}, p_3)$
rdfs7	$(\mathtt{p}_1, \preceq_{\mathrm{sp}}, \mathtt{p}_2), (\mathtt{s}, \mathtt{p}_1, \mathtt{o}) o (\mathtt{s}, \mathtt{p}_2, \mathtt{o})$
rdfs9	$(\mathtt{s}, \preceq_{\mathrm{sc}}, \mathtt{o}), (\mathtt{s}_1, \tau, \mathtt{s}) o (\mathtt{s}_1, \tau, \mathtt{o})$
rdfs11	$(\mathtt{s}, \preceq_{\mathrm{sc}}, \mathtt{o}), (\mathtt{o}, \preceq_{\mathrm{sc}}, \mathtt{o}_1) o (\mathtt{s}, \preceq_{\mathrm{sc}}, \mathtt{o}_1)$
ext1	$(\mathtt{p}, \hookleftarrow_d, \mathtt{o}), (\mathtt{o}, \preceq_{\mathrm{sc}}, \mathtt{o}_1) \rightarrow (\mathtt{p}, \hookleftarrow_d, \mathtt{o}_1)$
ext2	$(p,\hookrightarrow_r,o),(o,\preceq_{\mathrm{sc}},o_1)\to(p,\hookrightarrow_r,o_1)$
ext3	$(\mathtt{p}, \preceq_{\operatorname{sp}}, \mathtt{p}_1), (\mathtt{p}_1, \hookleftarrow_d, \mathtt{o}) \to (\mathtt{p}, \hookleftarrow_d, \mathtt{o})$
ext4	$(\mathtt{p}, \preceq_{\mathrm{sp}}, \mathtt{p_1}), (\mathtt{p_1}, \hookrightarrow_{r}, \mathtt{o}) \rightarrow (\mathtt{p}, \hookrightarrow_{r}, \mathtt{o})$

Table: Sample RDF entailment rules R.

$$\textit{rdfs}9: (\mathtt{s}, \preceq_{\mathrm{sc}}, \mathtt{o}), (\mathtt{s}_1, \tau, \mathtt{s}) \rightarrow (\mathtt{s}_1, \tau, \mathtt{o})$$

RDF graph \mathcal{G}

$$\textit{rdfs}9: (\mathtt{s}, \preceq_{\mathrm{sc}}, \mathtt{o}), (\mathtt{s}_1, \tau, \mathtt{s}) \rightarrow (\mathtt{s}_1, \tau, \mathtt{o})$$

RDF graph ${\cal G}$

$$\textit{rdfs}9: (\mathtt{s}, \preceq_{\mathrm{sc}}, \mathtt{o}), (\mathtt{s}_1, \tau, \mathtt{s}) \rightarrow (\mathtt{s}_1, \tau, \mathtt{o})$$

RDF graph $\mathcal G$

$$\textit{rdfs}9: (\mathtt{s}, \preceq_{\mathrm{sc}}, \mathtt{o}), (\mathtt{s}_1, \tau, \mathtt{s}) \rightarrow (\mathtt{s}_1, \tau, \mathtt{o})$$

RDF graph \mathcal{G}

$$\textit{rdfs7}: (p_1, \preceq_{\mathrm{sp}}, p_2), (s, p_1, o) \rightarrow (s, p_2, o)$$

RDF graph $\mathcal G$

rdfs7 :
$$(p_1, \preceq_{sp}, p_2), (s, p_1, o) \rightarrow (s, p_2, o)$$

RDF graph $\mathcal G$

$$\textit{rdfs7}: (p_1, \preceq_{\mathrm{sp}}, p_2), (s, p_1, o) \rightarrow (s, p_2, o)$$

RDF graph $\mathcal G$

$$\textit{rdfs7}: (p_1, \preceq_{\mathrm{sp}}, p_2), (s, p_1, o) \rightarrow (s, p_2, o)$$

RDF graph \mathcal{G}

$$rdfs3: (p, \hookrightarrow_r, o), (s_1, p, o_1) \rightarrow (o_1, \tau, o)$$

RDF graph $\mathcal G$

$$ext4: (p, \leq_{sp}, p_1), (p_1, \hookrightarrow_r, o) \rightarrow (p, \hookrightarrow_r, o)$$

RDF graph $\mathcal G$

$$ext3: (p, \leq_{sp}, p_1), (p_1, \hookleftarrow_d, o) \rightarrow (p, \hookleftarrow_d, o)$$

RDF graph $\mathcal G$

Semantics of an RDF graph

 \mathcal{G}^{∞} materializes the semantic of \mathcal{G} .

Towards defining the notion of lgg in RDF

G. Plotkin

A least general generalization (1gg) of n descriptions d_1, \ldots, d_n is a most specific description d generalizing every $d_{1 \le i \le n}$ for some generalization/specialization relation between descriptions.

1gg in RDF

- descriptions are RDF graphs
- the generalization/specialization relation is entailment between RDF graphs

lgg in our SPARQL setting

- descriptions are BGP Queries
- the generalization/specialization relation is entailment between BGPQs

Entailment between RDF graphs

$$\mathcal{G}\models_{\mathcal{R}}\mathcal{G}'\Longleftrightarrow\mathcal{G}^{\infty}\models\mathcal{G}'$$

Introduction

i.e., there exists a graph homomorphism from \mathcal{G}' to \mathcal{G}^{∞} .

$$\mathcal{G} \models^{?}_{\mathcal{R}} \mathcal{G}'$$

Entailment between RDF graphs

$$\mathcal{G}\models_{\mathcal{R}}\mathcal{G}'\Longleftrightarrow\mathcal{G}^{\infty}\models\mathcal{G}'$$

Introduction

i.e., there exists a graph homomorphism from \mathcal{G}' to \mathcal{G}^{∞} .

$$\mathcal{G}\models_{\mathcal{R}}\mathcal{G}'\equiv\mathcal{G}^{\infty}\stackrel{?}{\models}\mathcal{G}'$$

Entailment between RDF graphs

$$\mathcal{G} \models_{\mathcal{R}} \mathcal{G}' \iff \mathcal{G}^{\infty} \models \mathcal{G}'$$

Introduction

i.e., there exists a graph homomorphism from \mathcal{G}' to \mathcal{G}^{∞} .

 \mathcal{G} is more specific than \mathcal{G}' !

Towards defining the notion of lgg in SPARQL

G. Plotkin

A least general generalization (1gg) of n descriptions d_1, \ldots, d_n is a most specific description d generalizing every $d_{1 \le i \le n}$ for some generalization/specialization relation between descriptions.

1gg in RDF

- descriptions are RDF graphs
- the generalization/specialization relation is entailment between RDF graphs

1gg in our SPARQL setting

- descriptions are Basic Graph Pattern Queries (BGPQs)
- the generalization/specialization relation is entailment between BGPQs

Basic Graph Pattern Queries (BGPQs)

- BGPQs: SPARQL conjunctive queries, i.e., select-project-join queries
- $(s, p, o) \in (\mathcal{V} \cup \mathcal{U}) \times (\mathcal{V} \cup \mathcal{U}) \times (\mathcal{V} \cup \mathcal{U} \cup \mathcal{L})$

Basic Graph Pattern Queries (BGPQs)

• BGPQs: SPARQL conjunctive queries, i.e., select-project-join queries

•
$$(s, p, o) \in (\mathcal{V} \cup \mathcal{U}) \times (\mathcal{V} \cup \mathcal{U}) \times (\mathcal{V} \cup \mathcal{U} \cup \mathcal{L})$$

Entailing and answering queries

Query entailment
$$\mathcal{G} \models_{\mathcal{R}} q \iff \mathcal{G}^{\infty} \models q$$

Entailing and answering queries

Query entailment
$$\mathcal{G} \models_{\mathcal{R}} q \iff \mathcal{G}^{\infty} \models q$$

Query answering $q(\mathcal{G}) = \{(\bar{x})_{\phi} \mid \mathcal{G} \models_{\mathcal{P}}^{\phi} q\}$

Introduction

 $q(\mathcal{G}) = \{(b, \text{ConfPaper}), (b, \text{Publication}), (b_1, \text{Researcher})\}$

Query answering $q(\mathcal{G}) = \{(\bar{x})_{\phi} \mid \mathcal{G} \models^{\phi}_{\mathcal{P}} q\}$

Introduction

 $q(\mathcal{G}) = \{(b, \text{ConfPaper}), (b, \text{Publication}), (b_1, \text{Researcher})\}$

Query answering
$$q(\mathcal{G}) = \{(\bar{x})_{\phi} \mid \mathcal{G} \models_{\mathcal{R}}^{\phi} q\}$$

 $q(\mathcal{G}) = \{(b, \text{ConfPaper}), (b, \text{Publication}), (b_1, \text{Researcher})\}$

Entailing and answering queries

Query answering
$$q(\mathcal{G}) = \{(\bar{x})_{\phi} \mid \mathcal{G} \models_{\mathcal{R}}^{\phi} q\}$$

$$q(\mathcal{G}) = \{(b, \text{ConfPaper}), (b, \text{Publication}), (b_1, \text{Researcher})\}$$

Towards defining the notion of lgg in SPARQL

G. Plotkin

A least general generalization (lgg) of n descriptions d_1, \ldots, d_n is a most specific description d generalizing every $d_{1 \le i \le n}$ for some generalization/specialization relation between descriptions.

lgg in RDF

- descriptions are RDF graphs
- the generalization/specialization relation is entailment between RDF graphs

1gg in our SPARQL setting

- descriptions are Basic Graph Pattern Queries (BGPQs)
- the generalization/specialization relation is entailment between **BGPQs**

Entailment between BGPQs

$$q \models_{\mathcal{R}} q' \iff q^{\infty} \models q'$$

 $q'(x_2)$

Entailment between BGPQs

$$q \models_{\mathcal{R}} q' \iff q^{\infty} \models q'$$

Outline

Introduction

- 1 Introduction
- 2 Preliminaries
- 3 Lgg in RDF
- 4 Lgg in SPARQL
- Related work
- 6 Conclusion & Perspectives

Definition (1gg of RDF graphs)

Let $\mathcal{G}_1, \dots, \mathcal{G}_n$ be RDF graphs and \mathcal{R} a set of RDF entailment rules.

- A generalization of $\mathcal{G}_1, \dots, \mathcal{G}_n$ is an RDF graph \mathcal{G}_g such that $\mathcal{G}_i \models_{\mathcal{R}} \mathcal{G}_g$ holds for $1 \leq i \leq n$.
- A least general generalization (1gg) of $\mathcal{G}_1, \ldots, \mathcal{G}_n$ is a generalization \mathcal{G}_{1gg} of $\mathcal{G}_1, \ldots, \mathcal{G}_n$ such that for any other generalization \mathcal{G}_g of $\mathcal{G}_1, \ldots, \mathcal{G}_n$, $\mathcal{G}_{1gg} \models_{\mathcal{R}} \mathcal{G}_g$ holds.

Theorem

Introduction

An 1gg of RDF graphs always exists; it is unique up to entailment.

Definition (1gg of RDF graphs)

Let G_1, \ldots, G_n be RDF graphs and R a set of RDF entailment rules.

- A generalization of $\mathcal{G}_1, \dots, \mathcal{G}_n$ is an RDF graph \mathcal{G}_g such that $\mathcal{G}_i \models_{\mathcal{R}} \mathcal{G}_g$ holds for $1 \leq i \leq n$.
- A least general generalization (1gg) of $\mathcal{G}_1, \ldots, \mathcal{G}_n$ is a generalization \mathcal{G}_{1gg} of $\mathcal{G}_1, \ldots, \mathcal{G}_n$ such that for any other generalization \mathcal{G}_g of $\mathcal{G}_1, \ldots, \mathcal{G}_n$, $\mathcal{G}_{\text{1gg}} \models_{\mathcal{R}} \mathcal{G}_g$ holds.

Result: Igg of n RDF graphs vs Igg of two RDF graphs

$$\begin{array}{ll}
\ell_3(\mathcal{G}_1, \mathcal{G}_2, \mathcal{G}_3) & \equiv_{\mathcal{R}} & \ell_2(\ell_2(\mathcal{G}_1, \mathcal{G}_2), \mathcal{G}_3) \\
\dots & \dots \\
\ell_n(\mathcal{G}_1, \dots, \mathcal{G}_n) & \equiv_{\mathcal{R}} & \ell_2(\ell_{n-1}(\mathcal{G}_1, \dots, \mathcal{G}_{n-1}), \mathcal{G}_n) \\
& \equiv_{\mathcal{R}} & \ell_2(\ell_2(\dots \ell_2(\ell_2(\mathcal{G}_1, \mathcal{G}_2), \mathcal{G}_3) \dots, \mathcal{G}_{n-1}), \mathcal{G}_n)
\end{array}$$

We focus on computing the $\lg g$ of two RDF graphs

Introduction

Introduction

How to compute this graph ?

The cover graph of RDF graphs

Definition (Cover graph)

The cover graph \mathcal{G} of two RDF graphs \mathcal{G}_1 and \mathcal{G}_2 is the RDF graph such that for every property p in both \mathcal{G}_1 and \mathcal{G}_2 :

 $(t_1,p,t_2)\in\mathcal{G}_1$ and $(t_3,p,t_4)\in\mathcal{G}_2$ iff $(\varsigma(t_1,t_3),p,\varsigma(t_2,t_4))\in\mathcal{G}$ with $\varsigma(t_1,t_3)=t_1$ if $t_1=t_3$ and $t_1\in\mathcal{U}\cup\mathcal{L}$, else $\varsigma(t_1,t_3)$ is the blank node $b_{t_1t_3}$, and, similarly $\varsigma(t_2,t_4)=t_2$ if $t_2=t_4$ and $t_2\in\mathcal{U}\cup\mathcal{L}$, else $\varsigma(t_2,t_4)$ is the blank node $b_{t_2t_4}$.

The cover graph of RDF graphs

Definition (Cover graph)

The cover graph \mathcal{G} of two RDF graphs \mathcal{G}_1 and \mathcal{G}_2 is the RDF graph such that for every property p in both \mathcal{G}_1 and \mathcal{G}_2 :

$$(t_1,p,t_2)\in\mathcal{G}_1$$
 and $(t_3,p,t_4)\in\mathcal{G}_2$ iff $(\varsigma(t_1,t_3),p,\varsigma(t_2,t_4))\in\mathcal{G}$ with $\varsigma(t_1,t_3)=t_1$ if $t_1=t_3$ and $t_1\in\mathcal{U}\cup\mathcal{L}$, else $\varsigma(t_1,t_3)$ is the blank node $b_{t_1t_3}$, and, similarly $\varsigma(t_2,t_4)=t_2$ if $t_2=t_4$ and $t_2\in\mathcal{U}\cup\mathcal{L}$, else $\varsigma(t_2,t_4)$ is the blank node $b_{t_2t_4}$.

Example (Anti-unification)

- $(i1, hasAuthor, SA) \in \mathcal{G}_1$ and $(i2, hasAuthor, SA) \in \mathcal{G}_2$ iff $(b_{i1i2}, hasAuthor, SA) \in \mathcal{G}$
- $(i1, hasAuthor, SA) \in \mathcal{G}_1$ and $(i2, hasContactAuthor, SA) \in \mathcal{G}_2$ but $(b_{i1i2}, b_{hAhCA}, SA) \notin \mathcal{G}$

Cover graph-based 1gg

Theorem

Introduction

Let \mathcal{G}_1 and \mathcal{G}_2 be two RDF graphs, and \mathcal{R} a set of RDF entailment rules. The *cover graph* \mathcal{G} of \mathcal{G}_1^{∞} and \mathcal{G}_2^{∞} is an lgg of \mathcal{G}_1 and \mathcal{G}_2 .

Proposition

An lgg of two RDF graphs \mathcal{G}_1 and \mathcal{G}_2 can be computed in $O(|\mathcal{G}_1^{\infty}| \times |\mathcal{G}_2^{\infty}|)$ and its size is bounded by $|\mathcal{G}_1^{\infty}| \times |\mathcal{G}_2^{\infty}|$.

Outline

Introduction

- 1 Introduction
- 2 Preliminaries
- 3 Lgg in RDF
- 4 Lgg in SPARQL
- 5 Related work
- 6 Conclusion & Perspectives

Defining the 1gg of queries

1gg of BGPQs

Introduction

Let q_1, \ldots, q_n be BGPQs with the same arity and \mathcal{R} a set of RDF entailment rules.

- A generalization of q_1, \ldots, q_n is a BGPQ q_g such that $q_i \models_{\mathcal{R}} q_g$ for $1 \le i \le n$.
- A least general generalization of q_1, \ldots, q_n is a generalization q_{lgg} of q_1, \ldots, q_n such that for any other generalization q_g of q_1, \ldots, q_n : $q_{\text{lgg}} \models_{\mathcal{R}} q_g$.

Defining the 1gg of queries

1gg of BGPQs

Let q_1, \ldots, q_n be BGPQs with the same arity and \mathcal{R} a set of RDF entailment rules.

- A generalization of q_1, \ldots, q_n is a BGPQ q_g such that $q_i \models_{\mathcal{R}} q_g$ for $1 \le i \le n$.
- A least general generalization of q_1, \ldots, q_n is a generalization q_{lgg} of q_1, \ldots, q_n such that for any other generalization q_g of q_1, \ldots, q_n : $q_{\text{lgg}} \models_{\mathcal{R}} q_g$.

Defining the 1gg of queries

1gg of BGPQs

Let q_1, \ldots, q_n be BGPQs with the same arity and \mathcal{R} a set of RDF entailment rules.

- A generalization of q_1, \ldots, q_n is a BGPQ q_g such that $q_i \models_{\mathcal{R}} q_g$ for $1 \leq i \leq n$.
- A least general generalization of q_1, \ldots, q_n is a generalization q_{1gg} of q_1, \ldots, q_n such that for any other generalization q_g of q_1, \ldots, q_n : $q_{1gg} \models_{\mathcal{R}} q_g$.

Enriching queries w.r.t. background knowledge

Enriching queries w.r.t. background knowledge

Saturation of a query

Introduction

BGPQ saturation w.r.t. RDFS constraints

Let $\mathcal R$ be a set of RDF entailment rules, $\mathcal O$ a set of RDFS statements, and q a BGPQ. The *saturation* of q w.r.t. $\mathcal O$, noted $q_{\mathcal O}^{\infty}$, is the BGPQ with the same answer variables as q and whose body, noted $body(q_{\mathcal O}^{\infty})$, is the maximal subset of $(body(q) \cup \mathcal O)^{\infty}$ such that for any of its subset $\mathcal S$: if $\mathcal O \models_{\mathcal R} \mathcal S$ holds then $body(q) \models_{\mathcal R} \mathcal S$ holds.

Entailment between BGPQs w.r.t. background knowledge

Entailment between BGPQs w.r.t. \mathcal{R}, \mathcal{O}

Given a set \mathcal{R} of RDF entailment rules, a set \mathcal{O} of RDFS statements, and two BGPQs q_1 and q_2 with the same arity, q_1 entails q_2 w.r.t. \mathcal{O} , denoted $q_1 \models_{\mathcal{R},\mathcal{O}} q_2$, iff $q_1^{\infty} \models q_2$ holds.

Well-founded relation : $q_1 \models_{\mathcal{R},\mathcal{O}} q_2$

- Query entailment: if $\mathcal{G} \models_{\mathcal{R}} q_1$ holds then $\mathcal{G} \models_{\mathcal{R}} q_2$ holds,
- Query answering: $q_1(\mathcal{G}) \subseteq q_2(\mathcal{G})$ holds

for any graph \mathcal{G} whose set of RDFS constraints is \mathcal{O} .

Definition (1gg of BGPQs w.r.t. RDFS constraints)

Let \mathcal{R} be a set of RDF entailment rules, \mathcal{O} a set of RDFS statements, and q_1, \ldots, q_n n BGPQs with the same arity.

- A generalization of q_1, \ldots, q_n w.r.t. \mathcal{O} is a BGPQ q_g such that $q_i \models_{\mathcal{R},\mathcal{O}} q_g$ for $1 \leq i \leq n$.
- A least general generalization of q_1, \ldots, q_n w.r.t. \mathcal{O} is a generalization q_{1gg} of q_1, \ldots, q_n w.r.t. \mathcal{O} such that for any other generalization q_g of q_1, \ldots, q_n w.r.t. \mathcal{O} : $q_{1gg} \models_{\mathcal{R}, \mathcal{O}} q_g$.

Theorem

Introduction

An 1gg of BGPQs w.r.t. RDFS statements may not exist for some set of RDF entailment rules; when it exists, it is unique up to entailment $(\models_{\mathcal{R},\mathcal{O}})$.

Defining the 1gg of queries w.r.t. background knowledge

Definition (1gg of BGPQs w.r.t. RDFS constraints)

Let \mathcal{R} be a set of RDF entailment rules, \mathcal{O} a set of RDFS statements, and q_1, \ldots, q_n n BGPQs with the same arity.

- A generalization of q_1, \ldots, q_n w.r.t. \mathcal{O} is a BGPQ q_g such that $q_i \models_{\mathcal{R}, \mathcal{O}} q_g$ for $1 \leq i \leq n$.
- A least general generalization of q_1, \ldots, q_n w.r.t. \mathcal{O} is a generalization q_{1gg} of q_1, \ldots, q_n w.r.t. \mathcal{O} such that for any other generalization q_g of q_1, \ldots, q_n w.r.t. \mathcal{O} : $q_{1gg} \models_{\mathcal{R}, \mathcal{O}} q_g$.

Result: Igg of n BGPQ queries vs Igg of two BGPQ queries

$$\begin{array}{l}
\ell_{3}(q_{1}, q_{2}, q_{3}) \equiv_{\mathcal{R}, \mathcal{O}} \ell_{2}(\ell_{2}(q_{1}, q_{2}), q_{3}) \\
\dots \\
\ell_{n}(q_{1}, \dots, q_{n}) \equiv_{\mathcal{R}, \mathcal{O}} \ell_{2}(\ell_{n-1}(q_{1}, \dots, q_{n-1}), q_{n}) \\
\equiv_{\mathcal{R}, \mathcal{O}} \ell_{2}(\ell_{2}(\dots \ell_{2}(\ell_{2}(q_{1}, q_{2}), q_{3}) \dots, q_{n-1}), q_{n})
\end{array}$$

We focus on computing 1gg of two BGPQ queries

Defining the 1gg of queries

Defining the 1gg of queries

Defining the 1gg of queries

How to compute this query ?

Definition (Cover query)

Let q_1 , q_2 be two BGPQs with the same arity n. If there exists the BGPQ q such that

- $head(q_1) = q_1(x_1^1, \dots, x_1^n)$ and $head(q_2) = q_2(x_2^1, \dots, x_2^n)$ iff $head(q) = q(v_{x_1^1 x_2^1}, \dots, v_{x_1^n x_2^n})$
- $(t_1, t_2, t_3) \in body(q_1)$ and $(t_4, t_5, t_6) \in body(q_2)$ iff $(\varsigma(t_1, t_4), \varsigma(t_2, t_5), \varsigma(t_3, t_6)) \in body(q)$ with, for $1 \le i \le 3$, $\varsigma(t_i, t_{i+3}) = t_i$ if $t_i = t_{i+3}$ and $t_i \in \mathcal{U} \cup \mathcal{L}$, otherwise $\varsigma(t_i, t_{i+3})$ is the variable $v_{t_i t_{i+3}}$

then q is the cover query of q_1, q_2 .

The cover of SPARQL queries

Definition (Cover query)

Let q_1, q_2 be two BGPQs with the same arity n. If there exists the BGPQ a such that

- $head(q_1) = q_1(x_1^1, \dots, x_1^n)$ and $head(q_2) = q_2(x_2^1, \dots, x_2^n)$ iff $head(q) = q(v_{x_1^1 x_2^1}, \dots, v_{x_1^n x_2^n})$
- $(t_1, t_2, t_3) \in body(q_1)$ and $(t_4, t_5, t_6) \in body(q_2)$ iff $(\varsigma(t_1, t_4), \varsigma(t_2, t_5), \varsigma(t_3, t_6)) \in body(q)$ with, for 1 < i < 3, $\zeta(t_i, t_{i+3}) = t_i$ if $t_i = t_{i+3}$ and $t_i \in \mathcal{U} \cup \mathcal{L}$, otherwise $\zeta(t_i, t_{i+3})$ is the variable $v_{t:t:}$

then q is the cover query of q_1, q_2 .

Example

Introduction

• $(x_1, hasContactAuthor, y_1) \in body(q_1)$ and $(x_2, hasAuthor, y_2) \in body(q_2)$ iff $(v_{x_1x_2}, v_{hCAhA}, v_{y_1y_2}) \in body(q)$

Theorem

Given a set \mathcal{R} of RDF entailment rules, a set \mathcal{O} of RDFS statements and two BGPQs q_1, q_2 with the same arity,

- **1** the cover query q of $q_{1_{\mathcal{O}}}^{\infty}$, $q_{2_{\mathcal{O}}}^{\infty}$ exists iff an lgg of q_1 , q_2 w.r.t. \mathcal{O} exists:
- **2** the cover query q of q_{10}^{∞} , q_{20}^{∞} is an lgg of q_1 , q_2 w.r.t. \mathcal{O} .

Proposition

A cover query-based 1gg of two BGPQs q_1 and q_2 is computed in $O(|body(q_1^{\infty})| \times |body(q_2^{\infty})|)$ and its size is $|body(q_1^{\infty})| \times |body(q_2^{\infty})|$.

Cover query-based 1gg of SPARQL queries

$$q(v_{x1x2})$$

Cover query-based 1gg of SPARQL queries

$$q(v_{x1x2})$$

$$q(v_{x1x2})$$

Cover query-based 1gg of SPARQL queries

Introduction

Experimentation: BGPQs (DBPedia)

Goal

Introduction

• How much more precise 1ggs are when entailment between BGPQs w.r.t. background knowledge ($\models_{\mathcal{R},\mathcal{O}}$) are utilized instead of just simple entailment (\models).

Result

$$q_{1 \leq i \leq n}, \ q_i \models_{\mathcal{R}} q_{\text{lgg}}^{\models_{\mathcal{R},\mathcal{O}}} \models_{\mathcal{R}} q_{\text{lgg}}^{\models}$$

Goal

Introduction

• How much more precise 1ggs are when entailment between BGPQs w.r.t. background knowledge ($\models_{\mathcal{R},\mathcal{O}}$) are utilized instead of just simple entailment (\models).

Result

$$q_{1 \leq i \leq n}, \ q_i \models_{\mathcal{R}} q_{\mathrm{lgg}}^{\models_{\mathcal{R},\mathcal{O}}} \models_{\mathcal{R}} q_{\mathrm{lgg}}^{\models}$$

DBpedia query $Q_{1 \le i \le 8}$:	Q_1	Q_2	Q_3	Q_4	Q_5	Q_6	Q ₇	Q ₈
Q _i 's shape	tree	tree	tree	graph	graph	graph	graph	graph
$ body(Q_i) $	4	6	4	6	4	6	6	6
Number of URI/variable occurrences in Q_i	7/5	9/9	5/7	7/11	5/7	9/9	9/9	9/9
$ Q_i(\mathcal{G}_{\mathtt{DBpedia}}) $	77	0	41 695	13	6	0	1	0
$ body(Q_{i_{\mathcal{O}_{\mathrm{DBpedia}}}}^{\infty}) $	16	19	19	23	16	23	23	23

Table: Characteristics of our test BGPQs (top) and of their saturations w.r.t. DBpedia constraints (bottom); times are in ms.

Experimentation: 1gg of BGPQs (DBPedia)

Introduction

1gg of 2 DBpedia BGPQs:	$Q_1 Q_2$	Q_1Q_3	$Q_1 Q_4$	Q_2Q_3	$Q_4 Q_5$	Q_5Q_6	$Q_5 Q_7$	Q_7Q_8
Time to compute q_{1gg}	3	3	5	4	4	5	6	5
$ q_{ ext{lgg}}(\mathcal{G}_{ ext{DBpedia}}) $	477,455	34,747,102	34,901,117	34,747,102	1,977	1,221	35	70
Time to compute $q_{ ext{lgg}}^{\mathcal{O}_{ ext{DBpedia}}}$	13	14	14	15	15	14	17	18
$ q_{ t lgg}^{\mathcal{O}_{ t DBpedia}}(\mathcal{G}_{ t DBpedia}) $	10,637	7,874,768	456,690	4,537,824	1,701	780	34	36
Gain in precision	97.77	77.33	98.69	86.94	13.96	36.11	2.85	48.57

Table: Characteristics of cover query-based 1ggs of test queries, w/ or w/o using the DBpedia RDFS constraints; times are in ms.

1gg of 3 DBpedia BGPQs :	$Q_1 Q_2 Q_3$	$Q_1 Q_2 Q_4$	$Q_1 Q_3 Q_4$	$Q_2 Q_3 Q_4$	$Q_4Q_7Q_8$	$Q_5 Q_7 Q_8$	$Q_6 Q_7 Q_8$
Time to compute q_{1gg}	5	4	5	6	10	11	12
$ q_{ ext{lgg}}(\mathcal{G}_{ ext{DBpedia}}) $	34,747,102	34,901,117	34,901,117	34,901,117	70	1,977	4,969
Time to compute $q_{1gg}^{\mathcal{O}_{ t DBpedia}}$	19	20	20	24	27	27	33
$ q_{ t lgg}^{\mathcal{O}_{ t DBpedia}}(\mathcal{G}_{ t DBpedia}) $	7,874,768	615,339	7,874,779	4,537,824	36	1,701	335
Gain in precision	77.33	98.23	77.43	86.99	48.57	13.96	93.25

Table: Characteristics of cover query-based 1ggs of 3 test queries, w/ or w/o using the DBpedia RDFS constraints; times are in ms.

- - Defining the lgg in RDF
 - Computing the lgg in RDF
- - Defining the lgg in SPARQL
 - Computing the lgg in SPARQL
 - Experimental results
- Related work

Structural approaches

- Description Logics
 - [Baader et al., 1999].
 - [Zarrieß and Turhan, 2013].
- RDF: Rooted graphs, ignore RDF entailment
 - [Colucci et al., 2016].
- SPARQL : tree queries, ignore RDF entailment
 - [Lehmann and Bühmann, 2011].

Approaches independent of the structure

- First Order Clauses
 - [Plotkin, 1970].
 - [Nienhuys-Cheng and de Wolf, 1996].
- Conceptual Graphs
 - [Chein and Mugnier, 2009].

Our contributions on learning commonalities in RDF and SPARQL

- We revisited the problem of computing a least general generalization in the entire setting of RDF & SPARQL conjunctive queries.
- We defined a **new** entailment relationship between BGPQs w.r.t. background knowledge.
- We devise algorithms to compute 1ggs of conjunctive queries and small-to-huge RDF graphs:
 - In-memory
 - Data management system
 - MapReduce
- We studied the added-value of considering entailment rules when learning lggs of RDF graphs and entailment rules plus external ontology when learning lggs of BGPQs, using synthetic LUBM data and real DBpedia data.

Perspectives

Introduction

Learning commonalities in DL-Lite

 We study the problem of learning the 1gg of KBs or queries w.r.t. an ontology, in the setting of the *DL-Lite_R* which underpins the OWL2 QL profile of the *Web Ontology Language*, the other Semantic Web data model by W3C. Thank you!

References I

Introduction

```
[Baader et al., 1999] Baader, F., Kiisters, R., and Molitor, R. (1999).
   Computing least common subsumers in description logics with existential restrictions.
   In IJCAI.
```

[Chein and Mugnier, 2009] Chein, M. and Mugnier, M. (2009). Graph-based Knowledge Representation - Computational Foundations of Conceptual Graphs. Springer.

[Colucci et al., 2016] Colucci, S., Donini, F., Giannini, S., and Sciascio, E. D. (2016). Defining and computing least common subsumers in RDF. J. Web Semantics, 39(0).

[Colucci et al., 2013] Colucci, S., Donini, F. M., and Sciascio, E. D. (2013). Common subsumbers in RDF. In AI*IA.

[Lehmann and Bühmann, 2011] Lehmann, J. and Bühmann, L. (2011). Autospargl: Let users query your knowledge base. In ESWC.

[Nienhuys-Cheng and de Wolf, 1996] Nienhuys-Cheng, S. and de Wolf, R. (1996). Least generalizations and greatest specializations of sets of clauses. J. Artif. Intell. Res.

[Plotkin, 1970] Plotkin, G. D. (1970). A note on inductive generalization. Machine Intelligence, 5.

[W3C-RDFS, 2014] W3C-RDFS (2014). RDF 1.1 semantics. https://www.w3.org/TR/rdf11-mt/.

[Zarrieß and Turhan, 2013] Zarrieß, B. and Turhan, A. (2013). Most specific generalizations w.r.t. general EL-TBoxes. In IJCAI.