
Informal Proceedings of the 3rd International
Workshop about Sets and Tools

SETS 2018

Maximiliano Cristiá
Universidad Nacional de Rosario and CIFASIS, Rosario, Argentina
cristia@cifasis-conicet.gov.ar

David Delahaye
Université de Montpellier, Montpellier, France
David.Delahaye@lirmm.fr

Catherine Dubois
Ensiie, Évry, France
catherine.dubois@ensiie.fr

Editors

Southampton – United Kingdom – June, 5th, 2018

Preface

This volume constitutes the informal proceedings of the International Workshop
about Sets and Tools (SETS2018) held on June 2-5, 2018 in Southampton, as
part of the 6th International ABZ Conference ASM, Alloy, B, TLA, VDM, Z,
2018.

There were 7 submissions. Each submission was reviewed by the program
committee. The committee decided to accept 6 papers and to allow the presen-
tation at the workshop of the remaining submission.

The EasyChair system helped us a lot in managing the workshop and these
proceedings.

June 1, 2018
Argentina and France

David Delahaye
Maximiliano Cristia

Catherine Dubois

v

Table of Contents

Encoding Sets as Real Numbers . 1
Domenico Cantone and Alberto Policriti

Programming in Java with Restricted Intensional Sets 19
Maximiliano Cristia and Gianfranco Rossi

Towards Coq Formalisation of {log} Set Constraints Resolution 34
Catherine Dubois and Sulyvan Weppe

On perfect matchings for some bipartite graphs . 41
Alberto Casagrande, Francesco Di Cosmo and Eugenio G. Omodeo

A set-based reasoner for the description logic DL Dˆ{4,\times} 52
Domenico Cantone, Marianna Nicolosi-Asmundo and Daniele Francesco
Santamaria

Polarized Rewriting and Tableaux in B Set Theory . 67
Olivier Hermant

vi

Program Committee

Domenico Cantone University of Catania, Department of Mathematics
and Computer Science

Maximiliano Cristia Universidad Nacional de Rosario and CIFASIS
David Deharbe Clearsy
David Delahaye LIRMM, Université de Montpellier, Montpellier,

France
Catherine Dubois ENSIIE-Samovar
Leo Freitas Newcastle University
Carmen Gervet Université de Montpellier
Olivier Hermant MINES ParisTech
Michael Leuschel University of Düsseldorf
Stephan Merz Inria Nancy
Eugenio Omodeo University of Trieste, Dept. of Mathematics and

Computer Science
Andrew Reynolds University of Iowa
Gianfranco Rossi Universita’ di Parma
Josef Urban Czech Technical University in Prague
Wolfgang Windsteiger RISC Institute, JKU Linz, Austria

vii

Encoding Sets as Real Numbers

Domenico Cantone1 and Alberto Policriti2

1 Dept. of Mathematics and Computer Science, University of Catania, Italy
2 Dept. of Mathematics, Computer Science, and Physics, University of Udine, Italy

1 Introduction

In 1937, W. Ackermann proposed the following recursive encoding of hereditarily
finite sets by natural numbers:

NA(x) :=
∑

y∈x
2NA(y). (1)

The encoding NA is simple, elegant, and highly expressive for a number of rea-
sons. On the one hand, it builds a strong bridge between two foundational mathe-
matical structures: (hereditarily finite) sets and (natural) numbers. On the other
hand, it enables the representation of the characteristic function of hereditarily
finite sets in terms of the usual notation for natural numbers as sequences of
binary digits. That is: y belongs to x if and only if the NA(y)-th digit in the
binary expansion of NA(x) is equal to 1. As one would expect, the string of 0’s
and 1’s representing NA(x) is nothing but (a representation of) the characteristic
function of x.

In this paper we study a very simple variation of the encoding NA, originally
proposed in [Pol13] and discussed in [DOPT15] and [OPT17], applicable to a
larger collection of sets. The proposed variation is obtained by simply placing a
minus sign before each exponent in (1), resulting in the expression:

RA(x) :=
∑

y∈x
2−RA(y).

As opposed to the encoding NA, the range of RA is not contained in the set N
of the natural numbers, but it extends to the set R of real numbers. In addition,
the domain of RA can be extended so as to include also the non-well-founded
hereditarily finite sets, namely, the sets defined by (finite) systems of equations
of the following form

x1 = {x1,1, . . . , x1,m1}
...

xn = {xn,1, . . . , xn,mn},
(2)

with bisimilarity as equality criterion (see [Acz88] and [BM96], where the term
hyperset is also used). For instance, the special case of the set single equation
x1 = {x1}, resulting into the equation (in real numbers) ξ = 2−ξ, is illustrated

in Section 3 and provides the code of the unique (under bisimilarity) hyperset
Ω = {Ω}.3

While the encoding NA is defined inductively (and this is perfectly in line
with our intuition of the very basic properties of the collection of natural numbers
N and the collection of hereditarily finite sets HF—called HF0 in [BM96]), the
definition of RA, instead, is not inductive when extended to non-well-founded
sets, and thus it requires a more careful analysis, as it must be proved that it
univocally (and possibly injectively) associates (real) numbers to sets.

The injectivity of RA on the collection of well-founded and non-well-founded
hereditarily finite sets—henceforth, to be referred to as HF1/2, see [BM96]—was
conjectured in [Pol13] and is still an open problem. Here we prove that, given any

finite collection ~1, . . . , ~n of pairwise distinct sets in HF1/2 satisfying a system
of set-theoretic equations of the form (2) in the unknowns x1, . . . , xn, one can
univocally determine real numbers RA(~1), . . . ,RA(~n) satisfying the following
system of equations:

RA(~1) =
∑m1

k=1 2−RA(~1,k)

...

RA(~n) =
∑mn
k=1 2−RA(~n,k).

This preliminary result shows that the definition of RA is well-given, as it
associates a unique (real) number to every hereditarily finite hyperset in HF1/2.

This extends to HF1/2 the first of the properties that the encoding NA enjoys
with respect to HF. Should RA also enjoy the injectivity property, the proposed
adaptation of NA would be completely satisfiying, and RA could be coherently
dubbed an encoding for HF1/2.

In the course of our proof, we shall also present a procedure that drives us
to the real numbers RA(~1), . . . ,RA(~n) mentioned above by way of successive
approximations. In the well-founded case, our procedure will converge in a finite
number of steps, whereas infinitely many steps will be required for convergence
in the non-well-founded case. In the last section of the paper, we shall also briefly
hint at the injectivity problem for RA.

2 Basics

Let N be the set of natural numbers and let P(·) denote the powerset operator.

Definition 1 (Hereditarily finite sets). HF :=
⋃
n∈N HFn is the collection of

all hereditarily finite sets, where

{
HF0 := ∅,

HFn+1 := P(HFn), for n ∈ N.
3 Notice that the solution to the equation ξ = e−ξ is the so-called omega constant,

introduced by Lambert in [Lam58] and studied also by Euler in [Eul83].

In this paper we shall introduce and study a variation of the following map
introduced by Ackermann in 1937 (see [Ack37]):

Definition 2 (Ackermann encoding).

NA(h) :=
∑

h′∈h
2NA(h′), for h ∈ HF.

It is easy to see that the map NA is a bijection between HF. From now on, we
denote by hi the element of HF whose NA-code is i, so that NA(hi) = i, for
i ∈ N. Using the iterated-singleton notation

{x}0 := x

{x}n+1 :=
{
{x}n

}
, for n ∈ N,

we plainly have:

h0 = ∅, h1 = {∅}, h2 = {∅}2, h3 = {{∅}, ∅}, h4 = {∅}3, etc.

In addition, for j ∈ N we have:

h0 ∈ hj iff j is odd, (3)

h2j = {hj} and h2j−1 = {h0, h1, . . . , hj−1} . (4)

The map NA induces a total ordering ≺ among the elements of HF (that we shall
call Ackermann ordering) such that, for h, h′ ∈ HF:

h ≺ h′ iff NA(h) < NA(h′) .

Thus, hi is the i-th element of HF in the Ackermann ordering and, for i, j ∈ N,
we plainly have:

hi ≺ hj iff i < j.

The following proposition can be read as a restating of the bitwise comparison
between natural numbers in set-theoretic terms.

Proposition 1. For hi, hj ∈ HF, the following equivalence holds:

hi ≺ hj iff hi 6= hj and max
≺

(hi ∆ hj) ∈ hj ,

where ∆ is the symmetric difference operator A ∆ B := (A \B) ∪ (B \A).

Proof. Since hi ≺ hj is equivalent to i < j, it is sufficient to compare the base
two expansions of i and j and apply Definition 2.

It is also useful to define the following map low : N → N which, for i ∈ N,
computes the smallest code j of a set hj not present in hi (or, equivalently, the
position—starting from 0—of the lowest bit set to 0 in the binary expansion of
i):

low(i) := min{j | hj /∈ hi} .
The following elementary properties, whose proof is left to the reader, will

be used in the last section of the paper.

Lemma 1. For i ∈ N, we have:

(i) low(i) = 0 iff i is even,
(ii) hlow(i) /∈ hi,

(iii) {h0, . . . , hlow(i)−1} ⊆ hi,
(iv) hi+1 =

(
hi \ {h0, . . . , hlow(i)−1}

)
∪ {hlow(i)}.

Finally, we briefly recall that hypersets satisfy all axioms of ZFC, but the ax-
iom of regularity, which forbids both membership cycles and infinite descending
chains of memberships. In the hypersets realm of our interest, based on the Forti-
Honsell axiomatization [FH83] as popularized by P. Aczel [Acz88], the axiom
of regularity is replaced by the anti-foundation axiom (AFA). Roughly speak-
ing, AFA states that every conceivable hyperset, described in terms of a graph
specification modelling its internal membership structure, actually exists and is
univocally determined, regardless of the presence of cycles or infinite descending
paths in its graph specification. To be slightly more precise, a graph specification
(or membership graph) is a directed graph with a distinguished node (point),
where nodes are intended to represent hypersets, edges model membership re-
lationships among the node/hypersets, and the distinguished node denotes the
hyperset of interest among all the hypersets represented by the nodes of the
graph. However, extensionality needs to be strengthened so as structurally in-
distinguishable pointed graphs are always realized by the same hyperset. More
specifically, we say that two pointed graphs G = (V,E, p) and G′ = (V ′, E′, p′),
where p ∈ V and p′ ∈ V ′ are the ‘points’ of G and G′, respectively, are struc-
turally indistinguishable if the points p and p′ are bisimilar, namely, if there
exists a relation R over V ×V ′ such that the following three properties hold, for
all v ∈ V and v′ ∈ V ′:
(B1) (∀w ∈ V)(∃w′ ∈ V ′)

(
(v R v′ ∧ (v, w) ∈ E)→ ((v′, w′) ∈ E′ ∧ w R w′)

)
;

(B2) (∀w′ ∈ V ′)(∃w ∈ V)
(
(v R v′ ∧ (v′, w′) ∈ E′)→ ((v, w) ∈ E ∧ w R w′)

)
;

(B3) p R p′.

Any relation R′⊆ V × V ′ satisfying properties (B1) and (B2) above is called a
bisimulation over V × V ′.

In this paper, we are interested in those hypersets that admit a representa-
tion as a finite pointed graph. These are the hereditarily finite hypersets, whose
collection is denoted HF1/2, as already remarked.

Given a (finite) pointed graph G = (V,E, p) whose nodes are all reachable
from its point p, the collection of hypersets represented by all its nodes form the
transitive closure of {~}, denoted trCl ({~}), where ~ is the hyperset correspond-
ing to the point p.

3 The real-valued map RA

Consider the following map RA obtained from NA by simply placing a minus
sign before each exponent in (1):

RA(x) :=
∑

y∈x
2−RA(y). (5)

From (5) it follows immediately that all (valid) RA-codes are nonnegative.
For instance, we have:

RA(∅) = 0, RA({∅}) = 1, RA({∅}2) =
1

2
,

RA({∅}3) =
1√
2
, RA({∅}4) = 2

− 1√
2 , RA({∅}5) = 2−2

− 1√
2
, etc.

The definition of RA bears a strong formal similarity with NA, but calls into
play real numbers. As a further example, from the definition of RA, it follows
that the hyperset defined by the set equation x = {x} yields the equation in R

ξ = 2−ξ . (6)

It is easy to see that equation (6) has a unique solution in R, since the functions
ξ and 2−ξ are, respectively, strictly increasing and strictly decreasing, so that
the function ξ − 2−ξ is strictly increasing. In addition, we have:

ξ − 2−ξ|ξ= 1
2

=
1

2
− 1√

2
< 0 < 1− 1

2
= ξ − 2−ξ|ξ=1.

Thus, the solution Ω of (6) over R, namely, the code of the hyperset defined
by the set equation x = {x}, satisfies 1

2 < Ω < 1. Furthermore, much by the

same argument used by the Pythagoreans to prove the irrationality of
√

2, it can
easily be shown that Ω is irrational. In fact, Ω is transcendental. This follows
from the Gelfond-Schneider theorem (see [Gel34]), which states that every real
number of the form ab is transcendental, provided that a and b are algebraic
numbers such that 0 6= a 6= 1, and b is irrational. Indeed, if Ω were algebraic, so
would be −Ω and therefore, by the Gelfond-Schneider theorem, 2−Ω = Ω would
be transcendental, contradicting the assumed algebraicity of Ω. Thus, Ω must

be transcendental after all. As is easy to check, the RA-code 2−1/
√

2 of {∅}4 is
transcendental as well.

Much as for NA, the encoding RA is easily seen to be well-defined over HF. As
a consequence of the results to be proved in Section 4, we shall see that (5) allows
one to associate univocally a code to each non-well-founded hereditarily finite
set as well, thus showing that RA is also well-defined over the whole collection
HF1/2 of hereditarily finite hypersets.

Remark 1 For every singleton {h′} ∈ HF, definition (5) gives RA({h′}) =
2−RA(h′). Thus, for every h ∈ HF, we have

RA(h) =
n∑

h′∈h
2−RA(h′) =

n∑

h′∈h
RA ({h′}) . (7)

Once we prove that RA is well-defined over HF1/2, equation (7) can be im-

mediately generalized to HF1/2 as well.

As the following proposition shows, the codes of hereditarily finite sets can
grow arbitrarily large.

Proposition 2. For any n ∈ N, there exists an i ∈ N such that RA(hi) > n.

Proof. Notice that for any odd natural number j, we have ∅ ∈ hj . Thus, by
(7), we have RA(hj) > R({∅}) = 1, RA({hj}) = 2−RA(hj) 6 2−1 = 1

2 , and

RA({{hj}}) = 2−RA({hj}) > 2−1/2 > 1
2 .

Let k = 4n and consider the hereditarily finite set h :=
{
{hk′} : k′ 6 k

}
.

Then, we have:

RA(h) =

k∑

k′=0

RA ({{hk′}}) >
k∑

k′=0
k′ is odd

RA ({{hk′}}) >
1

2
· k

2
= n .

4 RA on Hereditarily Finite Hypersets

The fully general case corresponds to considering systems of set-theoretic equa-
tions such as the ones introduced by the following definition (see also [Acz88]).

Definition 3 (Set systems). A set system S (x1, . . . , xn) in the set unknowns
x1, . . . , xn is a collection of set-theoretic equations of the form:

x1 = {x1,1, . . . , x1,m1}
...

xn = {xn,1, . . . , xn,mn},
(8)

with mi > 0 for i ∈ {1, . . . , n}, and where each unknown xi,u, for i ∈ {1, . . . , n}
and u ∈ {1, . . . ,mi}, occurs among the unknowns x1, . . . , xn.4

The index map IS of S (x1, . . . , xn) is the map

IS :
n⋃

i=1

{〈i, v〉 | 1 6 v 6 mi} → {1, . . . , n}

such that IS (i, v) is the index of the unknown xi,v in the list x1, . . . , xn, for
i ∈ {1, . . . , n} and v ∈ {1, . . . ,mi}, namely, xIS (i,v) ≡ xi,v.

A set system S (x1, . . . , xn) is normal if there exist n pairwise distinct (i.e.,

non bisimilar) hypersets ~1, . . . , ~n ∈ HF1/2 such that the assignment xi 7→ ~i
satisfies all the set equations of S (x1, . . . , xn).

Observe that, by the anti-foundation axiom, the assignment xi 7→ ~i satisfying
the equations of a given normal set system S (x1, . . . , xn) is plainly unique.

From now on we shall write ~, with or without subscripts and/or superscripts,

to denote a generic (possibly well-founded) hyperset in HF1/2.

Having in mind the definition (5) of RA, to each normal set system we asso-
ciate a system of equations in R, called code system, as follows.

4 When mi = 0, the expression {xi,1, . . . , xi,mi} reduces to the empty set expression
{}.

Definition 4 (Code systems). Let S (x1, . . . , xn) be a normal set system of
the form

x1 = {x1,1, . . . , x1,m1}
...

xn = {xn,1, . . . , xn,mn},

with index map IS . The code system associated with S (x1, . . . , xn) is the fol-
lowing system C (ξ1, . . . , ξn) of equations in the real unknowns ξ1, . . . , ξn:

ξ1 = 2−ξ1,1 + · · ·+ 2−ξ1,m1

...

ξn = 2−ξn,1 + · · ·+ 2−ξn,mn ,

(9)

where ξi,u is a shorthand for ξIS (i,u), for i ∈ {1, . . . , n} and u ∈ {1, . . . ,mi}.

Normal set systems characterise all possible elements of HF1/2 and we shall
see that the corresponding code systems characterise their RA-codes. In fact, we
shall prove that every code system admits a unique solution which can be com-
puted as limit of suitable sequences of real numbers. Terms in such sequences
approximate the final solution alternatively from above and from below. In case
of non-well-founded sets, such approximating sequences are infinite and conver-
gent (to the codes of the non-well-founded sets); additionally, its terms eventually
become codes of certain well-founded hereditarily finite sets which can be seen
as approximations of the corresponding non-well-founded set.

We begin by formally defining set and multi-set approximating sequences (of
the solution) of set systems.

Definition 5 (Hereditarily finite multi-sets). Hereditarily finite multi-sets
are collection of elements—themselves multi-sets—that can occur with finite mul-
tiplicities.

Hereditarily finite multi-sets will be denoted by specifying their elements in
square brackets, where elements are repeated according to their multiplicities in
any order. For instance, the set a occurs in the multi-set [a, b, b, b] with multi-
plicity 1, whereas b occurs with multiplicity 3.

Remark 2 A natural embedding of the hereditarily finite sets in the hereditarily
finite multi-sets is the following: a multi-set µ can be regarded as a set if and
only if each of its elements has multiplicity 1 and, recursively, can be regarded
as a set. Thus, in particular, ∅ is both a set and a multi-set.

Definition 6. Let S (x1, . . . , xn) be a (normal) set system of the form (8), and
let IS be its index map. The set-approximating sequence for (the solution of)

S (x1, . . . , xn) is the sequence
{
〈~ji | 1 6 i 6 n〉

}
j∈N of the n-tuples of well-

founded hereditarily finite sets defined by

〈~ji | 1 6 i 6 n〉 :=

〈∅ | 1 6 i 6 n〉 if j = 0

〈{~j−1
i,1 , . . . , ~j−1

i,mi
} | 1 6 i 6 n〉 if j > 0 ,

where ~j−1
i,u is a shorthand for ~j−1

IS (i,u), for i ∈ {1, . . . , n} and u ∈ {1, . . . ,mi}.
The multi-set approximating sequence for (the solution of) S (x1, . . . , xn) is

the sequence
{
〈µji | 1 6 i 6 n}〉

}
j∈N of the n-tuples of well-founded hereditarily

finite multi-sets defined by

〈µji | 1 6 i 6 n〉 :=

〈∅ | 1 6 i 6 n〉 if j = 0

〈[µj−1
i,1 , . . . , µj−1

i,mi
] | 1 6 i 6 n〉 if j > 0 ,

where µj−1
i,u is a shorthand for µj−1

IS (i,u), for i ∈ {1, . . . , n} and u ∈ {1, . . . ,mi}.

Given a (normal) set system S (x1, . . . , xn), we say that two unknowns xi
and xi′ , with i, i′ ∈ {1, . . . , n}, are distinguished at step k > 0 by the set-
approximating sequence

{
〈~ji | 1 6 i 6 n〉

}
j∈N for S (x1, . . . , xn) (resp., multi-

set approximating sequence
{
〈µji | 1 6 i 6 n〉

}
j∈N for S (x1, . . . , xn)) if ~ki 6= ~ki′

(resp., µki 6= µki′). Further, we shall refer to ~ji (resp., µji) as the (j-th) set-
approximation value (resp., multi-set approximation value) of xi at step j.

Example 1. Consider the following normal set system:

S (x1, x2, x3, x4) =

x1 = {x2, x3}
x2 = {}
x3 = {x3}
x4 = {x2} .

In this case, we have: m1 = 2,m2 = 0,m3 = 1, and m4 = 1; in addition, x1,1,
x1,2, x3,1, and x4,1 are x2, x3, x3, and x2, respectively, so that IS (1, 1) = 2,
IS (1, 2) = 3, IS (3, 1) = 3, and IS (4, 1) = 2.

The first four elements of the set-approximating sequence for S are:

〈
~0

1, ~0
2, ~0

3, ~0
4

〉
= 〈∅, ∅, ∅, ∅〉

〈
~1

1, ~1
2, ~1

3, ~1
4

〉
= 〈{∅}, ∅, {∅}, {∅}〉

〈
~2

1, ~2
2, ~2

3, ~2
4

〉
= 〈{∅, {∅}}, ∅, {{∅}}, {∅}〉

〈
~3

1, ~3
2, ~3

3, ~3
4

〉
= 〈{∅, {{∅}}}, ∅, {{{∅}}}, {∅}〉 .

Notice that, for j = 2 and j = 3, all the ~ji ’s are pairwise distinct. In fact, as
a consequence of the next lemma, this is true also for all j > 3.

The first four tuples of the multi-set approximating sequence of S are:

〈
µ0

1, µ
0
2, µ

0
3, µ

0
4

〉
= 〈∅, ∅, ∅, ∅〉

〈
µ1

1, µ
1
2, µ

1
3, µ

1
4

〉
= 〈[∅, ∅], ∅, [∅], [∅]〉

〈
µ2

1, µ
2
2, µ

2
3, µ

2
4

〉
= 〈[∅, [∅]], ∅, [[∅]], [∅]〉

〈
µ3

1, µ
3
2, µ

3
3, µ

3
4

〉
= 〈[∅, [[∅]]], ∅, [[[∅]]], [∅]〉 .

Also in this case, for j = 2 and j = 3, all the µji ’s are pairwise distinct and
this holds also for j > 3. Observe that the unknowns xi and xj are distinguished
by the multi-set approximating sequence before than by the set-approximating
sequence: indeed, µ1

1 6= µ3
1, whereas ~1

1 = ~3
1.

All sets in the tuples of a set-approximating system are well-founded hered-
itarily finite sets. The initial tuples of a multi-set approximating sequence may
contain proper multi-sets (as in the above example). However, as a consequence
of the following lemma, after at most n steps all pairs of distinct unknowns are
distinguished and each tuple contains only proper sets.

Lemma 2. Let S (x1, . . . , xn) be a normal set-system, and let
{
〈~ji | 1 6 i 6

n}〉
}
j∈N and

{
〈µji | 1 6 i 6 n〉

}
j∈N be its set- and multi-set approximating

sequences, respectively. The following conditions hold:

(a) for i, i′ ∈ {1, . . . , n} and j, k > 0, we have

~ji 6= ~ji′ =⇒ (~j+k+1
i 6= ~j+k+1

i′ ∧ µji 6= µji′)

(namely, if at step j > 0 two unknowns are distinguished by the set-approx-
imating sequence, then they are also distinguished by the multi-set approx-
imating sequence; in addition, they remain distinguished in all subsequent
steps);

(b) for j, k > 0 and i ∈ {1, . . . , n}, we have

~ji = ~j+1
i =⇒ ~ji = ~j+k+2

i

(namely, as soon as ~ji = ~j+1
i holds for some j > 0, the set-approximation

value of xi remains unchanged for all subsequent steps);
(c) for i, i′ ∈ {1, . . . n} and j > n, we have

(i 6= i′ =⇒ ~ji 6= ~ji′) ∧ 〈µji | 1 6 i 6 n〉 = 〈~ji | 1 6 i 6 n〉

(namely, starting from step n, all pairs of distinct unknowns are distinguished
and the set- and multi-set approximating sequences coincide).

Proof. For (a), first of all we prove by induction on j that if ~ji 6= ~ji′ , then

~j+ki 6= ~j+ki′ , for all distinct i, i′ ∈ {1, . . . , n} and every k > 0.
The base case j = 0 holds trivially, since ~0

i = ∅ = ~0
i′ .

For the inductive step, let j > 0 and assume for contradiction that there exist
pairwise distinct i, i′ such that ~ji 6= ~ji′ , while ~j+ki = ~j+ki′ , for some k > 0. As

~ji 6= ~ji′ , we can suppose w.l.o.g. that ~j−1
i,u /∈ ~ji′ , for some u ∈ {1, . . . ,mi}.

From the fact that ~j+ki = ~j+ki′ , it follows that ~j+k−1
i,u ∈ ~j+ki′ . Hence, we have

~j+k−1
i,u = ~j+k−1

i′,v and ~j−1
i,u 6= ~j−1

i′,v , for some v ∈ {1, . . . ,mi′}, contradicting the
inductive hypothesis relative to j−1, for k and the indices IS (i, u) and IS (i′, v).

To complete case (a), next we prove, again by induction on j, that if ~ji 6= ~ji′ ,
then µji 6= µji′ , for all pairwise distinct i, i′ ∈ {1, . . . , n}.

As before, the base case j = 0 is trivial.
For the inductive step j > 0, let us assume that ~ji 6= ~ji′ . Then we can

suppose w.l.o.g. that ~j−1
i,u /∈ ~ji′ , for some u ∈ {1, . . . ,mi}, so that ~j−1

i,u 6= ~j−1
i′,v ,

for all v ∈ {1, . . . ,mi′}. Hence, from the inductive hypothesis, µj−1
i,u 6= µj−1

i′,v , for

all v ∈ {1, . . . ,mi′}, which implies µji 6= µji′ .

Concerning (b) and recalling that all sets in a set-approximating sequence
are in HF, we begin by observing that it can easily be proved, by induction
on j, that rk(~ji) 6 j. Moreover, we show—again by induction on j—that if

~ji 6= ~j+1
i , then rk(~j+1

i) = j + 1. In fact, if ~0
i 6= ~1

i , then ~1
i = {∅}, whose rank

is 1. For the inductive step, observe that if ~ji 6= ~j+1
i , then ~j−1

i,u 6= ~ji,u, for some

u ∈ {1, . . . ,mi}. Therefore, by inductive hypothesis, rk(~ji,u) = j, which implies

rk(~j+1
i) = j + 1, since ~ji,u ∈ ~j+1

i and rk(~j+1
i) 6 j + 1.

On the grounds of the above result, we can prove that if ~ji = ~j+1
i , then

~j−1
i,u = ~ji,u for all u ∈ {1, . . . ,mi}, . In fact, assuming for contradiction that

~ji = ~j+1
i but ~j−1

i,u 6= ~ji,u, for some u ∈ {1, . . . ,mi}, then we would have

rk(~ji) = rk(~j+1
i) > rk(~ji,u) + 1 = j + 1, contradicting the fact that rk(~ji) 6 j.

We can now prove (b) by induction on j.
For the base case j = 0, if ~0

i = ~1
i , then ~1

i = ~0
i = ∅, so that the equation

xi = {} must be in S (x1, . . . , xn), because otherwise we would have ~1
i = {∅}.

Thus, the claim easily follows.
For the inductive case j > 0, let ~ji = ~j+1

i . Then ~j−1
i,u = ~ji,u, for all

u ∈ {1, . . . ,mi}, so that, by the inductive hypothesis, ~j+k−1
i,u = ~j−1+k+2

i,u , for
all u ∈ {1, . . . ,mi} and k > 0. Thus,

~j+k+2
i =

{
~j−1+k+2
i,1 , . . . , ~j−1+k+2

i,mi

}
=
{
~j−1
i,1 , . . . , ~j−1

i,mi

}
= ~ji ,

proving (b).

Concerning case (c), we first prove that the inequality ~ji 6= ~ji′ holds for
every j > n and pairwise distinct i, i′ ∈ {1, . . . n}. To see this, observe that, from
(a), the set of inequalities

Ij :=
{
〈i, i′〉 | hji 6= hji′

}

can only increase as j grows. As a matter of fact, the growth is strict until
stabilization. In fact, by the definition of set-system, when no new inequality is

established at a given stage j, no new inequality can be established at any later
stage j + 1, j + 2, Hence, in at most n steps, all the inequalities that can
eventually be established must actually hold.

Let us now prove that when Ij stabilizes, all the ~ji ’s are pairwise distinct.
To see this, consider the equivalence relation Rj over {x1,...,xn} defined as:

Rj(xi, xi′) iff ~ji = ~ji′ .

It is easy to see that Rj is a bisimulation and hence, since S (x1, . . . , xn) is
normal, Rj must be the identity. Therefore the elements in 〈~ji : i ∈ {1, . . . n}〉
are pairwise distinct.

The fact that 〈µji : i ∈ {1, . . . n}〉 = 〈~ji : i ∈ {1, . . . n}〉 follows immediately
by Remark 2.

Point a) in the above lemma suggests that even though set and multi-set
approximating sequences will eventually “separate” all solutions of a set sys-
tem, multi-set can introduce inequalities first. This is our first motivation for
extending the notion of RA-code to multi-sets and use such code-extension to
approximate regular RA-codes. The second motivation is given below in Remark
3.

Definition 7. Given a normal set system S (x1, . . . , xn) and its multi-set ap-
proximating sequence

{
〈µji | 1 6 i 6 n}〉

}
j∈N, we define the corresponding code

approximating sequence
{
〈RµA(µji) | 1 6 i 6 n}〉

}
j∈N by recursively putting, for

i ∈ {1, . . . , n} and j ∈ N:

{
RµA(µ0

i) := 0

RµA(µj+1
i) :=

∑mi
u=1 2−R

µ
A(µji,u) .

(10)

We also define the corresponding code increment sequence
{
〈δji | 1 6 i 6 n〉

}
j∈N

by putting, for i ∈ {1, . . . , n} and j ∈ N:

δji := RµA(µj+1
i)− RµA(µji) . (11)

Plainly, RµA(µji) > 0, for all i ∈ {1, . . . , n} and j ∈ N.

Remark 3 Consider a normal set system S (x1, . . . , xn) and its solutions ~1, . . . , ~n.
The values RµA(µ1

i) and RµA(µ1
i′) are equal if and only if |~i| = |~i′ |. The values

RµA(µ2
i) and RµA(µ2

i′) are equal if and only if the multi-sets of the cardinalities of
elements in ~i and ~i′ are equal. The values RµA(µ3

i) and RµA(µ3
i′) are equal if and

only if the multi-sets of multi-sets of the cardinalities of elements of elements in
~i and ~i′ are equal, and so on.

We shall make use of the following elementary property.

Lemma 3. For x, y ∈ R, if |y| 6 |x| and xy 6 0, then |2−y − 1| 6 |2x − 1|.

Proof. Let x, y ∈ R be such that |y| 6 |x| and xy 6 0. Plainly, we have:

1 6 2|y| 6 2|x|. (12)

Assume first that y 6 0 6 x. Then (12) yields 1 6 2−y 6 2x, so that 0 6
2−y − 1 6 2x − 1, and therefore |2−y − 1| 6 |2x − 1|.

On the other hand, if x 6 0 6 y, then, by (12), we have 1 6 2y 6 2−x. By
taking inverses, the latter yields 2x 6 2−y 6 1, so that 0 6 1 − 2−y 6 1 − 2x.
Hence, |2−y − 1| 6 |2x − 1| holds again.

In preparation for the proof of the existence and uniqueness of a solution to
the code system associated with any normal set system, we state and prove the
technical properties contained in the following lemma.

Lemma 4. Let S (x1, . . . , xn) be a normal set system of the form

x1 = {x1,1, . . . , x1,m1}
...

xn = {xn,1, . . . , xn,mn},

with index map IS , code approximating sequence
{
〈RµA(µji) | 1 6 i 6 n}〉

}
j∈N,

and code increment sequence
{
〈δji | 1 6 i 6 n}〉

}
j∈N. Then, for i ∈ {1, . . . , n}

and j ∈ N, the following facts hold:

(i) RµA(µj+1
i) = δ0

i + · · ·+ δji ,
(ii) δ0

i = mi,

(iii) δj+1
i =

∑mi
u=1 2−R

µ
A(µji,u) · (2−δji,u − 1),

(iv) δ2j+1
i 6 0 6 δ2j

i ,

(v) |δj+1
i | 6 |δji |, and

(vi) limj→∞ δji = 0.

Proof. Statement (i) follows by induction from (11), whereas (ii) follows from
(10) and (11).

Statement (iii) is easily proved by the following chain of equalities:

δj+1
i = RµA(µj+2

i)− RµA(µj+1
i) (by (11))

=

mi∑

u=1

(
2−R

µ
A(µj+1

i,u) − 2−R
µ
A(µji,u)

)
(by (10))

=

mi∑

u=1

(
2−(RµA(µji,u)+δji,u) − 2−R

µ
A(µji,u)

)
(by (11))

=

mi∑

u=1

2−R
µ
A(µji,u) ·

(
2−δ

j
i,u − 1

)
,

for i ∈ {1, . . . , n} and j ∈ N.

Next, statement (iv) follows by applying repeatedly (iii) and by observing
that, by (ii), δ0

i > 0 for every i ∈ {1, . . . , n}.
To prove (v), we proceed by induction on j. We need to strenghten the

inductive hypothesis. Specifically, besides (v), we also prove that the additional
statement

(v′) 2−δ
j
i ·
∣∣2−δj+1

i − 1
∣∣ 6

∣∣2−δji − 1
∣∣

holds for every i ∈ {1, . . . , n}.
For the base case j = 0, we have:

∣∣δ1
i

∣∣ =

mi∑

u=1

2−R
µ
A(µ0

i,u) ·
∣∣2−δ0i,u − 1

∣∣ (by (iii))

=

mi∑

u=1

∣∣2−δ0i,u − 1
∣∣ (by (10))

=

mi∑

u=1

(
1− 2−mi,u

)

6 mi =
∣∣δ0
i

∣∣ (by (ii)),

(13)

for every i ∈ {1, . . . , n}, proving (v) for j = 0 (where mi,u stands for mIS (i,u)).
Concerning (v′), we observe that, by (iv), the inequality (13) yields 0 6

−δ1
i 6 δ0

i . Thus, the following further inequalities hold:

1 6 2−δ
1
i 6 2δ

0
i

0 6 2−δ
1
i − 1 6 2δ

0
i − 1

0 6 2−δ
0
i ·
(
2−δ

1
i − 1

)
6 1− 2−δ

0
i

2−δ
0
i ·
∣∣2−δ1i − 1

∣∣ 6
∣∣2−δ0i − 1

∣∣ ,

proving also (v′) in the base case j = 0.

For the inductive step, assume that for some j ∈ N the following inequality
holds for every ` ∈ {1, . . . , n}:

2−δ
j
` ·
∣∣2−δj+1

` − 1
∣∣ 6

∣∣2−δj` − 1
∣∣ . (14)

Then we have, for every i ∈ {1, . . . , n}:

∣∣δj+2
i

∣∣ =

mi∑

u=1

2−R
µ
A(µj+1

i,u) ·
∣∣2−δj+1

i,u − 1
∣∣ (by (iii))

=

mi∑

u=1

2−(RµA(µji,u)+δji,u) ·
∣∣2−δj+1

i,u − 1
∣∣ (by (11))

=

mi∑

u=1

2−R
µ
A(µji,u) · 2−δji,u ·

∣∣2−δj+1
i,u − 1

∣∣

6
mi∑

u=1

2−R
µ
A(µji,u) ·

∣∣2−δji − 1
∣∣ (by (14))

=
∣∣δj+1
i

∣∣ (by (iii)),

proving (v) for j + 1. In addition, from (iv) and the latter inequality
∣∣δj+2
i

∣∣ 6∣∣δj+1
i

∣∣, Lemma 3 yields
∣∣2−δj+2

i −1
∣∣ 6

∣∣2δj+1
i −1

∣∣, from which 2−δ
j+1
i ·

∣∣2−δj+2
i −1

∣∣ 6∣∣2−δj+1
i −1

∣∣ follows immediately, thus proving also statement (v′) for j+1. Hence,
by induction, (v) holds.

Finally, concerning (vi), we observe that, for every j > 1, we have:

δ2j+1
i =

mi∑

u=1

2−R
µ
A(µ2j

i,u) ·
(
2δ

2j
i,u − 1

)
(by (iii))

=

mi∑

u=1

2−R
µ
A(µ2j−1

i,u) · 2−δ2j−1
i,u ·

(
2−δ

2j
i,u − 1

)
(by (11))

=

mi∑

u=1

2−R
µ
A(µ2j−1

i,u) ·
(
2−(δ2ji,u+δ2j−1

i,u) − 2−δ
2j−1
i,u

)

6
mi∑

u=1

2−R
µ
A(µ2j−1

i,u) ·
(
2−(δ2ji,u+δ2j−1

i,u) − 1
)
,

(15)

where the last inequality follows from (iv), since δ2j−1
i,u 6 0 and therefore−2−δ

2j−1
i,u 6

−1. From (v), the sequence {|δji |}j∈N is convergent. Therefore, by (iv),

lim
j→∞

(
δ2j
i + δ2j−1

i

)
= lim
j→∞

(∣∣δ2j
i

∣∣−
∣∣δ2j−1
i

∣∣) = 0 ,

so that limj→∞
(
2(δ2ji +δ2j−1

i)−1
)

= 0. Hence, from (15) it follows that limj→∞ δ2j+1
i =

0, since 2−R
µ
A(µ2j−1

i,u) 6 1, for all j > 1, i ∈ {1, . . . , n}, and u ∈ {1, . . . ,mi}. But
then we have limj→∞

∣∣δji
∣∣ = 0, which plainly implies limj→∞ δji = 0, proving

(vi), and in turn completing the proof of the lemma.

Theorem 4. For any given normal set system, the corresponding code system
admits always a unique solution.

Proof. Let S (x1, . . . , xn) be a normal set system of the form (8), and let
{
〈RµA(µji) |

1 6 i 6 n}〉
}
j∈N and

{
〈δji | 1 6 i 6 n}〉

}
j∈N be its code approximating sequence

and code increment sequence, respectively. Also, let C (ξ1, . . . , ξn) be the code
system

ξ1 = 2−ξ1,1 + · · ·+ 2−ξ1,m1

...

ξn = 2−ξn,1 + · · ·+ 2−ξn,mn ,

associated with S (x1, . . . , xn).
We first exhibit a solution of the system C (ξ1, . . . , ξn) and then prove its

uniqueness.

Existence: By Lemma 4(i),(iv),(vi), using the Leibniz criterion for alternating
series, it follows that each of the sequences {RµA(µji)}j∈N is convergent, for i ∈
{1, . . . , n}. Let us put αi := limj→∞RµA(µji), for i ∈ {1, . . . , n}. From (10), we
have

RµA(µj+1
i) =

mi∑

u=1

2−R
µ
A(µji,u), for j ∈ N .

Then, by taking the limit of both sides as j approaches infinity, it follows that

αi =

mi∑

u=1

2−αi,u ,

for i ∈ {1, . . . , n}, where αi,u is a shorthand for αIS (i,u), with IS the index map
of S (x1, . . . , xn), proving that the n-tuple 〈α1, . . . , αn〉 is a solution of the code
system C (ξ1, . . . , ξn).

Uniqueness: Next we prove that the solution 〈α1, . . . , αn〉 is unique. Let 〈α′1, . . . , α′n〉
be any solution of the code system C (ξ1, . . . , ξn). To show that 〈α′1, . . . , α′n〉 =
〈α1, . . . , αn〉 it is enough to prove that

RµA
(
µ2j
i

)
6 α′i 6 RµA

(
µ2j+1
i

)
, for j ∈ N and i ∈ {1, . . . , n}, (16)

holds. Indeed, from (16), it follows immediately

αi = lim
j→∞

RµA
(
µ2j
i

)
6 α′i 6 lim

j→∞
RµA
(
µ2j+1
i

)
= αi ,

for every i ∈ {1, . . . , n}, showing that 〈α′1, . . . , α′n〉 = 〈α1, . . . , αn〉.
We prove (16) by induction on j, for all i ∈ {1, . . . , n}.
For the base case j = 0, we observe that since α′i =

∑mi
u=1 2−α

′
i,u (where, as

usual, α′i,u stands for α′IS (i,u)), then

RµA
(
µ0
i

)
= 0 6 α′i 6 mi = RµA

(
µ1
i

)
, for i ∈ {1, . . . , n}.

For the inductive step, let us assume that

RµA
(
µ2j
i

)
6 α′i 6 RµA

(
µ2j+1
i

)
, for i ∈ {1, . . . , n}, (17)

holds for some j ∈ N, and prove that it holds for j + 1 as well. From (17)

and recalling that α′i =
∑mi
u=1 2−α

′
i,u , the following inequalities hold, for every

i ∈ {1, . . . , n} and u ∈ {1, . . . ,mi}:
RµA
(
µ2j
i,u

)
6 α′i,u 6 RµA

(
µ2j+1
i,u

)

2−R
µ
A(µ2j+1

i,u) 6 2−α
′
i,u 6 2−R

µ
A(µ2j

i,u)

mi∑

u=1

2−R
µ
A(µ2j+1

i,u) 6
mi∑

u=1

2−α
′
i,u 6

mi∑

u=1

2−R
µ
A(µ2j

i,u)

RµA
(
µ2j+2
i

)
6 α′i 6 RµA

(
µ2j+1
i

)
.

The inequalities on the last line (for i ∈ {1, . . . , n}) imply in particular that we
have

RµA
(
µ2j+2
i,u

)
6 α′i,u 6 RµA

(
µ2j+1
i,u

)
,

for every i ∈ {1, . . . , n} and u ∈ {1, . . . ,mi}. Hence, by repeating the very same
steps as above, one can deduce also the inequalities

RµA
(
µ

2(j+1)
i

)
= RµA

(
µ2j+2
i

)
6 α′i 6 RµA

(
µ2j+3
i

)
= RµA

(
µ

2(j+1)+1
i

)
,

for i ∈ {1, . . . , n}, proving that (17) holds for j + 1 too. This completes the
induction, and also the proof of the theorem.

Remark 5 To show that the code RA is well-defined over the whole HF1/2, we
proceed as follows. Given a hereditarily finite hyperset ~ ∈ HF1/2, let ~1, . . . , ~n
be the distinct elements of the transitive closure trCl ({~}) of {~}, where ~1 = ~.
Then we have

~1 = {~1,1, . . . , ~1,m1
}

...

~n = {~n,1, . . . , ~n,mn}
(18)

for suitable hypersets hi,j ∈ {~1, . . . , ~n}, with i ∈ {1, . . . , n} and j ∈ {1, . . . ,mi}.
Consider the set system S (x1, . . . , xn)

x1 = {x1,1, . . . , x1,m1}
...

xn = {xn,1, . . . , xn,mn},

associated with (18), where xi,j = x` iff ~i,j = ~`, for all i, ` ∈ {1, . . . , n} and
j ∈ {1, . . . ,mi}. Plainly, S (x1, . . . , xn) is normal and ~1, . . . , ~n is its solu-
tion. By Theorem 4, let α1, . . . , αn be the solution to the code system associated
with S (x1, . . . , xn). Then RA(~i) = αi, for i ∈ {1, . . . , n}, and, in particu-
lar, RA(~) = RA(~1) = α1. Further, it is immediate to check that, for every
normal set system S ′(x′1, . . . , x

′
m) containing ~ in its solution, say at position

k̄ ∈ {1, . . . ,m}, if α′1, . . . , α
′
m is the solution to the corresponding code system,

then α′
k̄

= α1. In other words, the value RA(~) computed by the above procedure
is independent of the normal set system used. By the arbitrariness of ~, it follows
that RA(~) is defined for every hyperset ~ ∈ HF1/2.

5 A first step towards injectivity

As already remarked, the problem of establishing the injectivity of the map
RA is still open. As an initial example, we provide here a very partial result.
However, the arguments used in the proof below do not seem to easily generalize
even to the narrower task of proving the injectivity of RA over the well-founded
hereditarily finite sets only.

Lemma 5. For all i ∈ N, we have:

(a) RA(hi) 6= RA(hi+1),
(b) RA(hi) 6= RA(hi+2),

where hj is the j-th element of HF in the Ackermann ordering.

Proof. Let i ∈ N. From (iii) and (iv) of Lemma 1 and from (4), we have

RA(hi+1) = RA(hi)− RA(h2low(i)−1) + RA(h2low(i)) . (19)

If i is even, then low(i) = 0, and therefore

RA(h2low(i)−1) = 0 6= 1 = RA(h2low(i)) .

On the other hand, if i is odd, then low(i) 6= 0, and so, by (3):

RA(h2low(i)) < 1 = RA({h0}) 6 RA(h2low(i)−1) .

In any case, we have RA(h2low(i))− RA(h2low(i)−1) 6= 0, proving (a), by (19).

Concerning (b), we begin by putting

∆j := RA(h2j)− RA(h2j−1) ,

for j ∈ N. Let us show that ∆j 6= −1, for all j ∈ N. To begin with, for j = 0, 1, 2,
we have:

∆0 = RA(h1)− RA(h0) = 1 6= −1

∆1 = RA(h2)− RA(h1) = RA({h1})− RA(h1) = 2−1 − 1 = −1

2
6= −1

∆2 = RA(h4)− RA(h3) = RA({h2})− RA({h0, h1})

= 2−2−1 −
(

1 +
1

2

)
=

1√
2
− 3

2
6= −1 .

In addition, for j > 2, we have {h0, h1, h2} ⊆ h2j−1, and therefore:

RA(h2j−1) > RA({h0, h1, h2}) = 2−RA(h0) + 2−RA(h1) + 2−RA(h2)

= 2−0 + 2−1 + 2−2

= 1 +
1

2
+

1√
2
> 2 .

Hence, we have ∆j 6= −1 also for j > 2, since RA(h2j) = 2−RA(hj) < 1. But
then, from (19), for every i ∈ N we have:

RA(hi+2)−R(hi) = RA(hi+2)−R(hi+1) + RA(hi+1)−R(hi)

= ∆low(i+1) +∆low(i) 6= 0 ,

since either i or i+ 1 is even and so either ∆low(i) = 1 or ∆low(i+1) = 1, whereas,
as we proved above, ∆low(i) 6= −1 6= ∆low(i+1). This proves (b), completing the
proof of the lemma.

Remark 6 While the value of RA
(
µ0
i

)
is 0 for any i ∈ {1, . . . , n}, the value

of RA
(
µ1
i

)
—first approximation of RA (µi)—is the cardinality of µi, and the

subsequent approximations oscillate within the interval [0, |µi|].

Conclusions

By turning labels into sets, the encoding proposed in this paper can be used on
a variety of structures, going from labelled graphs to Kripke models. This can be
done in many different ways and in [DPP04,PP04] the reader can find a rather
general—albeit non optimised—technique to carry out this label elimination
task. A label elimination performed to optimise code computation (or its form)
is under study.

The algorithmic side of RA is also under study. A possible direction towards
its usage—for example in bisimulation computation—starts from the observation
that only the computation of a bounded number of digits is actually necessary
to realise all the inequalities in any given set system.

Acknowledgements

The authors wish to thank two anonymous reviewers for their helpful comments.

References

[Ack37] W. Ackermann, Die Widerspruchfreiheit der allgemeinen Mengenlehre,
Mathematische Annalen 114 (1937), 305–315.

[Acz88] P. Aczel, Non-well-founded sets, vol. 14 of CSLI Lecture Notes, Stanford,
CA, 1988.

[BM96] J. Barwise and L. S. Moss, Vicious circles, CSLI Lecture Notes, Stanford,
CA, 1996.

[DOPT15] Giovanna D’Agostino, Eugenio G. Omodeo, Alberto Policriti, and Alexan-
dru I. Tomescu, Mapping sets and hypersets into numbers, Fundam. Inform.
140 (2015), no. 3-4, 307–328.

[DPP04] A. Dovier, C. Piazza, and A. Policriti, An efficient algorithm for computing
bisimulation equivalence, Theor. Comput. Sci. 311 (2004), no. 1-3, 221–256.

[Eul83] L. Euler, De serie Lambertina Plurimisque eius insignibus proprietatibus.,
Acta Acad. Scient. Petropol. 2 (1783), 29–51, reprinted in Euler, L. Opera
Omnia, Series Prima, Vol. 6: Commentationes Algebraicae. Leipzig, Ger-
many: Teubner, pp. 350–369, 1921.

[FH83] M. Forti and F. Honsell, Set theory with free construction principles, Annali
Scuola Normale Superiore di Pisa, Classe di Scienze IV (1983), no. 10, 493–
522.

[Gel34] Aleksandr Gelfond, Sur le septième Problème de Hilbert, Bulletin de
l’Académie des Sciences de l’URSS. VII (1934), no. 4, 62–634.

[Lam58] J.H. Lambert, Observations variae in Mathesin Puram, Acta Helvitica,
physico-mathematico-anatomico-botanico-medica 3 (1758), 128–168.

[OPT17] Eugenio G. Omodeo, Alberto Policriti, and Alexandru I. Tomescu, On sets
and graphs. perspectives on logic and combinatorics, Springer, 2017.

[Pol13] A. Policriti, Encodings of sets and hypersets, Proc. of the 28th Italian Con-
ference on Computational Logic, Catania, Italy, September 25-27, 2013.
(D. Cantone and M. Nicolosi Asmundo, eds.), vol. 1068, CEUR Workshop
Proceedings, ISSN 1613-0073, 2013, pp. 235–240.

[PP04] C. Piazza and A. Policriti, Ackermann Encoding, Bisimulations, and OB-
DDs, Theory and Practice of Logic Programming 4 (2004), no. 5-6, 695–718.

Programming in Java with Restricted
Intensional Sets

Maximiliano Cristiá1 and Gianfranco Rossi2

1 Universidad Nacional de Rosario and CIFASIS, Rosario, Argentina
2 Università degli Studi di Parma, Parma, Italy

cristia@cifasis-conicet.gov.ar gianfranco.rossi@unipr.it

Abstract. Intensional sets are sets given by a property rather than by
enumerating their elements, similar to set comprehensions available in
specification languages such as B and MiniZinc. In a previous paper [3] we
have presented a decision procedure for a first-order logic language which
provides Restricted Intensional Sets (RIS), i.e. a sub-class of intensional
sets that are guaranteed to denote finite—though unbounded—sets. In
this paper we show how RIS can be exploited as a convenient program-
ming tool also in a more conventional setting, namely, an imperative O-O
language. We do this by considering a Java library, called JSetL [14], that
integrates the notions of logical variable, (set) unification and constraints
that are typical of constraint logic programming languages into the Java
language. We show how JSetL is naturally extended to accommodate for
RIS and RIS constraints, and how this extension can be exploited, on
the one hand, to support a more declarative style of programming, and
on the other hand, to effectively enhance the expressive power of the
constraint language provided by the library.

1 Introduction and motivations

Intensional sets, also called set comprehensions, are sets described by providing
a condition ϕ that is necessary and sufficient for an element x to belong to
the set itself, i.e., {x : ϕ[x] }, where x is a variable and ϕ is a first-order
formula containing x. Intensional sets are widely recognized as a key feature
to describe complex problems. As a matter of fact, various specification (or
modeling) languages provide intensional sets as first-class entities. For example,
some form of intensional sets are offered by MiniZinc [12], ProB [11] and Alloy
[9]. As concerns programming languages, only relatively few of them support
intensional sets. To name some, the general-purpose programming languages
SETL [15] and Python, and the Constraint Logic Programming (CLP) languages
Gödel [8] and {log} [7]. Also conventional Prolog systems provide some facilities
for intensional set definition in the form of the setof built-in predicate.

The processing of intensional sets in most of these proposals is based on the
availability of a set-grouping mechanism [16] capable of collecting in a set S
all the instances of x satisfying the formula ϕ. Basically, the implementation of
set-grouping exploits the following intended semantics of intensional sets:

{x : ϕ[x]} = S ↔ ∀x(x ∈ S → ϕ[x]) ∧ ∀x(ϕ[x]→ x ∈ S)
↔ ∀x(x ∈ S → ϕ[x]) ∧ ¬∃x(x 6∈ S ∧ ϕ[x]).

(1)

An example of this approach is {log} (pronounced ‘setlog’), a freely available
extended Prolog system that embodies the CLP language with sets CLP(SET)
[7, 13]. For instance, while processing the formula3 A = {1, 2} ∧ S = {X : X ⊆
A}∧{3} 6∈ S, {log} first collects in S all elements X which are subsets of the set
A, i.e. 2A, then it checks the 6∈ constraint on S. Though set grouping works fine
in many cases, it also have a number of more or less evident drawbacks: (i) if
the intensional set denotes an infinite set, then set-grouping may be endless; (ii)
if the formula ϕ contains unbound variables other than X, then set grouping
may incur the well-known problems of the general handling of negation in a
logic programming language [4]; (iii) if the set of values to be collected is not
completely determined (e.g., the solver rewrites ϕ to a simplified equi-satisfiable
form, without generating the actual values for x), then set-grouping may cause
the computation to be not complete (and possibly not sound).

Example 1. The following formulas can be written in {log} using (general) in-
tensional sets, but {log} is not able to process them adequately, due to some of
the problems with set-grouping listed above:

– S = {2, 4, 6} ∧ S = {x : x ∈ D ∧ x mod 2 = 0}, i.e., S is the set of all even
numbers belonging to an unknown set D;

– C = A ∩ B ∧ S = {x : x ∈ A ∧ x ∈ B} ∧ C 6= S, i.e., S is the set of all
elements in both sets A and B (A and B unknown sets).

If, on the contrary, the sets involved in the above formulas are completely spec-
ified sets, then {log} is able to perform set-grouping and hence to compute the
correct answers. ut

Set-grouping is not always necessary to deal with intensional sets. For exam-
ple, given the formula t ∈ {x : ϕ}, one could check whether it is satisfiable or
not by simply checking satisfiability of ϕ(t), i.e., of the instance of ϕ which is
obtained by replacing x by t; clearly, in this case, there is no need to collect all
values satisfying ϕ. A very general proposal along these lines is CLP({D}) [5], a
CLP language offering arbitrarily nested extensional and intensional sets of ele-
ments over a generic constraint domain D, along with basic constraints (namely,
∈, /∈, =, and 6=,) working with intensional sets. The proposed solver is able to
eliminate occurrences of intensional sets from the constraints without explicit
enumeration of the sets. The generality of the intensional set formers supported
in this proposal, however, may cause some of the drawbacks mentioned above
(namely, problems concerned with intensional sets denoting infinite sets and with
the general use of negation). As observed in [5], the presence of undecidable con-
straints such as {x : p(x)} = {x : q(x)}, where p and q can have an infinite
number of solutions, “prevents us from developing a parametric and complete

3 In order to not burden the presentation too much, {log} formulas will be written
using the usual mathematical notation rather than its concrete syntax.

solver”. As a matter of fact, no working implementation of this proposal has
been developed.

Recently, Cristia and Rossi [3] proposed a narrower form of intensional sets,
called Restricted Intensional Sets (RIS), and a complete solver to deal with
basic set-theoretical operations on them in a way similar to [5] (i.e., not using
set-grouping). RIS have similar syntax and semantics to the set comprehensions
available in the formal specification languages Z and B, i.e. {x : D | Ψ • τ},
where D is a set, Ψ is a formula over a first-order theory X , and τ is a term
involving x. The semantics of the RIS {x : D | Ψ • τ} is “the set of terms τ [x]
such that x is in D and Ψ holds for x”. RIS have the restriction that D must
be a finite set and Ψ is a quantifier-free constraint in X , for which we assume
a complete solver to decide its satisfiability is available. It is important to note
that, although RIS are guaranteed to denote finite sets, nonetheless, RIS can
be not completely specified. In particular, as the domain can be a variable or a
partially specified set, RIS are finite but unbounded.

The work in [3] is mainly concerned with the definition of the constraint
language and its solver, and the proof of soundness and completeness of the con-
straint solving procedure. In this paper, our main aim is to explore programming
with intensional sets. Specifically, we are interested in exploring the potential
of using RIS in the more conventional setting of imperative O-O languages. To
this purpose, we consider JSetL [14], a Java library that integrates the notions
of logical variable, (set) unification and constraints that are typical of constraint
logic programming languages into the Java language. First, we show how JSetL
is naturally extended to accommodate for RIS. Then, we show with a number of
simple examples how this extension can be exploited, on the one hand, to support
a more declarative style of programming, and on the other hand, to effectively
enhance the expressive power of the constraint language provided by the library.
Observe that though we are focusing on Java, the same considerations could be
easily ported to other O-O languages (such as C++).

The paper is organized as follows. Sect. 2 introduces RIS informally through
some examples. Sect. 3 briefly reviews the JSetL library and Sect. 4 presents the
extension of JSetL with RIS. In Sect. 5 we start showing examples using JSetL
to demonstrate the usefulness of RIS and RIS constraints to support declarative
programming. Sect. 6 shows how RIS can be used to define and manipulate
partial functions. In Sect. 7 we consider some extensions to RIS and we present
examples showing their usefulness. Finally, in Sect. 8 we draw some conclusion.

2 An Informal Introduction to RIS

In this section we introduce RIS in an informal, intuitive way, through a number
of simple examples.

The language that embodies RIS, called LRIS , is a quantifier-free first-order
logic language which provides both RIS and extensional sets, along with basic
operations on them, as primitive entities of the language. LRIS is parametric
with respect to an arbitrary theory X , for which we assume a decision procedure

for any admissible X -formula is available. Elements of LRIS sets are the objects
provided by X , which can be manipulated through the primitive operators that
X offers (at least, X -equality). Hence, RIS in LRIS represent untyped unbounded
finite hybrid sets, i.e. unbounded finite sets whose elements are of any sort. For
the sake of convenience, we assume that the language of X , LX , provides the
constant, function and predicate symbols of the theories of the integer numbers
and ordered pairs.
LRIS provides the following set terms: a) the empty set, noted ∅; b) exten-

sional sets, noted {x t A}, where x, called element part, is an X -term, and A,
called set part, is an LRIS set term; and c) restricted intensional sets (RIS),
noted {c : D | F • P [c]}, where c, called control term, is an X -term; D, called
domain, is an LRIS set term; F , called filter, is an X -formula; and P , called pat-
tern, is an X -term containing c. Both extensional sets and RIS can be partially
specified because elements and sets can be variables. As a notational conve-
nience, {t1 t{t2 t · · · {tn t t} · · · }} (resp., {t1 t{t2 t · · · {tn t∅} · · · }}) is written as
{t1, t2, . . . , tntt} (resp., {t1, t2, . . . , tn}). When useful, the domain D can be rep-
resented also as an interval [m,n], m and n integer constants, which is intended
as a shorthand for {m,m+1, . . . , n}.RIS-literals are of the form A = B, A 6= B,
e ∈ A or e /∈ A, where A and B are set terms and e is an X -term. RIS-formulas
are built from RIS-literals using conjunction and disjunction.

An extensional set {xtA} is interpreted as {x}∪A. A RIS term is interpreted
as follows: if x1, . . . , xn (n > 0) are all the variables occurring in c, then {c :
D | F • P [c]} denotes the set {y : ∃x1 . . . xn(c ∈ D ∧ F ∧ y =X P [c])}. Note
that x1, . . . , xn are bound variables whose scope is the RIS itself. Also note that
equality between y and the pattern P requires equality of the theory X .

In order to devise a decision procedure for LRIS , the control term c and the
pattern P of a RIS are restricted to be of specific forms. Namely, if x and y are
variables ranging on the domain of X , then c can be either x or (x, y), while P
can be either c or (c, t) or (t, c), where t is any (uninterpreted/interpreted) X -
term, possibly involving the variables in c. As it will be evident from the various
examples in the next sections, in spite of these restrictions, LRIS is still a very
expressive language.

Example 2. The following are RIS-literals involving RIS terms:

– {x : [−2, 2] | xmod 2 = 0 • x} = {−2, 0, 2}
– (5, y) ∈ {x : D | x > 0 • (x, x ∗ x)}, where y and D are free variables
– (5, 0) 6∈ {(x, y) : {P tR} | y 6= 0 • (x, y)}, where P and R are free variables,

and {P tR} is a set term denoting the set {P} ∪R. ut

When the pattern is the control term and the filter is true, they can be
omitted (as in Z and B), although one must be present.
LRIS provides a complete constraint solver which is able to decide satisfia-

bility of any LRIS formulas. Precisely, the solver reduces any input formula Φ
to either false (hence, Φ is unsatisfiable), or to an equi-satisfiable disjunction
of formulas in a simplified form, called the solved form, which is guaranteed to
be satisfiable (hence, Φ is satisfiable). If Φ is satisfiable, the answer computed

by the solver constitutes a finite representation of all the concrete (or ground)
solutions of the input formula.

Example 3 (Constraint solving with RIS).

– The second formula of Ex. 2 is rewritten by the LRIS solver to the solved
form formula y = 25 ∧D = {5 tN1}, where the second equality states that
D must contain 5 and something else, denoted N1.

– The first formula of Ex. 1 can be written using RIS as S = {2, 4, 6} ∧ S =
{x : D | xmod 2 = 0}; this formula is rewritten by the solver to a solved form
formula containing the constraint D = {2, 4, 6tN1}∧{x : N1 | xmod2 = 0} =
∅, where the second equality states that N1 cannot contain even numbers
(note that this constraint has the obvious solution N1 = ∅). ut

It is worth noting that the LRIS solver is able to correctly solve all formulas
of Ex. 1, written using RIS. Moreover, note that the formula {x : p(x)} = {x :
q(x)}, which is undecidable when p and q have an infinite number of solutions,
can be “approximated” using RIS as {x : D1 | p(x)} = {x : D2 | q(x)}, D1, D2

variables, which is a solved form formula admitting at least one solution, namely
D1 = D2 = ∅; hence it is simply returned unchanged by the solver.

3 JSetL

JSetL [14] is a Java library that combines the object-oriented programming
paradigm of Java with valuable concepts of CLP languages, such as logical vari-
ables, lists, unification, constraint solving and non-determinism. The library pro-
vides also sets and set constraints like those found in CLP(SET). Unification
may involve logical variables, as well as list and set objects (i.e., set unification
[6]). Set constraints are solved using a complete solver that accounts for partially
specified sets (i.e., sets containing unknown elements). Equality, inequality and
comparison constraints on integers are dealt with as Finite-Domain Constraints,
like in CLP(FD) [2].

JSetL has been used as one of the first six implementations for the stan-
dard Java Constraint Programming API defined in the Java Specification Re-
quest JSR-331 [10] (see for instance http://openrules.com/jsr331/JSR331.

UserManual.pdf). The JSetL library can be downloaded from the JSetL’s home
page at http://cmt.math.unipr.it/jsetl.html.

In JSetL a (generic) logical variable is an instance of the class LVar. Ba-
sically, LVar objects can be manipulated through constraints, namely equality
(eq), inequality (neq), membership (in) and not membership (nin) constraints.
Logical variables can be either bound or unbound. When the collection of pos-
sible values for a logical variable reduces to a singleton, this value becomes the
value of the variable and the variable is bound. Moreover, a logical variable can
have an optional external name (i.e., a string) which can be useful when printing
the variable and the possible constraints involving it.

Example 4 (Logical variables).

LVar x = new LVar(); // an unbound logical variable

LVar y = new LVar("y",1); // a bound logical variable

// with external name "y" and value 1 ut

Values associated with generic logical variables can be of any type. For some
specific domains, however, JSetL offers specializations of the LVar data type,
which provide further specific constraints. In particular, for the domain of inte-
gers, JSetL offers the class IntLVar, which extends LVar with a number of new
methods and constraints specific for integers. In particular, IntLVar provides
integer comparison constraints such as < (lt), ≤ (le), etc.

Other important specializations of logical variables are the class LCollection
and its derived subclasses, LSet (for Logical Sets) and LList (for Logical Lists).
Values associated with LSet (LList) are objects of the java.util class Set

(List). A number of constraints are provided to work with LSet (LList), which
extend those provided by LVar. In particular, LSet provides equality and in-
equality constraints that account for the semantic properties of sets (namely, ir-
relevance of order and duplication of elements); moreover it provides constraints
for many of the standard set-theoretical operations, such as union, intersection,
set difference, and so on.

Example 5 (Logical lists/sets).

LList l = new LList(); // an unbound logical list

LSet r = new LSet("r"); // an unbound logical set with external name "r"

LSet s1 = LSet.empty().ins(2).ins(1); // the set {1,2}
LVar x = new LVar("x");

LSet s2 = r.ins(x); // the set {x} ∪ r ut

ins is the element insertion method for LSets: s.ins(o) returns the new
logical set whose elements are those of the set s ∪ {o}. In particular, the last
statement in Ex. 5 creates a partially specified set s with an unknown element
x and an unknown rest r (i.e., {x | r}, using a Prolog-like notation).

A JSetL constraint solver is an instance of the class SolverClass. Basi-
cally, it provides methods for adding constraints to its constraint store (e.g., the
method add) and to prove constraint satisfiability (e.g., the method solve). If
solver is a solver, Γ is the collection of constraints stored in its constraint store
(possibly empty), and c is a constraint, then solver.solve(c) checks whether
Γ ∧ c is satisfiable or not: if it is, then the constraint store is modified so to rep-
resent the computed constraint in solved form; otherwise an exception Failure

is raised.

Example 6 (Constraint solving).

LSet s1 = LSet.empty().ins(2).ins(1); // the set {1,2}
LVar x = new LVar("x"), y = new LVar("y");

LSet s2 = LSet.empty().ins(y).ins(x); // the set {x,y}
SolverClass solver = new SolverClass();

solver.add(s1.eq(s2).and(x.neq(1))); // the constraint s1=s2 ∧ x6=1

solver.solve();

x.output(); y.output();

where the method output is used to print the value possibly bound to a logical
object. Executing this code fragment will output: x = 2, y = 1. ut

4 Adding RIS to JSetL

In this section we show how RIS are added to JSetL. The new version of the
JSetL library can be downloaded from the JSetL’s home page. All sample Java
programs shown in this and in the next sections have been tested using the new
version and are available on-line.

RIS are added to JSetL by defining a new class, named Ris. Ris extends
LSet, hence Ris objects can be used as logical sets, and all methods of LSet

are inherited by Ris. Basically, a Ris object (i.e. an instance of Ris) is created
by specifying its control term (an object of type LVar or Pair), its domain (an
object of type LSet), its filter (an object of type Constraint), and its pattern
(an object of type LVar or Pair). The pattern can be omitted if it coincides with
the control term.

Example 7 (Ris object creation). The first RIS of Ex. 2 is created in JSetL as
follows:

IntLVar x = new IntLVar();

LSet d = new LSet(new Interval(-2,2));

Constraint f = x.mod(2).eq(0);

Ris ris = new Ris(x,d,f); // {x:[-2,2] | x mod 2 = 0 • x}
where Interval and Constraint are classes provided by JSetL with their obvi-
ous meaning. ut

The new methods added by Ris to those inherited from LSet are basically
constraint methods and general utility methods working on Ris objects.

Constraint methods provided by Ris implement the constraints = (method
eq) and 6= (method neq). Moreover, the constraint methods in and nin of classes
LVar and Pair are extended so to accept Ris objects as their arguments.

Example 8 (RIS constraints). If ris is the Ris object created in Ex. 7, then the
following are possible RIS constraints posted on ris:

LSet s = LSet.empty().ins(2).ins(0).ins(-2);

solver.add(ris.eq(s)); // {x:[-2,2] | x mod 2 = 0 • x} = {-2,0,2}
LVar y = new LVar(1);

solver.add(y.nin(ris)); // 1 nin {x:[-2,2] | x mod 2 = 0 • x} ut

The class Ris provides also a number of general utility methods, such as
isBound(), which returns true iff the domain of the RIS is bound to some
value, and expand which returns the LSet object representing the extensional
set denoted by the RIS (i.e., it performs set grouping) or it raises an exception
if the domain of the RIS is not a completely specified set.

Example 9 (RIS constraints). If ris is the Ris object created in Ex. 7, then the
corresponding extensional set S is computed and printed as follows:

LSet S = new LSet;

S = ris.expand().setName("S");

S.output();

whose execution yields S = {2,0,-2}. ut

In JSetL the language of RIS and the language of the parameter theory X
are completely amalgamated. Thus, it is possible to use constraints of the latter
together with constraints of the former, as well as to share logical variables of
both. The following in an example that uses this feature to prove a general
property about sets.

Example 10. Check the property of set intersection as stated by the second for-
mula of Ex. 1.

LSet A = new LSet(), B = new LSet(), C = new LSet();

solver.add(C.inters(A,B)); // the constraint C=A ∩ B

LSet D = new LSet();

LVar X = new LVar();

Ris S = new Ris(X,A,X.in(B)); // the RIS {X:A | X ∈ B}
solver.add(S.neq(C)); // the constraint {X:A | X ∈ B} 6= C

Calling solver.solve() causes an exception Failure to be thrown (i.e., the
formula is found to be false). ut

Observe that constraints in JSetL are predicates, not functions; hence we
write, for instance, C.inters(A,B), instead of C.eq(A.inters(B)), to denote
the predicate inters(A,B,C) which is true iff C = A ∩B.

5 Declarative programming with RIS

Intensional set definition represents a powerful tool for supporting a declarative
programming style, as pointed out for instance in [7].

A first interesting application of RIS to support declarative programming is
to represent Restricted Universal Quantifiers (RUQ). The formula ∀x ∈ D : F [x]
can be easily represented by using a RIS as follows: D = {x : D | F [x]}. When
D is a known set, solving this formula amounts to check whether F [x] holds for
all x in D. For instance, D = {1, 2, 3} ∧ D = {x : D | x > 0} is true, whereas
D = {1,−2, 3} ∧D = {x : D | x > 0} is false.

Since the LRIS solver can decide satisfiability of such formulas, then we have
a decision procedure for a fragment of first-order logic with quantifiers.

The following are Java programs that solve simple—though not trivial—
problems using JSetL with RIS. Basically, their solution is expressed declara-
tively as a formula using RUQ.

Example 11. Compute and print the minimum of a set of integers S.

public static LVar minValue(LSet S)} throws Failure {

IntLVar x = new IntLVar();

IntLVar y = new IntLVar();

Ris ris = new Ris(x,S,y.le(x));

solver.add(y.in(S).and(S.eq(ris)));

solver.solve();

return y; }

The method minValue posts the constraint y ∈ S ∧ S = {x : S | y ≤ x}. The
solver, non-deterministically binds a value from S to y and then it checks if the
property y ≤ x is true for all elements x in S. If this is not the case, the solver
backtracks and tries a different choice for y. A possible call to this method is:

int[] sampleSetElems = {8,4,6,2,10,5};

LVar min = minValue(new LSet(sampleSetElems)).setName("min");

min.output();

and the printed answer is min = 2. ut

It is important to observe that operations on RIS are dealt with as real
constraints. This implies, among other things, that the order in which constraints
are posted to the solver is irrelevant.

More generally, the use of constraints allows to compute with only partial
specified aggregates [1]. For example, the set passed to the method minValue can
be {8, 4, 6, x}, where x is an uninitialized logical variable, or even it can contain
an unknown part, e.g. (using the abstract notation), {8, 4 t R}, where R is an
uninitialized LSet object. In the first case, i.e., with S equal to {8, 4, 6, x}, the
solver is able to non-deterministically generate three distinct answers, one with
x = 4, min = 4, another with x ≤ 4, min = x, and another with x ≥ 4, min = 4.

Another example that shows the use of RIS to define in a declarative way a
universal quantification is the following simple instance of the well-known map
coloring problem.

Example 12. Given a cartographic map of n regions r1,. . . ,rn and a set {c1, . . . , cm}
of colors find an assignment of colors to the regions such that no two neighboring
regions have the same color.

Each region can be represented as a distinct logical variable and a map as a
set of unordered pairs (hence, sets) of variables representing neighboring regions.
An assignment of colors to regions is represented by an assignment of values (i.e.,
the colors) to the logical variables representing the different regions.

public static void coloring(LSet regions, LSet map, LSet colors)

throws Failure {

solver.add(regions.subset(colors));

LSet p = new LSet();

Ris ris = new Ris(p, map, p.size(2));

solver.add(map.eq(ris));

solver.solve(); }

The method coloring posts the constraint regions ⊆ colors ∧ map = {p :
map | |p| = 2}. The first conjunct exploits the subset constraint to non-
deterministically assign a value to all variables in regions. The second equal-
ity requires that all pairs of regions in the map have cardinality equal to 2,
i.e., all pairs have distinct components. If coloring is called with regions =
{r1,r2,r3}, r1, r2, r3 uninitialized logical variables, map = {{r1,r2},{r2,r3}},
and colors = {"red", "blue"}, the invocation terminates with success, and r1,
r2, r3 are bound to "red", "blue", and "red", respectively (actually, also the
other solution which binds r1, r2, r3 to "blue", "red", and "blue", respec-
tively, can be computed through backtracking). ut

This solution uses a pure “generate & test” approach; hence it quickly be-
comes very inefficient as soon as the map becomes more and more complex.
However, it may represent a first “prototype” whose implementation can be
subsequently refined (e.g., by modeling the coloring problem in terms of Finite
Domain (FD) constraints and using the more efficient FD solver provided by
JSetL), without having to change its usage. On the other hand, this solution
allows to exploit the flexible use of constraints and partially specified sets. As
a matter of fact, the same program can be used to solve related problems; e.g.,
given a map and a partially specified set of colors, find which constraints the
unknown colors must obey in order to obtain an admissible coloring of the map.

The next program shows another example where RIS are used to check
whether a property holds for all elements of a set, but using a different kind
of equality constraint.

Example 13. Check whether n is a prime number or not:4

public static Boolean isPrime(int n)} {

if (n <= 0) return false;

IntLVar N = new IntLVar(n);

IntLVar x = new IntLVar();

LSet D = new LSet(new Interval(2,n/2));

Ris ris = new Ris(x,D,N.mod(x).eq(0));

solver.add(ris.eq(LSet.empty()));

return solver.check(); }

The method isPrime posts the constraint {x : [2, N div 2] | N mod x = 0} = ∅.
The equality between the RIS and the empty set ensures that there is no x in
the interval [2, N div 2] such that N mod x = 0 holds. If, for instance, n is 101,
then the call to isPrime returns true. ut

6 Using RIS to define partial functions

Another important application of RIS is to define (partial) functions by giving
their domains and the expressions that define them. In general, a RIS of the

4 s.check() differs from s.solve() in that the latter raises an exception if the con-
straint in the constraint store of s is unsatisfiable, whereas the former returns a
boolean value indicating whether the constraint is satisfiable or not.

form {x : D | F • (x, f(x))}, where f is any function symbol belonging to the
language LX , defines a partial function. Such a RIS contains ordered pairs whose
first components belong to D which cannot have duplicates (because it is a set).
Then, since no two pairs share the same first component, the RIS is a function.

Given that RIS are sets, then, in LRIS , functions are sets of ordered pairs.
Therefore, through standard set operators, functions can be evaluated, compared
and point-wise composed; and by means of constraint solving, the inverse of a
function can also be computed. The following examples illustrate these ideas in
the context of Java with JSetL.

Example 14. The square of an integer n.

IntLVar x = new IntLVar();

LSet D = new LSet();

Ris Sqr = new Ris(x,D,Constraint.TRUE,new Pair(x,x.mul(x));

The RIS Sqr defines the set of all pairs (x, x∗x), where x belongs to an (unknown)
set D. This function can be “evaluated” in a point n, and the result sent to the
standard output, by executing the following code:

IntLVar y = new IntLVar("y");

solver.solve(new Pair(n,y).in(Sqr));

y.output();

that is, y is the image of n through function Sqr. If, for instance, n has value 5
(e.g., int n = 5), then the printed result is y = 25. ut

Note that Sqr is a set of ordered pairs as its pattern is an ordered pair.
Besides, Sqr is a partial function because each of its first components never
appears twice, since they belong to the set D. Moreover, note that the RIS
domain, D, is left underspecified as a variable.

The same RIS of Ex. 14 can be used also to calculate the inverse of the square
function, that is the square root of a given number. To obtain this, it is enough
to post and solve the constraint

solver.solve(new Pair(y,n).in(Sqr));

If, for instance, n has value 25, the computed result is y = unknown - Domain:

{-5,5}, stating that the possible values for y are -5 and 5.
The interesting aspect of using RIS for defining functions is that RIS are sets

and sets are data. Thus, we have a simple way to deal with functions as data. In
particular, since Ris objects can be passed as arguments to a function, we can
use RIS to write generic functions that take other functions as their arguments.
The following is an example illustrating this technique.

Example 15. The following method takes as its arguments an array of integers
A and a function f(x) and updates A by applying f to all its elements.

public static void mapList(int[] A,Ris f) throws Failure {

for(int i=0; i<A.length; i++) {

IntLVar y = new IntLVar();

solver.solve(new Pair(A[i],y).in(f));

A[i] = y.getValue();

} }

If, for instance, the array passed to mapList is {3,5,7} and f is the RIS Sqr of
Ex. 14, then the modified array is {9,25,49}. ut

7 Extended RIS

To guarantee that the constraint solver is indeed a decision procedure a number
of restrictions are imposed on the form of RIS in [3]. Specifically: (i) the control
term and the pattern of a RIS are restricted to be of specific forms—roughly
speaking, variables and pairs, see Sect. 2; (ii) the filter of a RIS cannot contain
“local” variables, i.e. existentially quantified variables declared inside the RIS;
(iii) recursively defined RIS such as X = {x : D | Ψ [X] • τ} are not allowed.5

Although compliance with these restrictions is important from a theoretical
point of view, in practice there are many cases in which they can be (partially)
relaxed without compromising the correct behavior of programs using RIS.

7.1 General patterns

As noted in [3], the necessary and sufficient condition for patterns to guarantee
correctness and completeness of the constraint solving procedure is that patterns
be bijective functions. All the admissible patterns of LRIS are bijective patterns.
Besides these, however, other terms can be bijective patterns. For example, x+
n, n constant, is also a bijective pattern, though it is not allowed in LRIS .
Conversely, x ∗ x is not bijective as x and −x have x ∗ x as image (note that
(x, x ∗ x) is indeed a bijective pattern allowed in LRIS).

Unfortunately, the property for a term to be a bijective pattern cannot be
easily syntactically assessed. Thus in [3] we adopted a more restrictive definition
of admissible pattern. From a more practical point of view, as in JSetL, we can
admit also more general patterns. In particular, we allow patterns to be any
integer logical expression involving the RIS control variable. An integer logical
expression in JSetL is created by using methods such as sum, mul, etc., applied
to IntLVar objects, and returning IntLVar objects (e.g., x.mul(x), where x is
an uninitialized IntLVar).

If the expression used in the RIS pattern defines a bijective function (e.g.,
x.sum(2)) then dealing with the RIS is anyway safe; otherwise, it is not safe in
general, but it may work correctly in many cases.

Example 16. Compute the set of squares of all even number in [1,10].

IntLVar x = new IntLVar(); //the RIS {x:[1,10] | x mod 2=0 • x*x}
LSet D = new LSet(new Interval(1,10));

Ris ris = new Ris(x,D,x.mod(2).eq(0),x.mul(x));

LSet Sqrs = ris.expand();

Executing this code will correctly bind Sqrs to {4,16,36,64,100}. ut
5 Note that, on the contrary, a formula such as X = {D[X] | Ψ • τ} is an admissible

constraint, and it is suitably handled by the LRIS decision procedure.

Allowing more general forms of patterns (and, possibly, control terms) is
planned as a future extension for RIS in general, and for the implementation of
RIS in JSetL, as well.

7.2 RIS with local variables

Allowing local variables in RIS raises major problems when the formula repre-
senting the RIS filter has to be negated during RIS constraint solving (basically,
negation of the RIS filter is necessary to assure that an element that does not
satisfy the filter does not belong to the RIS itself). In fact, this would require
that the solver is able to deal with quite complex universally quantified formulas,
which is usually not the case (surely, it is not the case for the JSetL solver). Thus,
to avoid such problems a priori, the RIS filter cannot contain local variables.

However, as already observed for RIS patterns, in practice there are cases
in which we can relax some restrictions on RIS without losing the ability to
correctly deal with such more general RIS constraints.

Thus, in JSetL, we allow the user to specify that some (logical) variables
in the RIS filter are indeed local variables. This is achieved—as a temporary
solution—by using a special syntax for the external name of the logical variable
(namely, the name must start with an underscore character).

Example 17. If R is a set of ordered pairs and D is a set, then the subset of R
where all the first components belong to D can be defined as follows:

LSet D = new LSet(); //the RIS

LSet R = new LSet(); //{x:D | ∃y((x,y) ∈ R • (x,y))}
LVar x = new LVar();

LVar y = new LVar("_y");

Pair P = new Pair(x,y)

Ris ris = new Ris(x,D,P.in(R),P);

If we try to solve the constraint

solver.solve(new Pair(1,2).in(ris).and(new Pair(3,4).in(ris)))

i.e., (1, 2) ∈ ris ∧ (3, 4) ∈ ris, then the solver terminates with success, binding
(as its first solution) D to {1, 3 tN1} and R to {(1, 2), (3, 4) tN2}, N1, N2 new
fresh variables. ut

In the above example, y is a local variable. If y is not declared as local, then
the same call to solver.solve will terminate with failure, since y is dealt with
as an external variable and the first constraint, (1, 2) ∈ ris, binds y to 2 so that
the second constraint (3, 4) ∈ ris fails.

Anyway, it can be observed that many uses of local variables can be avoided
by a proper use of the control term and pattern of a RIS. For example, the
extended RIS of Ex. 17 can be expressed with a RIS without local variables as
follows: {(x, y) : R | x ∈ D}. Hence, the planned extension of the admissible
control terms and patterns for RIS can also be useful to alleviate the problem
of local variables in RIS filters.

7.3 Recursive RIS

The class Ris extends the class LSet; hence it is possible, at least in principle, to
use Ris objects inside the RIS filter formula in place of LSet objects. This allows,
among other things, to define recursive restricted intensional sets (RRIS).

Of course, the presence of recursive definitions may compromise the finite-
ness of RIS and hence the decidability of the formulas involving them. Therefore
RRIS are prohibited in the base language of RIS, LRIS . In practice, however,
their availability can considerably enhance the expressive power of the language
and hence RRIS are allowed in the extended language supported by JSetL. Pro-
grammers are responsible of guaranteeing termination.

The following is an example using a RRIS. Since RRIS has not yet been
fully developed and tested in JSetL we will write programs dealing with them
by using only the abstract notation.

Example 18 (Factorial of a number n).

Fact = {(0, 1) t Fact1}∧
Fact1 = {x : D

| ∃y, z(x > 0 ∧ (x− 1, z) ∈ Fact ∧ y = x ∗ z • (x, y))}
(2)

Note that the domain, D, is left underspecified, and recursion is simply expressed
as a set membership predicate over the same set being defined: (x− 1, z) ∈ Fact
means that z is the factorial of x − 1. If we conjoin for example the constraint
(5, f) ∈ Fact then the solver will return f = 120. As usual in declarative pro-
gramming, there is no real distinction between inputs and outputs. Therefore
if we conjoin to formula (2) the constraint (n, 120) ∈ Fact then the solver will
return n = 5. ut

RRIS are not yet fully supported in JSetL, but their inclusion, which has al-
ready been successfully experimented in {log}, should be feasible without major
problems.

8 Conclusion and future work

In this paper we have presented an extension of the Java library JSetL to support
RIS, and we have shown, through a number of simple examples, the usefulness
of RIS as a powerful data and control abstraction. Although efficiency is not
our main concern, the implementation of RIS in {log} has proven to be efficient
enough as to compete with mainstream tools [3]. Hence, we expect similar results
of the implementation of RIS in the JSetL library. As future work, it can be
interesting: (a) on the more theoretical side, trying to extend the language of RIS
for which we are able to provide a correct and complete solver, e.g. by enlarging
the collection of set and relation operators dealing with RIS (for now limited to
equality and membership); (b) on the more practical side, trying to incorporate in
the implementation of RIS within the JSetL library all the extensions mentioned
in Sect. 7, which although falling outside of the decision procedure, turn out to
be of great interest in practice.

Acknowledgments We wish to thank Andrea Guerra and Andrea Fois for their
contribution to the implementation of RIS in JSetL. This work has been partially
supported by GNCS “Gruppo Nazionale per il Calcolo Scientifico”.

References

1. Bergenti, F., Chiarabini, L., Rossi, G.: Programming with Partially Specified Ag-
gregates in Java, Computer Languages, Systems & Structures, 37(4), 178–192
(2011).

2. Codognet, P., Diaz, D.: Compiling constraints in CLP(FD). Journal of Logic
Programming, 27(3):185–226 (1996).

3. Cristiá, M., Rossi, G.: A Decision Procedure for Restricted Intensional Sets. In de
Moura, L. (Ed.) Automated Deduction 26th Int’l Conf. on Automated Deduction
(CADE 26). LNCS, v. 10395, 185-201, Springer (2017).

4. Dovier, A., Pontelli, E., Rossi, G.: Constructive Negation and Constraint Logic
Programming with Sets. New Generation Computing, 19(3):209–255, 2001.

5. Dovier, A., Pontelli, E., Rossi, G.: Intensional sets in CLP. In: Palamidessi, C. (ed.)
Proc. 19th Int’l Conf. on Logic Programming, LNCS, v. 2916, 284–299. Springer
(2003).

6. Dovier, A., Pontelli, E., Rossi, G.: Set unification. Theory and Practice of Logic
Programming 6(6), 645–701 (2006).

7. Dovier, A., Piazza, C., Pontelli, E., Rossi, G.: Sets and constraint logic program-
ming. ACM Trans. Program. Lang. Syst. 22(5), 861–931 (2000).

8. Hill, P.M., Lloyd, J.W.: The Gödel programming language. The MIT Press (1994).
9. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. The MIT Press

(2006).
10. JSR-331: JSR-331 Java Constraint Programming API, https://jsr331.org/.
11. Leuschel, M., Butler, M.: ProB: A model checker for B. In: Keijiro, A., Gnesi, S.,

Mandrioli, D. (eds.) FME. LNCS, v. 2805, 855–874. Springer (2003).
12. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: Minizinc:

Towards a standard CP modelling language. In: Bessiere, C. (ed.) CP 2007. LNCS,
v. 4741, 529–543. Springer (2007).

13. Rossi, G.: {log} (2008), http://people.dmi.unipr.it/gianfranco.rossi/

setlog.Home.html.
14. Rossi, G., Panegai, E., and Poleo, E.: JSetL: A Java Library for Supporting Declar-

ative Programming in Java. Software-Practice & Experience, 37:115-149 (2006).
15. Schwartz, J. T., Dewar, R. B. K., Dubinsky, E., Schonberg, E.: Programming with

Sets: an Introduction to SETL. Springer-Verlag (1986).
16. Shmueli, O., Naqvi, S.: Set Grouping and Layering in Horn Clause Programs. In

J-L. Lassez (ed.), Proc. Fourth Int’l Conf. on Logic Programming, 152–177. The
MIT Press (1987).

Towards Coq Formalisation of {log}
Set Constraints Resolution

Catherine Dubois1, Sulyvan Weppe2,
1. ENSIIE, lab. Samovar, Évry, France

2. ENSIIE, Évry, France

Abstract. The language {log} is a Constraint Logic Programming lan-
guage that natively supports finite sets and constraints such as (non)
equality and (non) membership. The set constraints resolution process
is mathematically formalised by Dovier et al in [5] using rewriting rules.
In this paper we present a formalisation in the Coq proof assistant of the
term and constraint algebra, the rewriting rules and check all the exam-
ples given in the reference paper by applying the rewriting rules manually
with the help of some tailored tactics. The main problem we encountered
is the non determinism captured by the rewriting rules, which prevents
us from automating their application in Coq. However the rules for non-
membership are deterministic. So we propose a function that iteratively
applies the latter rules. We prove its correctness with respect to the cor-
responding rewriting rules. This work is a first step of a larger project
whose objective is to provide a formally verified resolution process for
{log} set constraints resolution.

1 Introduction

The language {log}1 is a freely available implementation of CLP(SET), recently
extended to include binary relations and partial functions [4]. This language
embodies the fundamental forms of set and a number of primitive operations for
set management. It includes constraints for constructing and manipulating finite
sets. In this paper we focus on the resolution of set constraints as it is detailed
by Dovier et al in [5], considered in the following as the reference paper.

We contribute a formalisation within the Coq proof assistant [10] of the {log}
resolution process of set constraints, or more precisely a first step towards this
objective. Our motivation is to have a mechanized formal basis, in order to have
a reference that could be used to study extensions, like the recent ones about
partial functions and relations.

The resolution process extends the unification on first-order terms by adding
specific set constraints e.g. (non) membership, (non) equality.

There are many formalisations of first-order unification in proof assistants,
e.g. [8,9,2,1,7,6]. We can also mention a Coq proof of unification modulo as-
sociativity and commutativity with a neutral element embedded in the library
Coccinelle [3] and also several proofs about nominal unification, e.g. [11].
1 http://people.dmi.unipr.it/gianfranco.rossi/setlog.Home.html

The work described in this paper is the first step of a larger project whose ob-
jective is to provide a formally verified resolution process for {log} set constraints
resolution.

In this paper we present, in Section 2, the formalisation of the term and
constraint algebra and the rewriting rules used in the set constraints resolution of
{log} as exemplified in [5]. We go a step further by introducing some automation
in the rewriting strategy. We propose to turn some of the rewriting rules into
an operational process. It is described in Section 3 and we prove its termination
and correctness. In Section 4, we conclude and present future work.

2 Coq Formalisation

In this section, we present first the formalisation of the term and constraint
algebra and then the way we have formalised the rewriting rules used in the
set constraints resolution of {log} as exemplified in [5]. Coq code is available at
http://www.ensiie.fr/~dubois/CoqSetlog.

2.1 Terms and Constraints

A term is either a variable, the emptyset, a non-empty set or any non-set term
built from a function symbol and a list of terms (let us call them ordinary terms).
The type of term, term, is represented in Coq as the following simple inductive
data-type:

Inductive term: Set :=
| Var: variable → term
| SetC: term → term → term
| OTerm: symbol → list term → term
| EmptySet: term.

Ordinary terms are represented as varyadic terms. If necessary, we use a
predicate for checking the well-formedness of such a term (stating that the length
of the list of sub-terms is equal to the arity of the function symbol). The types
of variables and symbols are any arbitrary types equipped with a decidable
equality. Non empty sets are denoted by set terms of the form {a|t}, represented
in Coq by SetC a t: a denotes an element of the set and t the set of the other
elements. This notation stands for the set {a} ∪ t. The function symbol {_|_}
used to construct sets is such that: (i) duplicates in a set do not matter and
(ii) the order of elements is irrelevant. Both facts are taken into account by the
resolution process.

The primitive constraints are equality (Eq), non-equality (Neq), membership
(Mem), non-membership (Nmem) and set term constraints (IsSet). The type of
primitive constraints is again defined as an inductive data-type. FalseC is added
(wrt to the reference paper) to indicate that the resolution fails. A constraint is
defined as a conjunction of primitive constraints, represented in Coq as a list of
primitive constraints.

Inductive primitiveConstraint: Type :=
| Eq: term → term → primitiveConstraint
| Neq: term → term → primitiveConstraint
| Mem: term → term → primitiveConstraint
| Nmem: term → term → primitiveConstraint
| FalseC: primitiveConstraint
| IsSet: term → primitiveConstraint.

Definition constraint:=list primitiveConstraint.

Let pc be one of the primitive constraint of the constraint C. pc is in solved
form if it has any of the following forms: (i) X = t, and neither t nor the rest of
C contains X; (ii) X 6= t, and X does not occur in t; (iii) t /∈ X, and X does
not occur in t; (iv) IsSet(X). A constraint C is in solved form if it is empty or
all its components are in solved form.

We define also functions for checking occur-check, applying a substitution
and some more helpers. We try to use as much as possible Coq notations to
ease the reading and make our formalisation look like the paper presentation.
For example the construct {t1|t2} represented in Coq by SetC t1 t2 is written in
Coq {{ t1 | t2 }}. The constraint of equality t1 = t2 (resp. t1 6= t2) is written
t1 == t2 (resp. t1 /== t2), x ∈ t (resp. x /∈ t) is written x : s t (resp. x /:s t).

2.2 Rewriting Procedures

In [5], the constraint solver is defined as a procedure named SATSET that nonde-
terministically transforms a constraint to either false, error, or a finite collection
of constraints in solved form. This solver uses different rewriting procedures to
rewrite a set constraint to its equivalent solved form. Each rewriting procedure,
made of different rules, models one step of rewriting. And each rule corresponds
to a certain case of primitive constraint.

The next step in our Coq formal development is to formalise each single
rewriting procedure, one per kind of primitive constraints. We try to be very
close to the reference paper definitions. However there are some differences that
we pinpoint in the following because our purpose is to be able to animate these
definitions on some examples in Coq. We formalise the rewriting procedures in
Coq as inductively defined predicates. Each rule is translated into one clause of
the predicate.

In the reference paper, the choice of the primitive constraint to be rewritten
is not determined. This is a source of non-determinism. As said previously, we
decide to implement a constraint as a list of primitive constraints. So unlike the
reference paper presentation, we choose the first element of the list, let us call it
the constraint head. Furthermore we introduce the notion of problem as a pair
whose first component is a constraint in solved form and second component is an
unsolved constraint. The type problem is defined in Listing 1.1. In Coq, all the
rewriting procedures share the type problem → problem → Prop, showing that a
rewriting procedure rewrites a problem into another one. This is a quite common

presentation used for example for unification of first-order terms, in particular
in Color [2] and Coccinelle [3].

At the beginning of the resolution, the solved part is empty. When the rewrit-
ing process is complete (that is no more rules can be applied), either the unsolved
part is empty and the solved part provides us with a constraint in solved form,
or the unsolved part is [FalseC] meaning that a dead-end has been reached. The
form of the constraint head of the unsolved part determines which rewriting rules
can be applied. For some rules (e.g. stepMem procedure, second rule, stepMem2_2)
the unsolved constraint head is removed and replaced in the unsolved part by
one or some other primitive constraints (see Listing 1.1). For some other (e.g.
stepEq procedure, fifth rule), it is removed from the unsolved part to the solved
part (see Listing 1.1). We detail the rewriting stepMem to illustrate the style of
definition.

Definition problem := constraint * constraint.

Inductive stepEq: problem → problem → Prop :=
...
| stepEq5: forall X t c1 c2,

¬(occurCheck X t) →
((setTerm t) ∨ ¬(isSetInC X c1) ∨ ¬(isSetInC X c2))→
stepEq (c1, (Var X == t) :: c2)

((Var X == t)::(applySubst [(X,t)] c1), applySubst [(X,t)] c2)
...

Inductive stepMem : problem→ problem→ Prop :=
| stepMem1: forall t c1 c2,

stepMem (c1, ((t :s EmptySet)::c2)) (c1, [FalseC])
| stepMem2_1: forall r s t c1 c2,

stepMem (c1, (r :s {{s|t}})::c2) (c1, (r == s)::c2)
| stepMem2_2: forall r s t c1 c2,

stepMem (c1, (r :s {{s|t}})::c2) (c1, (r :s t)::c2)
| stepMem3: forall t X N c1 c2,

isFreshC N c1→ isFreshC N c2→ isFreshT N t → N<>X→
stepMem (c1, (t :s (Var X))::c2)

(c1, c2 ++ [Var X == {{ t | Var N}}} ; IsSet (Var N)]).

Listing 1.1. Coq encoding of some rewriting rules

Them we pack these rewriting predicates in one single, named step, specifying
that a step in the resolution is achieved by one of the 5 previous predicates:

Inductive step : problem→ problem→ Prop:=
| step1 : forall pb pb’, stepEq pb pb’→ step pb pb’
| step2 : forall pb pb’, stepMem pb pb’→ step pb pb’
| step3 : forall pb pb’, stepNeq pb pb’→ step pb pb’
| step4 : forall pb pb’, stepNmem pb pb’→ step pb pb’
| step5 : forall pb pb’, stepSC pb pb’→ step pb pb’.

These predicates only allow us to make one step of rewriting. We define the
transitive reflexive closure of each predicate, so that these closures allow us

to achieve a complete transformation. The Coq standard library provides the
predicate clos_refl_trans that defines the transitive reflexive closure of a binary
relation.

Definition stepNmemStar := clos_refl_trans _ stepNmem.
Definition stepStar := clos_refl_trans _ step.

Using some tailored tactics, we could prove the examples 2, 3 and 4 of the
reference paper with all their solutions. Some of them are solved quite easily,
some others need to apply manually each rule.

3 Towards More Automation

As said previously, the rewriting procedures are not deterministic, but actually
some are. This is the case of stepNmem and stepSC. It is useful to define a functional
version of these two ones, since the predicate versions we defined only allow us
to make one step at once, whereas such a functional version would allow us to
apply these steps iteratively, until we cannot anymore.

So we define the function stepsNM that iteratively applies the different rules
of the rewriting predicate stepNmen. This function implements a general recursive
scheme: some cases do add some primitive constraints in the problem. Proof of
termination in that case is not automatic in Coq. We easily prove the termination
by introducing a dedicated measure on the constraint.

We prove the correctness of the function stepsNM with respect to the corre-
sponding rewriting rules. More precisely, we prove, in Lemma stepsNM_soundness
below, that the result obtained by the function stepsNM is indeed in the reflexive
transitive closure of the relation stepNM. However we do not use stepNmemStar pre-
viously defined but an adaptation of it, stepNmemRd which is defined as stepNmemStar
extended with a rule that allows us to pass over any constraint different from
a Nmem constraint. We also prove the completeness of the function in Lemma
stepsNM_complete: if applying iteratively the stepNmem rewriting rules on pb leads
to pb’ which cannot be rewritten anymore - second premise - then the function
stepsNM applied on pb computes pb’.

Lemma stepsNM_soundness : forall c c1, stepNmenRd (c1,c) (stepsNM (c1,c)).

Lemma stepsNM_complete : forall pb pb’,
stepNmemRd pb pb’ → (forall p, ¬ stepSCExt pb’ p) → stepsNM pb = pb’.

We follow the same approach on stepSC, resulting in a function stepsSCheck,
correct wrt the reflexive transitive closure of stepSC.

4 Conclusion

This paper presents the initial work done for formalising in Coq the set con-
straints resolution of {log}. We mainly define the term and constraint algebra
and the different rewriting procedures, being as close as possible to the reference

paper. All the examples presented in [5] are re-played in Coq, which brings some
relative confidence in our formalisation. The difficulties we encountered come
from the fact that the rewriting procedures are not deterministic. So the defi-
nition of a resolution procedure cannot be done using functions (as it could be
done for unification of first-order terms, see e.g. [2]). However for each determin-
istic rewriting relation, we define a function that applies its rules until a solved
form is achieved.

The formalisation counts about 1350 lines of code, and thanks to this one we
proved some rewritings for a total of 600 lines of code.

We propose several directions for future work. First, we want to formalise in
Coq the main propositions and theorems of [5], such as termination and correct-
ness of the resolution process. The second direction concerns the definition of a
Coq function that implements the resolution process as it is proposed in [5] and
its formal correctness proof. We have already achieved a first step, as explained
in Section 3. The next step is a large one because it requires to implement back-
tracking in Coq, considered as implicit in the reference paper. An alternative to
trying to implement backtracking in Coq, could be to formalise an all solutions
semantics, where the computed result represents the disjunction of the results
of all the possible computations. This is another direction for future work.

Acknowledgements We thank M. Cristia and G. Rossi for the discussions
which initiate this work. We thank G. Rossi for his answers on our questions when
we started the Coq formalisation. Thanks also to the anonymous reviewers for
their suggestions.

References

1. A. B. Avelar, A. L. Galdino, F. L. C. de Moura, and M. Ayala-Rincón. First-order
unification in the pvs proof assistant. Logic Journal of the IGPL, 22(5):758–789,
2014.

2. F. Blanqui and A. Koprowski. Color: a coq library on well-founded rewrite rela-
tions and its application to the automated verification of termination certificates.
Mathematical Structures in Computer Science, 21(4):827–859, 2011.

3. E. Contejean. Coccinelle, a Coq library for rewriting. In Types, Torino, Italy, 2008.
4. M. Cristiá, G. Rossi, and C. S. Frydman. Adding partial functions to constraint

logic programming with sets. TPLP, 15(4-5):651–665, 2015.
5. A. Dovier, C. Piazza, E. Pontelli, and G. Rossi. Sets and constraint logic program-

ming. ACM Trans. Program. Lang. Syst., 22(5):861–931, 2000.
6. S. Kothari and J. Caldwell. A machine checked model of idempotent MGU axioms

for lists of equational constraints. In M. Fernández, editor, Proceedings 24th Inter-
national Workshop on Unification, UNIF 2010, Edinburgh, United Kingdom, 14th
July 2010., volume 42 of EPTCS, pages 24–38, 2010.

7. C. McBride. First-order unification by structural recursion. Journal of Functional
Programming, 13(6):1061–1075, 2003.

8. L. C. Paulson. Verifying the unification algorithm in lcf. Sci. Comput. Program.,
5(2):143–169, June 1985.

9. J. Rouyer. Développement de l’algorithme d’unification dans le calcul des con-
structions. technical report 1795, 1992.

10. The Coq Development Team. Coq, version 8.7. Inria, Aug. 2017. http://coq.
inria.fr/.

11. C. Urban, A. M. Pitts, and M. Gabbay. Nominal unification. Theor. Comput. Sci.,
323(1-3):473–497, 2004.

On perfect matchings for some bipartite graphs?

Alberto Casagrande1, Francesco Di Cosmo2, and Eugenio G. Omodeo3

1 Dept. of Mathematics and Geosciences, University of Trieste, Italy.
acasagrande@units.it

2 University of Trieste, Italy.
dicosmo.francesco@gmail.com

3 Dept. of Mathematics and Geosciences, University of Trieste, Italy.
eomodeo@units.it

Abstract. Inspired by some recent revisitations of the Cantor-Bernstein
theorem, in particular its formalizations in ZF carried out via the proof
assistant AProS by W. Sieg and P. Walsh, we are carrying out the proof
of a related graph-theoretical proposition. Our development is assisted
by the proof checker ÆtnaNova, and our proof pattern is drawn from
Halmos’s classic ‘Naive set theory’. This case-study illustrates the flex-
ibility of a proof environment rooted in Set Theory, which can be bent
with equal ease toward declarative and procedural styles of proof.

Key words Proof checking, set-based specifications, Zermelo-Fraenkel
set theory, connected graphs.

Introduction

Riding the wave of a revival of interest in the proofs of the Cantor-Bernstein
theorem (cf. [7]), and particularly inspired by [13], we have formalized Paul
Halmos’s proof [6] of that proposition and are carrying out an entirely graph-
theoretical reworking of Halmos’s argument.

In its distilled form the Cantor-Bernstein theorem states that∥∥∥∥
whenever α, β are injections such that range(α) ⊆ domain(β) and range(β) ⊆
domain(α), a one-one correspondence exists between domain(α) and domain(β)

Proving it amounts to building, out of the given α and β, an injection γ from
A = domain(α) onto B = domain(β). Without loss of generality, [6, pp.88–89]
proceeds under the disjointedness assumption A ∩B = ∅.

The elegance of Halmos’s approach stems from his focusing on bipartite
graphs rather than on 1-1 mappings; and we further stress the graph-theoretical
nature of his argument by ignoring the orientation of the mappings. Halmos’s
argument—we contend—could well be referred to the undirected graph whose
(typically infinite) sets of vertices and edges are, respectively:

V = A]B and E =
{
{x, y} : 〈x , y〉 ∈ α ∪ β & 〈y , x〉 /∈ α ∪ β

}
.

? The authors have been partially supported by an INdAM-GNCS grant and by the
project FRA-UniTS 2016.

The proof-checker ÆtnaNova [12], also known as Ref, is firmly Set Theory
oriented.1 This enables one to try different ways of formulating definitions and
claims, with the reward, at times, of discovering proofs that are more straight-
forward or transparent than long-established ones. For instance, non-cut vertices
are, traditionally, defined in terms of paths; thanks to ÆtnaNova, we were able
to propose an alternative characterization for them [2] and to ease the proof
that every finite and connected claw-free graph admits an extensional acyclic
orientation [10, 11].

In this new formal essay, again based on ÆtnaNova and related to graph
connectivity, our aim is twofold:

(1) capture the structural properties of the graph G = (V,E) resulting from
generic injections α and β in the manner explained above;

(2) show that any graph enjoying such properties has a perfect matching—
namely, it has a set M of edges which is a partition of V (see the formal
definition of PeMa(M,E) at the bottom of Figure 2).

In preparation for this task, we also need to

(3) treat the connected components of an arbitrary graph (actually, of any fam-
ily E of edges—even an infinite E whose elements are not doubletons, see
Figure 1); for, the sought matching will result from the disjoint union of
perfect matchings, one for each connected component of G.

DisconPartn(P) ↔Def ∅ /∈ P &
(
∀b ∈ P | ∪ b ∩∪ (∪(P \ {b})) = ∅ &
(∅ ∈ b→ b = {∅})

)

ReachCl(Q,E) ↔Def (∪Q) ∩∪(E \Q) = ∅
CoCo(C,E) ↔Def { q ⊆ C ∩ E | ReachCl(q, E) & q 6= ∅ } = {C}
CoCo(C,E) → { q ⊆ C | ReachCl(q, C) } ⊆ {∅ , C}
CoCo(C,C) ↔ { q ⊆ C | ReachCl(q, C) } ⊆ {∅ , C} & C 6= ∅

R ∈ E →
(
∃c | CoCo(c , E) & R ∈ c

)

K = { c ⊆ E | CoCo(c, E) } → DisconPartn(K) & ∪K = E

Fig. 1. Connected components of generic set E: definitions and properties

The paper is organized as follows. We offer a quick view of the ÆtnaNova
proof-specification language in Section 1, through examples related to our case-
study. Then, after highlighting Halmos’s proof of the Cantor-Bernstein theorem
in Section 2, we will show how his idea can be adapted to the seemingly different
situation related to bipartite graphs, as announced above. In the conclusions, we
will relate the contribution of this paper with ongoing studies on the interplay
between sets and graphs in formal reasoning within the respective theories.

1 ÆtnaNova is available as a service at http://aetnanova.units.it/, and all of
the proof-checking experiments discussed in this paper are available at http:

//aetnanova.units.it/scenarios/BeyondCantorBernstein.

1 The ÆtnaNova system: a panoramic tour

ÆtnaNova’s users organize definitions, theorem statements, and proof specifi-
cations, in script files named scenarios2, which ÆtnaNova processes in order
to establish whether or not they comply with the mathematical standards of
rigor built into it. The logical system underlying ÆtnaNova is a variant of the
Zermelo-Fraenkel set theory with axioms of foundation and universal choice. This
is apparent from the syntax of the language in which scenarios are written, which
extends the usual language of first-order predicate logic with constructs reflecting
specific features of ÆtnaNova’s theory of sets. ÆtnaNova includes an important
construct, named Theory, designed to support reusability of proofware compo-
nents and akin to a mechanism for parameterized specifications available in the
Clear language [1].

Only two axioms occur in ÆtnaNova explicitly; they are:

s∞ 6= ∅ & (∀x ∈ s∞ | {x} ∈ s∞) ,

arb(∅) = ∅ &
(
∀x | x = ∅ ∨

(
arb(x) ∈ x & x ∩ arb(x) = ∅

))
.

The former of these, involving the special constant s∞, acts as infinity axiom;
the other one characterizes the universal choice operator and embodies von Neu-
mann’s assumption that ∈ is a well-founded relationship. The contents of most
familiar axioms of ZF are built into the inferential armory of ÆtnaNova, which
handles competently many familiar set constructs: the membership and equality
relators ∈ and =, the constant ∅, the dyadic operators ∩, \, ∪, the “elementary
set” constructor {S1, . . . , Sn}, the pairing construct 〈X , Y 〉 and the conjugated
projections associated with it (see the first three lines of Figure 6), and a very
flexible set abstraction construct (e.g., see [8, pp. 42–45]), of the form

{ set term : iterators | condition } .

ÆtnaNova embodies two kinds of application: when the notation f�x is used,
f is a set (typically a set of pairs) and f�x denotes the value y which f associates
with x and, usually, this is the second component of a pair 〈x , y〉 belonging to f ,
but f�x equals ∅ for any x outside the set domain(f); when the notation g(x)
is used—as in arb(·), range(·), or descsΘ(·)—, g denotes a ‘global’ function: to
wit, a proper class of pairs, whose domain consists of all sets.

Three ÆtnaNova-specified definitions have already been shown on the top
of Figure 1; many more are listed in Figure 2 and Figure 6; all of these play a
role in the ‘proof-pearl’ under development which we are discussing here. Note
that recursive specifications such as the definition of the function nat(I, S) (‘I-
th natural number relative to the set S of indices’) and the definition of the
property Even(M) (‘M is an even number’) make sense thanks to the assumed
well-foundedness of ∈.

An example of an ÆtnaNova-specified proof is shown in Figure 3. As one
sees, proofs are formed by two-portion lines: the second portion of each line,

2 Sample scenarios can be found at http://aetnanova.units.it/scenarios/.

P(S) =Def {y : y ⊆ S}
∪S =Def {y : x ∈ S , y ∈ x}

Finite(F) ↔Def

(
∀ g ∈P(P(F)) \ {∅} |

(
∃m | g ∩P(m) = {m}

))

Partition(P) ↔Def (∀ b ∈ P | {k ∈ P | k ∩ b 6= ∅} = {b})
next(I) =Def I ∪ {I}

nat(I, S) =Def arb
(
{ next

(
nat(j, S)

)
: j ∈ I | I = {j} ∩ S }

)

N =Def {nat(i, s∞) : i ∈ s∞}
Even(M) ↔Def M = ∅ ∨

(
∃ i ∈M | Even(i) & next

(
next(i)

)
= M

)

ChSet(C , T) ↔Def

{
{x} : x ∈ C

}
=
{
C ∩ b : b ∈ T

}

PeMa(M , E) ↔Def M ⊆ E & ∪E ⊆ ∪M &
(
∀h ∈M , k ∈M \ {h} | h ∩ k = ∅

)

Fig. 2. ÆtnaNova definitions can be mere abbreviations, but they can also rely on
∈-recursion

separated by the sign ⇒ from the first and at times carrying an identifying
label of the form Statxxx, is the assertion being derived; the first portion is the
hint, referencing the basic inference mechanism which enables that derivation in
ÆtnaNova. Occasionally an assertion is represented laconically by the keyword
AUTO, when no ambiguity or obscurity can ensue from this.

As mentioned above, ÆtnaNova has a second-order construct named Theory
(cf. [9] and [12, pp.19–25]), crucially important for proof-engineering. In a sense,
ÆtnaNova’s Theorys resemble procedures of a programming language. Typi-
cally, a Theory has formal parameters which get bound to actual parameters
when it gets applied; in return, the Theory will supply useful information. Ac-
tual input parameters must satisfy a conjunction of statements, called Theory
assumptions.

Besides providing theorems of which it holds the proofs, a theory has the
ability to instantiate special variables (whose names are subscripted with the Θ
sign), which play the role of actual parameters and bear special relationships with
the input parameters. Two examples of ÆtnaNova Theory appear in Figure 4.
Theory reachability has two parameters: a property V of sets and a dyadic
relation E over sets; its assumption requires that for every set x enjoying the
property V(x), the collection of all sets such that E(x, y) holds forms a set (not
a proper class). This Theory returns a function, descsΘ, that sends every set
s into the sets of its ‘E-descendants’; that is, descsΘ(s) is the set of all sets y
such that a finite sequence x0, . . . , xn exists satisfying the conditions x0 ∈ s,
y = xn, and E(xi−1, xi) for i = 1, . . . , n. The three statements appearing below
the assumption of reachability in Figure 4 are theorems, derived once and for all
by the proof developer inside this Theory which, from then on, can be applied
to any pair V(x), E(x, y) consisting of a property and a dyadic relation.

The other Theory shown in Figure 4, namely connComp, can be applied
to any nonnull set H. For any given element r of H, it returns the stages
thΘ(i, r) of an inductive construction of the unique set c = ccΘ(r) such that
CoCo(c,H) & r ∈ c holds. It can be exploited to ascertain, in a somewhat
procedural way, the last two statements of Figure 1. It should be noted, though,

Theorem ch0 : [Every partition has a choice set] Partition(P)→ (∃ c | ChSet(c, P)).
Proof : Suppose not(p0)⇒ Stat0 :

(
¬∃ c | ChSet(c, p0)

)
& Partition(p0)∥∥∥∥∥∥

For, suppose that p0 makes a counterexample. In particular, the inequality{
{arb(b)} : b ∈ p0

}
6=
{
{arb(b) : b ∈ p0} ∩ b : b ∈ p0

}
must hold, in view of the defi-

nition of ChSet(c, p0).
{arb(b) : b ∈ p0} ↪→ Stat0⇒ ¬ChSet({arb(b) : b ∈ p0} , p0)
Use def(ChSet)⇒

{
{x} : x ∈ {arb(b) : b ∈ p0}

}
6=
{
{arb(b) : b ∈ p0} ∩ b : b ∈ p0

}
SIMPLF⇒ Stat1 :

{
{arb(b)} : b ∈ p0

}
6=
{
{arb(b) : b ∈ p0} ∩ b : b ∈ p0

}
∥∥∥∥

Therefore, some block b0 of the partition p0 exists which witnesses the said inequality.
Since blocks are non-null, arb(b0) ∈ b0.
Use def(Partition)⇒ Stat2 : (∀ b ∈ p0 | {k ∈ p0 | k ∩ b 6= ∅} = {b})
b0 ↪→ Stat1⇒ Stat3 : {arb(b0)} 6= ({arb(b) : b ∈ p0} ∩ b0) & b0 ∈ p0

b0 ↪→ Stat2(Stat2∗)⇒ Stat4 : {k ∈ p0 | k ∩ b0 6= ∅} = {b0}∥∥∥∥∥∥

Consequently, arb(b0) ∈ {arb(b) : b ∈ p0} ∩ b0 holds. This enables simplification of
the inequality {arb(b0)} 6= {arb(b) : b ∈ p0}∩b0 into {arb(b) : b ∈ p0}∩b0 6⊆ arb(b0);
therefore, an a0 other than arb(b0) belongs to both of b0 and {arb(b) : b ∈ p0}.
Suppose⇒ arb(b0) /∈ ({arb(b) : b ∈ p0} ∩ b0)

k0 ↪→ Stat4(Stat4∗)⇒ Stat5 : arb(b0) /∈ {arb(b) : b ∈ p0}
b0 ↪→ Stat5⇒ AUTO

(Stat3∗)Discharge⇒ AUTO
a0 ↪→ Stat3(Stat3∗)⇒ Stat6 : a0 ∈ {arb(b) : b ∈ p0} & a0 ∈ b0 & a0 6= arb(b0)∥∥∥∥

Such an a0 can be rewritten as arb(b1) for some b1 other than b0 in p0, but this
contradicts the fact that any two blocks in p0 are disjoint.
b1 ↪→ Stat6(Stat6 , Stat4)⇒ Stat7 : b1 /∈ {k ∈ p0 | k ∩ b0 6= ∅} & b1 ∈ p0 &

a0 = arb(b1)
b1 ↪→ Stat2(Stat7∗)⇒ Stat8 : b1 ∈ {k ∈ p0 | k ∩ b1 6= ∅}
() ↪→ Stat8(Stat7)⇒ a0 ∈ b1
b1 ↪→ Stat7⇒ AUTO

(Stat6∗)Discharge⇒ QED

Fig. 3. Proof, carried out with ÆtnaNova, of the controversial Zermelo’s principle

that those claims can be proved in a totally different fashion, by resorting to
Zorn’s lemma (see Figure 5 and [12, pp.398–405]) instead of to natural numbers.

The user is referred to [10, Sec. 3] for a crash course on ÆtnaNova, and
to [12] for a much wider introduction to this proof-verifier and its underlying
logic. A quick comparison of this system with other set-oriented proof-assistants
can be found at [10, Sec. 6]; moreover, [9, Sec. 6] carries out a comparison of
ÆtnaNova’s Theorys with various related modularization constructs available,
in particular, in the OBJ family of languages (see [5]) and in the Interactive
Mathematical Proof System (IMPS) described in [4].

2 Halmos’s proof of the Cantor-Bernstein theorem

Given injections α, β satisfying the constraints stated in the Introduction, con-
sider the digraph whose sets of vertices and arcs are, respectively:

V = A]B and E′ =
{
〈w , v〉 : w ∈ V , v ∈ V | 〈v , w〉 ∈ α ∪ β

}
.

Theory reachability
(

V(X) , E(X,Y)
)

(
∀ x | V(x)→

(
∃ c, ∀ y | E(x, y) & V(y) → y ∈ c

))

=⇒(descsΘ)(
∀ s , x , y | s ⊆ descsΘ(s) &(

x ∈ descsΘ(s) & V(x) & V(y) & E(x, y) → y ∈ descsΘ(s)
))

(
∀ y , x , z | y ∈ descsΘ({x}) & z ∈ descsΘ({y}) → z ∈ descsΘ({y})

)
(
∀ s , t | s ⊆ t & (∀ x , y | x ∈ t & V(x) & V(y) & E(x, y) → y ∈ t) →

descsΘ(s) ⊆ t
)

End reachability

Theory connComp(H)
∅ 6= H

=⇒(thΘ , ccΘ)
(∀ i , r | thΘ(i, r) = if i = ∅ then

{
if r ∈H then r else arb(H) fi

}
else{

w : j ∈ i , u ∈ th(j, r) , w ∈H | i = j ∪ {j} & u ∩ w 6= ∅
}

fi)
(∀ r | ccΘ(r) = ∪{th(i, r) : i ∈ N})(
∀ r | r ∈H → CoCo(ccΘ(r) , H)

)

End connComp

Fig. 4. Reachability in a ‘big graph’ and connected components of a ‘small’ hypergraph

{
x ⊆ T |

(
∀u ∈ x , v ∈ x , z ∈ T | (u ⊇ v ∨ v ⊇ u) & (∃ y ∈ x | z 6⊇ y)

)}
= ∅ −→

(∃m | {x ∈ T | x ⊇ m} = {m})
{
p ⊆ S | {x ∈ ∪S | (∀ y ∈ p | x ∈ y)} /∈ S

}
= ∅ & U ∈ S −→

(∃w ⊆ U | {x ∈ S | w ⊇ x} = {w})

Fig. 5. Zorn’s lemma and one of its corollaries

In connection with this digraph D = (V,E′), consider the ancestry function @
sending each W ⊆ V into the set @W of all vertices u such that there is a path
(of length > 0) leading from a vertex w ∈ W to u in D. It should be clear that
this function can be obtained in ÆtnaNova by actualizing the parameters of the
Theory reachability shown in Figure 4 as follows:

Apply(descsΘ : @) reachability
(

V(X) 7→ X ∈ A ∪ B , E(X,Y) 7→ 〈Y , X〉 ∈ α ∪ β
)
.

(Since E reverses all pairs forming α ∪ β, it seems natural to us to regard the
elements of @{x} as ancestors, instead of descendants, of x.)

As will turn out, the sought injection of A onto B is the relationship

γ =
{
〈x , α�x〉 : x ∈ A |B ∩@ {x} ⊆ range(α)

}
∪

{
〈β�y , y〉 : y ∈ B |B ∩@ {y} 6⊆ range(α)

}
.

Here is the heuristic idea lying behind this choice of γ, treated in pedagogical
terms. If an element y0 of B does not equal α�x for any x ∈ A, in order to make

Ordered pair according to Kuratowski 〈X , Y〉 =Def {{X} , {X , Y}}
1st of an ordered pair P[1] =Def arb({x : s ∈ P , x ∈ s | s = {x}})
2nd of an ordered pair P[2] =Def arb({y : d ∈ P , y ∈ d | P = {{y}} ∨ d \ {y} ∈ P})
Map domain, i.e. set of first components of pairs in map domain(F) =Def

{
p[1] : p ∈ F

}

Map restriction F|A =Def

{
p ∈ F| p[1] ∈ A

}

Image, i.e. value, of single-valued function F�Y =Def arb
(
F|{Y}

)[2]

Map range, i.e. set of second components of pairs in map range(F) =Def

{
p[2] : p ∈ F

}

Map predicate Is map(F) ↔Def

(
∀p ∈ F| p =

〈
p[1] , p[2]

〉)

Single-valuedness predicate Svm(F) ↔Def

(
∀p ∈ F , q ∈ F| p[1] = q[1] → p = q

)
&

Is map(F)

Injection 1–1(F) ↔Def Svm(F) &
(
∀p ∈ F , q ∈ F| p[2] = q[2] → p = q

)

Map product G ◦ F =Def

{〈
p[1] , q[2]

〉
: p ∈ F , q ∈ G| p[2] = q[1]

}

Inverse map F^ =Def

{〈
p[2] , p[1]

〉
: p ∈ F

}

Fig. 6. ÆtnaNova definitions related to pairs, maps, single-valued maps, and one-one
maps

it an α-image under the guidance of β, we would like to modify α by setting α :=
α∪{〈β�y0 , y0〉}; such a naive readjustment would create a collision with the pre-
existing value α�β�y0, though, causing α to cease being single-valued. It hence
seems that the right retouch to be made to α is, rather: α := α\{〈β�y0, α�β�y0〉}∪
{〈β�y0, y0〉}. But, then, the previous y1 = α�β�y0 will no longer be an α-image;
hence, in order to fix the situation, we are to proceed in analogy with our previous
move: inside α, we will now replace the pair 〈β�y1 , α�β�y1〉 by 〈β�y1 , y1〉, etc.
Ultimately, fix after fix, we will assign a new image to each element xi = β�yi of
A which originally had y0 in its ancestry: initially α sent xi to α�xi = yi+1, but
at the end of the replacements its image will turn out to be yi. The sequence
of replacements described so far for a single y0 ∈ B∗ = B \ {α�x : x ∈ A }
should be developed likewise for all others; consequently, at the end of the overall
processing, the original edges 〈y , β�y〉 with B∗ ∩@ {y} 6= ∅ will turn out to be
reversed, and the corresponding edges 〈β�y , α�β�y〉 withdrawn, precisely in the
manner described in the definition of γ.

In a formal check that the said γ meets our desiderata, the key steps are:

(1) (∀ y ∈ B | @{β�y} = {β�y} ∪@{y});
(2) (∀x ∈ A | @{α�x} = {α�x} ∪@{x});
(3) {x ∈ A |B ∩@{x} 6= ∅} ⊆ range(β);
(4) {y ∈ B |B ∩@{y} ⊆ range(α)} ⊆ range(α);
(5) Svm

(
{〈β�y , y〉 : y ∈ B |B ∩@ {y} 6⊆ range(α)}

)
;

(6) 1–1
(
{〈β�y , y〉 : y ∈ B |B ∩@ {y} 6⊆ range(α)}

)
;

(7) Svm
(
{〈x , α�x〉 : x ∈ A |B ∩@ {x} ⊆ range(α)}

)
&

{〈x , α�x〉 : x ∈ A |B ∩@ {x} ⊆ range(α)} ⊆ α;

(8) 1–1
(
{〈x , α�x〉 : x ∈ A |B ∩@ {x} ⊆ range(α)}

)
;

(9) 1–1
(
γ
)
;

(10) domain
(
γ
)

= A;

(11) range
(
γ
)

= B.

Next we want to get rid of the assumption—inherent in what precedes—that
A∩B = ∅, so as to prove the Cantor-Bernstein theorem in its full extent, to wit:

1–1(F) & 1–1(G) &
range(F) ⊆ domain(G) &
range(G) ⊆ domain(F)

 → ∃h

1–1(h) &
domain(h) = domain(F) &

range(h) = domain(G)

 .

Under the new less constraining hypothesis, we put A? = domain(F), B =
domain(G), and A =

{
x ∪ {A? ∪B} : x ∈ A?

}
; thus,

E =
{
〈x ∪ {A? ∪B} , x〉 : x ∈ A?

}

turns out to be an injection with range(E) = A? and domain(E) = A disjoint
from B. Then we take α = F ◦ E =

{
〈x ∪ {A? ∪B} , F �x〉 : x ∈ A?

}
and

β = E^ ◦ G =
{
〈y , (G�y) ∪ {A? ∪B}〉 : y ∈ B

}
, so that an injection γ with

domain(γ) = A, range(γ) = B can be singled out on the grounds of what
precedes. The sought h is just: h = γ◦E^ =

{
〈x , γ�(x ∪ {A? ∪B})〉 :x ∈ A?

}
.

An ÆtnaNova scenario developed from the bare rudiments of set theory and
containing the above-outlined proof of the Cantor-Bernstein theorem is available
at URL http://aetnanova.units.it/scenarios/BeyondCantorBernstein/.
This scenario contains 13 definitions and 48 theorems, organized in 5 Theorys.
The overall number of proof lines is 680, there are only four proofs exceeding the
lenght of 24 lines, and processing the entire scenario takes less than 5 seconds.

The said scenario could be developed rather quickly (namely, in about three
weeks), because most of the needed preparatory lemmas had been developed
long before: in particular, we could take advantage of the availability of the
reachability Theory shown in the upper part of Figure 4 (cf. [12, pp. 378–386]);
roughly, only one third of the proofs was new. The situation with the extension
that will be discussed next is different; we have not yet formalized all details, but
devoted much time in finding the best usable definitions (e.g., see the definition
of CoCo(·, ·) in Figure 1 and the ones of ChSet(·, ·) and PeMa(·, ·) in Figure 2),
as well as in properly formulating a graph-theoretical counterpart of the Cantor-
Bernstein theorem. We feel that we are now at the end of the design phase.

3 Halmos’s proof pattern adapted to special graphs

As announced in item (1) of the Introduction, we want to capture the structural
properties of the graph induced (in the manner explained there) by a pair α, β of
domain-disjoint injections such that range(α) ⊆ domain(β) and range(β) ⊆
domain(α). Figure 7 shows the outcome of this elicitation task, formalized as
an ÆtnaNova’s Theory.

Theory bij bip(α , β)
1–1(α) & 1–1(β)
range(α) ⊆ domain(β)
range(β) ⊆ domain(α)
domain(α) ∩ domain(β) = ∅

=⇒(ecbhΘ , acbhΘ)

ecbhΘ =
{
{q[1] , q[2]} : q ∈ α ∪ β| 〈q[2] , q[1]〉 /∈ α ∪ β

}

acbhΘ = domain(α)(
∀ q ∈ ecbhΘ | (∃x , y | q ∩ acbhΘ = {x} & q \ acbhΘ = {y})

)
(
∀ q ∈ ecbhΘ , h ∈ ecbhΘ , k ∈ ecbhΘ | h 6= q & k 6= q & k 6= h → q ∩ h ∩ k = ∅

)
(
∀ p ⊆ ecbhΘ | ReachCl(p , ecbhΘ) & Finite(p) →

(∀h ∈ p | h \ ∪(p \ {h}) = ∅) &
(
∃ ch | ChSet(ch p)

))

End bij bip

Fig. 7. Properties of the undirected graph induced by two injections

Theory graphCBH(E)(
∀ q ∈ E , h ∈ E , k ∈ E |

(
∃x , y | q = {x, y} & x 6= y

)
&(

h 6= q & k 6= q & k 6= h → q ∩ h ∩ k = ∅
))

(
∀ p ⊆ E | CoCo(p,E) & Finite(p) →

{h \ ∪(p \ {h}) : h ∈ p } ⊆ {∅} &
(
∃ ch | ChSet(ch, p)

))
=⇒(pmΘ)

pmΘ = ∪{ pm : cc ⊆ E , pm ⊆ cc | CoCo(cc , E) &
pm = arb

(
{ q ⊆ cc | PeMa(q , cc) }

) }

PeMa(pmΘ , E)
End graphCBH

Fig. 8. A graph-theoretical counterpart of the Cantor-Bernstein theorem

When the ÆtnaNova’s Theory graphCBH shown in Figure 8 gets applied,
the set of edges of a graph induced by injections α, β is provided as parameter
E: we can focus on this set alone, taking it for granted that the set V of vertices
equals ∪E. The perfect matching constructed inside this Theory is returned
via pmΘ. The assumptions to which E is subject match the conclusions of the
previous Theory bij bip. Besides requiring that no vertex has more than two
incident edges, those assumptions yield that the connected components of E are
vertex-disjoint paths of three kinds:

a) cycles involving an even number of edges—each finite component is in fact
required to have a choice set ch;

b) infinite simple paths endowed with one endpoint;
c) infinite simple paths devoid of endpoints.

It should be intuitively clear that paths of kind b) have exactly one perfect
matching, whereas paths of kinds a) and c) have two; this indicates the rationale
for imposing, in the above specification of pmΘ , that

pm = arb
(
{q ⊆ cc | PeMa(q , cc)}

)

holds: should we only require pm ∈ {q ⊆ cc |PeMa(q , cc)}, we might be putting
in pmΘ too much. One way of constructing each set {q ⊆ cc | PeMa(q , cc)},
with cc connected component of E, is by considering the sum sets

⋃{
th(i, r) \ ∪{ th(j, r) : j ∈ i} : i ∈ N | Even(i)

}

associated with the elements r of cc. When cc is of kind either a) or c), all such
sum sets (of which only two differ) are perfect matchings; for a component cc
of kind b), the sole r ∈ cc to be taken into account is the one that includes the
singleton

{
k ∈ cc | k \ ∪(cc \ {k}) 6= ∅}.

Conclusions

The ‘proof pearl’ highlighted in this paper adds a tile to a much larger-scale
mosaic of proof scenarios which have to do with the interplay between sets and
graphs (e.g., see [10, 11]), as well as with representation theorems of the kind
illustrated by the classical Stone’s results on Boolean algebras that states that
every unital ring where the identities X +X = 0 and X ·X = X hold is isomor-
phic to the field of the clopen sets of a totally disconnected compact Hausdorff
space where intersection and symmetric set-difference act as multiplication and
addition (see [14, 15, 16], cf. [3]).

Those many experiments are intended to contribute collectively to a unitary
study on the foundations of discrete mathematics; therefore each of them is
meant to have a bearing on others, and is designed in such terms that it can
reuse achievements of previous efforts and can easily be integrated with the rest.

This explains why, even though only graphs and digraphs enter the proof of
the Cantor-Bernstein theorem, we chose to define the connected components of
an arbitrary set E—not obligatorily one consisting of doubletons—, seen as the
set of edges of a hypergraph. By so doing, we can more easily merge the proof
scenario discussed in this paper with the one of [2] (downsized in [8, pp.251–262]).

Also, the collection { c ⊆ E | ReachCl(c, E) } of those sets of (hyper)edges
that are closed under reachability forms, one readily sees, a Boolean algebra:
in fact, it is closed under intersection and symmetric difference and E is one of
its members. Elsewhere, in proving Stone’s results, we had to bring into play
Zorn’s lemma; accordingly, in this paper we found it convenient to opt for a
declarative definition of connected components, albeit a characterization of con-
nected components relying either upon paths or—which amounts, roughly, to
the same—upon the Theory connComp seen in Figure 4 would have sufficed for
the limited goals addressed above.

Acknowledgements

Discussions with Francesco Cancian were fruitful for the matters of this paper.

References

[1] R. M. Burstall and J. A. Goguen. Putting theories together to make specifica-
tions. In R. Reddy, editor, Proc. 5th International Joint Conference on Artificial
Intelligence, pages 1045–1058, Cambridge, MA, 1977.

[2] A. Casagrande and E. G. Omodeo. Reasoning about connectivity without paths.
In S. Bistarelli and A. Formisano, editors, Proceedings of the 15th Italian Con-
ference on Theoretical Computer Science, Perugia, Italy, September 17-19, 2014.,
volume 1231 of CEUR Workshop Proceedings, pages 93–108. CEUR-WS.org, 2014.

[3] R. Ceterchi, E. G. Omodeo, and A. I. Tomescu. The representation of Boolean
algebras in the spotlight of a proof checker. In L. Giordano, V. Gliozzi, and G. L.
Pozzato, editors, CILC 2014: Italian Conference on Computational Logic, volume
1195 http://ceur-ws.org/Vol-1195/, ISSN 1613-0073, pages 287–301. CEUR
Workshop Proceedings, July 2014.

[4] W. M. Farmer, J. D. Guttman, and F. J. Thayer. IMPS: An interactive mathe-
matical proof system. J. Autom. Reason., 11:213–248, 1993.

[5] J. A. Goguen and G. Malcolm. Algebraic Semantics of Imperative Programs. MIT
Press, Cambridge, MA, USA, 1996.

[6] P. R. Halmos. Naive Set Theory. Van Nostrand, 1960. Reprinted by Springer-
Verlag, Undergraduate Texts in Mathematics, 1974.

[7] A. Hinkis. Proofs of the Cantor-Bernstein Theorem: A mathematical excursion,
volume 45 of Science Networks. Historical Studies. Birkhäuser Basel, 2013.

[8] E. G. Omodeo, A. Policriti, and A. I. Tomescu. On Sets and Graphs: Perspectives
on Logic and Combinatorics. Springer Publishing Company, Inc., 1st edition, 2017.

[9] E. G. Omodeo and J. T. Schwartz. A ‘Theory’ mechanism for a proof-verifier
based on first-order set theory. In A. Kakas and F. Sadri, editors, Computational
Logic: Logic Programming and beyond — Essays in honour of Bob Kowalski, part
II, volume 2408, pages 214–230. Springer, 2002.

[10] E. G. Omodeo and A. I. Tomescu. Set graphs. III. Proof pearl: Claw-free graphs
mirrored into transitive hereditarily finite sets. J. Autom. Reason., 52(1):1–29,
2014.

[11] E. G. Omodeo and A. I. Tomescu. Set graphs. V. On representing graphs as
membership digraphs. J. Log. Comput., 25(3):899–919, 2015.

[12] J. T. Schwartz, D. Cantone, and E. G. Omodeo. Computational Logic and Set
Theory - Applying Formalized Logic to Analysis. Springer, 2011.

[13] W. Sieg and P. Walsh. Natural Formalization: Deriving the Cantor-Bernstein
Theorem in ZF. (Private communication), 2017.

[14] M. H. Stone. The theory of representations for Boolean algebras. Transactions of
the American Mathematical Society, 40:37–111, 1936.

[15] M. H. Stone. Applications of the theory of Boolean rings to general topology.
Transactions of the American Mathematical Society, 41:375–481, 1937.

[16] M. H. Stone. The representation of Boolean algebras. Bulletin of the American
Mathematical Society, 44(Part 1):807–816, 1938.

A set-based reasoner
for the description logic DL4,×

D

Domenico Cantone, Marianna Nicolosi-Asmundo, and
Daniele Francesco Santamaria

University of Catania, Dept. of Mathematics and Computer Science
email: {cantone,nicolosi,santamaria}@dmi.unict.it

Abstract. We present a KE-tableau-based implementation of a rea-
soner for a decidable fragment of (stratified) set theory expressing the
description logic DL〈4LQSR,×〉(D) (DL4,×

D , for short). Our application
solves the main TBox and ABox reasoning problems for DL4,×

D . In par-
ticular, it solves the consistency problem for DL4,×

D -knowledge bases rep-
resented in set-theoretic terms, and a generalization of the Conjunctive
Query Answering problem in which conjunctive queries with variables
of three sorts are admitted. The reasoner, which extends and optimizes
a previous prototype for the consistency checking of DL4,×

D -knowledge
bases (see [7]), is implemented in C++. It supports DL4,×

D -knowledge
bases serialized in the OWL/XML format, and it admits also rules ex-
pressed in SWRL (Semantic Web Rule Language).

1 Introduction

A wealth of decidability results has been collected over the years within the re-
search field of Computable Set Theory [2, 11, 17]. However, only recently some
of these results have been applied in the context of knowledge representation
and reasoning for the semantic web. Such efforts have been motivated by the
characteristics of the set-theoretic fragments considered, as they provide very
expressive unique formalisms that combine the modelling capabilities of a rule
language with the constructs of description logics. The decidable multi-sorted
quantified set-theoretic fragment 4LQSR [3] is appropriate in this sense, in con-
sideration of the fact that its decision procedure is efficiently implementable. We
recall that the language of 4LQSR involves variables of four sorts, pair terms,
and a restricted form of quantification.

In [5], the theory 4LQSR has been used to represent the expressive description
logic DL4,×

D by means of a suitable translation mapping. Moreover, decidability of

the most widespread reasoning problems for DL4,×
D , such as the consistency prob-

lem and the Conjunctive Query Answering (CQA) problem for DL4,×
D -knowledge

bases (KBs) were proved via a reduction to the satisfiability problem for 4LQSR.
Since 4LQSR admits variables of four sorts, the CQA problem was generalized
in such a way as to admit queries over three sorts of variables. Such a general-
ization, called Higher-Order Conjunctive Query Answering (HOCQA) problem
can be instantiated to the most widespread reasoning tasks for DL4,×

D -ABox.

The description logic DL4,×
D admits Boolean operators on concepts and ab-

stract roles, concept domain and range, and existential and minimum cardinality
restriction on the left-hand side of inclusion axioms. It also supports role chains
on the left-hand side of inclusion axioms and properties on roles such as transi-
tivity, symmetry, and reflexivity. In [4], its consistency problem has been shown
to be NP-complete under not very restrictive constraints. Such a low complexity
result depends on the fact that existential quantification cannot appear on the
right-hand side of inclusion axioms. Nonetheless, DL4,×

D turns out to be more
expressive than other low complexity logics such as OWL RL [16] and there-
fore it is very suitable for representing real-world ontologies. For instance, the
restricted version of DL4,×

D mentioned above allows one to express several OWL
ontologies, such as ArcheOntology [16] and OntoCeramic [10], for the classification
of archaeological finds, and ArchivioMuseoFabbrica [1], concerning the renovation
of the Monastery of San Nicola l’Arena in Catania by the architect Giancarlo
De Carlo. Since existential quantification is admitted only on the left-hand side
of inclusion axioms, DL4,×

D is less expressive than logics such as SROIQ(D) [13]
as long as the generation of new individuals is concerned. On the other hand,
DL4,×

D is more liberal than SROIQ(D) in the definition of role inclusion ax-

ioms, as the roles involved in DL4,×
D are not subject to any ordering relationship,

and the notion of simple role is not needed. For example, the role hierarchy pre-
sented in [13, page 2] is not expressible in SROIQ(D), but can be represented
in DL4,×

D . In addition, DL4,×
D is a powerful rule language able to express rules

with negated atoms such as
Person(?p) ∧ ¬hasHome(?p, ?h) =⇒ HomelessPerson(?p)

that are not supported by the SWRL language.

In [7], we presented a first effort to implement in C++ a KE-tableau-based
decision procedure for the consistency problem of DL4,×

D -KBs, by resorting to
the algorithm introduced in [5]. The choice of KE-tableau systems [14], instead
of traditional semantic tableaux [19], was motivated by the fact that KE-tableau
systems introduce an analytic cut rule which permits to construct trees whose
branches define mutually exclusive situations, thus avoiding the proliferation of
redundant branches, typical of Smullyan’s semantic tableaux [19]. Thus, given as
input a consistent KB, the procedure yields a KE-tableau whose open branches
induce distinct models of the KB. Otherwise, a closed KE-tableau is returned.

In this contribution we improve the reasoner presented in [7] by introducing a
system called KEγ-tableau which admits a generalization of the KE-elimination
rule incorporating the γ-rule, namely the expansion rule for handling universally
quantified formulae. The reasoner also includes a procedure to compute the
HOCQA problem for DL4,×

D . Finally, through suitable benchmark tests, we show
that such a novel reasoner is more efficient than the one introduced in [7].

2 Preliminaries

2.1 The set-theoretic fragment

We summarize the set-theoretic notions underpinning the description logicDL4,×
D

and its reasoning tasks. For the sake of conciseness, we avoid to report here the
syntax and semantics of the whole 4LQSR theory (the interested reader can find it
in [3] together with the decision procedure for its satisfiability problem). Thus, we
focus on the 4LQSR-formulae de facto involved in the set-theoretic representation
of DL4,×

D , namely propositional combinations of 4LQSR-literals (atomic formulae
or their negations) and 4LQSR purely universal formulae of the types displayed
in Table 1. The class of such 4LQSR-formulae is called 4LQSRDL4,×

D
.

We recall that the fragment 4LQSR admits four collections, Vari, of variables
of sort i denoted by Xi, Y i, Zi, . . ., for i = 0, 1, 2, 3 (variables of sort 0 are also
denoted by x, y, z, . . .). Besides variables, also pair terms of the form 〈x, y〉, with
x, y ∈ Var0, are allowed. Since the types of formulae displayed in Table 1 do not
contain variables of sort 2, here we limit ourselves only to notions and definitions
relative to 4LQSRDL4,×

D
-formulae involving variables of sorts 0, 1, and 3.

Literals of level 0 Purely universal quantified formulae of level 1

x = y, x ∈ X1, 〈x, y〉 ∈ X3 (∀z1) . . . (∀zn)ϕ0, where z1, . . . , zn ∈ Var0 and ϕ0 is

any propositional combination of

literals of level 0.¬(x = y), ¬(x ∈ X1), ¬(〈x, y〉 ∈ X3)

Table 1. Types of literals and quantified formulae admitted in 4LQSR
DL4,×

D

.

The variables z1, . . . , zn are said to occur quantified in (∀z1) . . . (∀zn)ϕ0. A
variable occurs free in a 4LQSRDL4,×

D
-formula ϕ if it does not occur quantified in

any subformula of ϕ. For i = 0, 1, 3, we denote with Vari(ϕ) the collections of
variables of sort i occurring free in ϕ.

Given sequences of distinct variables x (in Var0), X1 (in Var1), and X3

(in Var3), of length n, m, and q, respectively, and sequences of (not necessarily
distinct) variables y (in Var0), Y 1 (in Var1), and Y 3 (in Var3), also of length n,
m, and q, respectively, the 4LQSRDL4,×

D
-substitution σ := {x/y,X1/Y 1,X3/Y 3}

is the mapping ϕ 7→ ϕσ such that, for any given universal quantified 4LQSRDL4,×
D

-
formula ϕ, ϕσ is the result of replacing in ϕ the free occurrences of the variables
xi in x (for i = 1, . . . , n) with the corresponding yi in y, of X1

j in X1 (for

j = 1, . . . ,m) with Y 1
j in Y 1, and of X3

h in X3 (for h = 1, . . . , q) with Y 3
h in Y 3,

respectively. A substitution σ is free for ϕ if the formulae ϕ and ϕσ have exactly
the same occurrences of quantified variables. The empty substitution, denoted ε,
satisfies ϕε = ϕ, for each 4LQSRDL4,×

D
-formula ϕ.

A 4LQSRDL4,×
D

-interpretation is a pair M = (D,M), where D is a nonempty
collection of objects (called domain or universe ofM) and M is an assignment
over the variables in Vari, for i = 0, 1, 3, such that:

MX0 ∈ D,MX1 ∈ P(D),MX3 ∈ P(P(P(D))),
where Xi ∈ Vari, for i = 0, 1, 3, and P(s) denotes the powerset of s.

Pair terms are interpreted à la Kuratowski, and therefore we put

M〈x, y〉 := {{Mx}, {Mx,My}}.
Next, let

- M = (D,M) be a 4LQSRDL4,×
D

-interpretation,
- x1, . . . , xn ∈ Var0, and
- u1, . . . , un ∈ D.

ByM[x/u], we denote the interpretationM′ = (D,M ′) such that M ′xi = ui
(for i = 1, . . . , n), and which otherwise coincides with M on all remaining vari-
ables. For a 4LQSRDL4,×

D
-interpretationM = (D,M) and a formula ϕ, the satisfi-

ability relationshipM |= ϕ is recursively defined over the structure of ϕ as fol-
lows. Literals are evaluated in a standard way, based on the usual interpretation
of the predicates ‘∈’ and ‘=’, and of the propositional negation ‘¬’. Compound
formulae are interpreted according to the standard rules of propositional logic.
Finally, purely universal formulae are evaluated as follows:

- M |= (∀z1) . . . (∀zn)ϕ0 iffM[z/u] |= ϕ0, for all u ∈ Dn.

If M |= ϕ, then M is said to be a 4LQSRDL4,×
D

-model for ϕ. A 4LQSRDL4,×
D

-

formula is said to be satisfiable if it has a 4LQSRDL4,×
D

-model. A 4LQSRDL4,×
D

-formula

is valid if it is satisfied by all 4LQSRDL4,×
D

-interpretations.

2.2 The logic DL〈4LQSR,×〉(D)

It is convenient to recall the main notions and definitions concerning the de-
scription logic DL〈4LQSR,×〉(D) (also called DL4,×

D) [4].
Let RA, RD, C, and Ind be denumerable pairwise disjoint sets of abstract

role names, concrete role names, concept names, and individual names, respec-
tively. We assume that the set of abstract role names RA contains a name U
denoting the universal role.

Data types are introduced through the notion of data type maps, defined ac-
cording to [15] as follows. A data type map is a quadruple D = (ND, NC , NF , ·D),
where ND is a finite set of data types, NC is a function assigning a set of con-
stants NC(d) to each data type d ∈ ND, NF is a function assigning a set of
facets NF (d) to each d ∈ ND, and ·D is (i) a function assigning a data type
interpretation dD to each data type d ∈ ND, (ii) a facet interpretation fD ⊆ dD
to each facet f ∈ NF (d), and (iii) a data value eDd ∈ dD to every constant
ed ∈ NC(d). Facets determine subsets of data values considered of interest in
a specific application domain. We shall assume that the interpretations of the
data types in ND are nonempty pairwise disjoint sets.
(a)DL4,×

D -data types, (b)DL4,×
D -concepts, (c)DL4,×

D -abstract roles, and (d)DL4,×
D -

concrete role terms are defined according to the DL standard notation (see [13])
as follows:

(a) t1, t2 −→ dr | ¬t1 | t1 u t2 | t1 t t2 | {ed} ,
(b) C1, C2 −→ A | > | ⊥ | ¬C1 | C1tC2 | C1uC2 | {a} | ∃R.Self |∃R.{a}|∃P.{ed} ,

(c) R1, R2 −→ S | U |R−1 | ¬R1 |R1tR2 |R1uR2 |RC1| |R|C1
|RC1 | C2

| id(C) |
C1 × C2 ,

(d) P1, P2 −→ T | ¬P1 | P1 t P2 | P1 u P2 | PC1| | P|t1 | PC1|t1 ,

where dr is a data range for D, t1, t2 are data type terms, ed is a constant in
NC(d), a is an individual name, A is a concept name, C1, C2 are DL4,×

D -concept

terms, S is an abstract role name, R,R1, R2 are DL4,×
D -abstract role terms, T is

a concrete role name, and P, P1, P2 are DL4,×
D -concrete role terms. Notice that

data type terms are intended to represent derived data types.
A DL4,×

D -KB is a triple K = (R, T ,A) such that R is a DL4,×
D -RBox, T is a

DL4,×
D -TBox, and A a DL4,×

D -ABox.

A DL4,×
D -RBox is a collection of statements of the following types:

R1 ≡ R2, R1 v R2, R1 . . . Rn v Rn+1, Sym(R1), Asym(R1),
Ref(R1), Irref(R1), Dis(R1, R2), Tra(R1), Fun(R1),

R1 ≡ C1 × C2, P1 ≡ P2, P1 v P2, Dis(P1, P2), Fun(P1),

where R1, R2 are DL4,×
D -abstract role terms, C1, C2 are DL4,×

D -abstract concept

terms, and P1, P2 are DL4,×
D -concrete role terms. Any expression of the type

R1 . . . Rn v R, where R1, . . . , Rn, R are DL4,×
D -abstract role terms, is called a

role inclusion axiom (RIA).
A DL4,×

D -TBox is a set of statements of the types:

- C1 ≡ C2, C1 v C2, C1 v ∀R.C2, ∃R.C1 v C2, ≥nR.C1 v C2, C1 v ≤nR.C2,
- t1 ≡ t2, t1 v t2, C1 v ∀P.t1, ∃P.t1 v C1, ≥nP.t1 v C1, C1 v ≤nP.t1,

where C1, C2 areDL4,×
D -concept terms, t1, t2 data type terms,R aDL4,×

D -abstract

role term, and P a DL4,×
D -concrete role term. Statements of the form C v D,

where C and D are DL4,×
D -concept terms, are general concept inclusion axioms.

A DL4,×
D -ABox is a set of individual assertions of the forms:

a : C1, (a, b) : R1, a = b, a 6= b, ed : t1, (a, ed) : P1,

with C1 a DL4,×
D -concept term, d a data type, t1 a data type term, R1 a DL4,×

D -

abstract role term, P1 a DL4,×
D -concrete role term, a, b individual names, and ed

a constant in NC(d).
The semantics ofDL4,×

D is given via interpretations of the form I = (∆I, ∆D, ·I),
where ∆I and ∆D are nonempty disjoint domains such that dD ⊆ ∆D, for every
d ∈ ND, and ·I is an interpretation function. The interpretation of concepts and
roles, axioms and assertions is defined in [8, Table 2].

LetR, T , and A be as above. An interpretation I = (∆I, ∆D, ·I) is a D-model
of R (resp., T), and we write I |=D R (resp., I |=D T), if I satisfies each axiom
in R (resp., T) according to the semantic rules in [8, Table 2]. Analogously,
I = (∆I, ∆D, ·I) is a D-model of A, and we write I |=D A, if I satisfies each
assertion in A, according to [8, Table 2]. A DL4,×

D -KB K = (A, T ,R) is consistent
if there exists a D-model I = (∆I, ∆D, ·I) of A, T , and R.

The HOCQA problem for DL4,×
D . We recall that the problem of Higher-

Order Conjuctive Query Answering (HOCQA) for DL4,×
D , introduced in [5], is a

generalization of the Conjunctive Query Answering problem for DL4,×
D defined

in [4]. The HOCQA problem for DL4,×
D relies on the notion of Higher-Order (HO)

DL4,×
D -conjunctive query, admitting variables of three sorts: individual and data

type variables, concept variables, and role variables. The HOCQA problem for
DL4,×

D consists in finding the HO answer set of an HO-DL4,×
D -conjunctive query

(see below) with respect to a DL4,×
D -KB.

Specifically, let Vi = {v1, v2, . . .}, Ve = {e1,e2, . . .}, Vd = {t1,t2, . . .}, Vc =
{c1, c2, . . .}, Var = {r1, r2, . . .}, and Vcr = {p1, p2, . . .} be pairwise disjoint de-
numerably infinite sets of variables disjoint from Ind,

⋃{NC(d) : d ∈ ND}, C,
RA, and RD. HO-DL4,×

D -atomic formulae are expressions of the following types:

R(w1, w2), P (w1, u), C(w1), t(u), r(w1, w2), p(w1, u), c(w1), t(u), w1 = w2,

where w1, w2 ∈ Vi∪Ind, u ∈ Ve∪
⋃{NC(d) : d ∈ ND}, R is a DL4,×

D -abstract role

term, P is a DL4,×
D -concrete role term, C is a DL4,×

D -concept term, t is a DL4,×
D -

data type term, r ∈ Var, p ∈ Vcr, c ∈ Vc, t ∈ Vd. A HO-DL4,×
D -atomic formula

containing no variables is said to be ground. A HO-DL4,×
D -literal is a HO-DL4,×

D -

atomic formula or its negation. A HO-DL4,×
D -conjunctive query is a conjunction

of HO-DL4,×
D -literals. We denote with λ the empty HO-DL4,×

D -conjunctive query.
Let v1, . . . , vn ∈ Vi, e1, . . . , eg ∈ Ve, t1, . . . , tl ∈ Vd,c1, . . . , cm ∈ Vc, r1, . . . , rk ∈

Var, p1, . . . , ph ∈ Vcr, o1, . . . , on ∈ Ind, ed1 , . . . , edg ∈
⋃{NC(d) : d ∈ ND},

C1, . . . , Cm ∈ C, R1, . . . , Rk ∈ RA, and P1, . . . , Ph ∈ RD. A substitution
σ := {v1/o1, . . . , vn/on, e1/ed1 , . . . , eg/edg , t1/t1, . . . , tl/tl, c1/C1, . . . , cm/Cm,

r1/R1, . . . , rk/Rk, p1/P1, . . . , ph/Ph} is a map such that, for every HO-DL4,×
D -

literal L, Lσ is obtained from L by replacing: (a) the occurrences of vi in L with
oi, for i = 1, . . . , n; (b) the occurrences of eb in L with db, for b = 1, . . . , g; (c)
the occurrences of ts in L with ts, for s = 1, . . . , l; (d) the occurrences of cj in L
with Cj , for j = 1, . . . ,m; (e) the occurrences of r` in L with R`, for ` = 1, . . . , k;
(f) the occurrences of pt in L with Pt, for t = 1, . . . , h. Substitutions can be
extended to HO-DL4,×

D -conjunctive queries in the usual way.

Let Q := (L1∧ . . .∧Lm) be a HO-DL4,×
D -conjunctive query, and KB a DL4,×

D -
KB. A substitution σ involving exactly the variables occurring in Q is a solution
for Q w.r.t. KB, if there exists a DL4,×

D -interpretation I such that I |=D KB and
I |=D Qσ. The collection Σ of the solutions for Q w.r.t. KB is the higher-order
answer set of Q w.r.t. KB. Then the higher-order conjunctive query answering
problem for Q w.r.t. KB consists in finding the HO answer set Σ of Q w.r.t. KB.

The HOCQA problem for DL4,×
D can be instantiated to the most significant

ABox reasoning problems for DL4,×
D (see [5]).

Representing DL4,×
D in set-theoretic terms. DL4,×

D -KBs and HO-DL4,×
D -

conjunctive queries can be represented in set-theoretic terms by exploiting a
mapping θ defined in [5]. The function θ translatesDL4,×

D statements in 4LQSRDL4,×
D

-
formulae in CNF. Specifically, θ maps injectively individuals a, constants ed ∈

NC(d), variables w ∈ Vi, and variables u ∈ Ve into sort 0 variables xa, xed , xw,
xu, the constant concepts > and ⊥, data type terms t, concept terms C, c ∈ Vc,
and t ∈ Vd into sort 1 variables X1

>, X1
⊥, X1

t , X1
C , X1

c , X1
t respectively, and the

universal relation U , abstract role terms R, concrete role terms P , r ∈ Var, and
p ∈ Vcr into sort 3 variables X3

U , X3
R, X3

P , X3
r , X3

p , respectively.1

The mapping θ is defined for HO-DL4,×
D -atomic formulae as follows:

θ(R(w1, w2)) := 〈xw1
, xw2

〉 ∈ X3
R, θ(P (w1, u)) := 〈xw1

, xu〉 ∈ X3
P , θ(C(w1)) :=

xw1
∈ X1

C , θ(t(u)) := xu ∈ X1
t , θ(w1 = w2) := xw1

= xw2
, θ(t(u)) := xu ∈

X1
t , θ(c(w1)) := xw1

∈ X1
c , θ(r(w1, w2)) := 〈xw1

, xw2
〉 ∈ X3

r , θ(p(w1, u)) :=
〈xw1 , xu〉 ∈ X3

p .

Finally, θ is extended to HO-DL4,×
D -conjunctive queries and to substitutions in

a standard way.
From now on we denote with φKB the 4LQSRDL4,×

D
translation of a DL4,×

D -KB

KB and with ψQ the 4LQSRDL4,×
D

-formula representing the HO-DL4,×
D -conjunctive

query Q. The formula φKB is a conjunction of 4LQSRDL4,×
D

-formulae of type

(∀z1) . . . (∀zn)ϕ0, with ϕ0 a clause of 4LQSRDL4,×
D

-literals, since (a) each DL4,×
D -

KB KB is a set of statements H such that θ(H) is a 4LQSRDL4,×
D

-formula in Table
1; and (b) φKB is constructed by conjoining the θ(H)s, moving universal quan-
tifiers as inward as possible, and renaming quantified variables as to be pairwise
distinct. The interested reader is referred to [6] for full details.

Finally, the HOCQA problem for 4LQSRDL4,×
D

-formulae can be stated as follows.

Let ψ be a conjunction of 4LQSRDL4,×
D

-literals and φ a 4LQSRDL4,×
D

-formula. The
HOCQA problem for ψ w.r.t. φ consists in computing the HO answer set of ψ
w.r.t. φ, namely the collection Σ′ of all the substitutions σ′ such that M |=
φ ∧ ψσ′, for some 4LQSRDL4,×

D
-interpretationM.

3 Overview of the reasoner

We present a general overview of the reasoner and the main notions and defini-
tions concerning the procedures upon which it is based.

The input of the reasoner is an OWL ontology serialized in the OWL/XML
syntax and admitting SWRL rules (see Figure 1).

Fig. 1. Execution cycle of the reasoner.

1 The use of level 3 variables to model abstract and concrete role terms is motivated by
the fact that their elements, that is ordered pairs 〈x, y〉, are encoded in Kuratowski’s
style as {{x}, {x, y}}, namely as collections of sets of objects.

If the ontology meets the DL4,×
D requirements, a parser produces the internal

coding of all axioms and assertions of the ontology in set-theoretic terms, as a
list of strings. Then the system builds the data-structures required to execute
the algorithm. In the two subsequent steps, the reasoner constructs a complete
KEγ-tableau TKB whose open branches represent all possible models for the
input KB φKB (see below for the definition of KEγ-tableau). The tableau TKB
is constructed (1) by systematically applying the following two rules: (1a) a
generalization of the KE-elimination rule incorporating the γ-rule, and (1b) the
principle of bivalence rule (PB-rule) (thus constructing all branches of the KEγ-
tableau—see Figure 2), and then (2) processing each open branch ϑ of TKB
by constructing the equivalence classes of the individuals involved in formulae
of type x = y occurring in ϑ and substituting each individual x on ϑ with the
representative of the equivalence class of x. Such step returns the complete KEγ-
tableau. Finally, the reasoner takes as input the internal coding of ψQ, i.e. the
set-theoretic representation of a query Q, and computes the HO-answer set of
ψQ with respect to φKB. The task of computing the complete KEγ-tableau for

φKB is performed by procedure Consistency-DL4,×
D illustrated in [8, Figure 8],

whereas the task of computing the HOCQA answer set of a given query w.r.t
the KB is performed by procedure HOCQAγ-DL4,×

D shown in [8, Figure 9].

Let ΦKB := {φ : φ is a conjunct of φKB}. The procedure Consistency-DL4,×
D

constructs a complete KEγ-tableau TKB for the set ΦKB of the conjuncts of φKB
representing the saturation of the DL4,×

D -KB.

At this point, it is convenient to give the definition of KEγ-tableaux. Let Φ :=
{C1, . . . , Cp}, where each Ci is either a 4LQSRDL4,×

D
-literal of the types in Table 1 or

a 4LQSRDL4,×
D

-purely universal quantified formula of the form (∀x1) . . . (∀xm)(β1 ∨
. . . ∨ βn), with β1 . . . βn 4LQSRDL4,×

D
-literals. T is a KEγ-tableau for Φ if there

exists a finite sequence T1, . . . , Tt such that (i) T1 is a one-branch tree consisting
of the sequence C1, . . . , Cp, (ii) Tt = T , and (iii) for each i < t, Ti+1 is obtained
from Ti either by an application of one of the rules (Eγ-rule or PB-rule) in
Figure 2 or by applying a substitution σ to a branch ϑ of Ti (in particular, the
substitution σ is applied to each formula X of ϑ and the resulting branch will be
denoted with ϑσ). In the definition of the Eγ-rule reported in Figure 2, (a) τ :=
{x1/xo1 . . . xm/xom} is a substitution such that x1, . . . , xm are the quantified

variables in ψ and xo1 , . . . , xom ∈ Var0(φKB); and (b) Sβiτ := {β1τ, . . . , βnτ} \
{βiτ} is a set containing the complements of all the disjuncts β1 . . . βn to which
the substitution τ is applied, with the exception of the disjunct βi.

Initially, the procedure Consistency-DL4,×
D constructs a one-branch KEγ-

tableau TKB for the set ΦKB of conjuncts of φKB. Then, it expands TKB by
systematically applying the Eγ-rule and the PB-rule in Figure 2 to formulae of
type ψ = (∀x1) . . . (∀xm)(β1 ∨ . . . ∨ βn) till they are all fulfilled, giving priority
to the Eγ-rule. Once such rules are no longer applicable, for each open branch ϑ
of the resulting KEγ-tableau, atomic formulae of type x = y occurring in ϑ are
used to compute the equivalence class of x and y. For each open branch ϑ of TKB,
the equivalence class of each variable occurring in ϑ is obtained by computing

the substitution σϑ such that ϑσϑ does not contain literals of type x = y, for
distinct x, y. The resulting pair (ϑ, σϑ) is added to the set E .

ψ Sβiτ

βiτ
Eγ-rule

where
ψ := (∀x1) . . . (∀xm)(β1 ∨ . . . ∨ βn),
τ := {x1/xo1 . . . xm/xom},

and Sβiτ := {β1τ, ..., βnτ} \ {βiτ},
for i = 1, ..., n

A | A
PB-rule

where A is a literal

Fig. 2. Expansion rules for the KEγ-tableau.

The procedure HOCQAγ-DL4,×
D takes as input a query ψQ and the set E

yielded by the procedure Consistency-DL4,×
D and returns the answer set Σ′ of

ψQ w.r.t. φKB. For each open and complete branch ϑ of TKB, the procedure

HOCQAγ-DL4,×
D builds a decision tree Dϑ where each maximal branch induces

a substitution σ′ such that σϑσ
′ belongs to the answer set of ψQ w.r.t. to φKB.

Dϑ is obtained by constructing a stack of its nodes. Initially the stack contains
just the root node (ε, ψQσϑ) of Dϑ, with ε the empty substitution. At each step,
the procedure pops out from the stack an element (σ′, ψQσϑσ′) and iteratively
selects a literal q from the query ψQσϑσ

′ and eliminates it from ψQσϑσ
′. Then,

the set of literals t in ϑ matching q is computed by putting Litϑq := {t ∈ ϑ : t =
qρ, for some substitution ρ}. The successors of the current node are computed
by pushing the node (σ′ρ, ψQσϑσ′ρ) in the stack, for each element in Litϑq . If
the current node has the form of (σ′, λ), with λ the empty query, the last literal
of ψQ has been treated and the substitution σϑσ

′ is inserted in Σ′. Notice that,
in case of a failing query match, the set Litϑq is empty and then no successor
node is pushed into the stack. Thus, the failing branch of Dϑ is abandoned and
another branch is selected by popping one of the nodes of Dϑ from the stack.

Computational complexity results can be found in [9].

3.1 Some implementation details

We first show how the internal coding of DL4,×
D -KBs is represented in terms of

4LQSRDL4,×
D

-formulae and the data-structures used by the reasoner for representing
formulae, nodes, and how KEγ-tableaux are implemented. Then we describe the
most relevant functions that implement the procedures Consistency-DL4,×

D and

HOCQAγ-DL4,×
D and also illustrate an example of reasoning in DL4,×

D .

To begin with, 4LQSRDL4,×
D

-variables, quantifiers, Boolean operators, set-theoretic

relators, and pairs are mapped into strings as follows. Variables of type Xi
name

are mapped into strings of the form Vi{name}. For the sake of uniformity, vari-
ables of sort 0 are denoted with X0, Y 0, . . ., whereas individuals a, concepts C,
and roles R of a DL4,×

D -KB are respectively mapped into the variables X0
a , X1

C ,

and X3
R, according to the function θ described in [5]. The symbols ∀, ∧, ∨, ¬∧,

¬∨ are mapped into the strings $FA, $AD, $OR, $DA, $RO, respectively. The re-
lators ∈, 6∈, =, 6= are mapped into the strings $IN, $NI, $EQ, $QE, respectively.
A pair 〈X0

1 , X
0
2 〉 is mapped into the string $OA V01 $CO V02 $AO, where $OA

represents the bracket “〈”, $AO the bracket “〉”, and $CO the comma symbol.

Then, data-structures for representing the KB are built. 4LQSRDL4,×
D

-variables
are implemented by means of the class Var that has four fields. The field type

of type integer indicates the sort of the variable, the field name of type string
represents the name of the variable, and the field var of type integer represents
a free variable if set to 0, and a quantified variable if set to 1. The field index

stores the position of the variable in the vector VVL, delegated to collect free
variables. Quantified and free variables are collected in the vectors VQL and VVL

respectively, which provide a subvector for each sort of variable.

The operators admitted in 4LQSRDL4,×
D

, internally coded as strings, are mapped
into three vectors that are fields of the class Operator. Specifically, the vector
boolOp contains the values $OR, $AD, $RO, $DA, the vector setOp the values $IN,
$EQ, $NI, $QE, $OA, $AO, $CO, and the vector qutOp the value $FA.

4LQSRDL4,×
D

-literals are stored using the class Lit that has two fields. The field
litOp of type integer represents the operator of the formula and corresponds
to the index of one of the first four elements of the vector setOp. The field
components is a vector whose elements point to the variables involved in the
literal and stored in VQL and VVL.

4LQSRDL4,×
D

-formulae are represented by the class Formula, having a binary
tree structure, whose nodes contain objects of the class Lit. The left and right
children contain the left and right subformula, respectively. The class Formula

contains the following fields: the field lit of type pointer to Lit represents the lit-
eral; the field operand represents the propositional operator, and its value is the
index of the corresponding element of the vector boolOp; the field psubformula

of type pointer to Formula is the pointer to the father node, whereas the fields
lsubformula and rsubformula contain the pointers to the nodes representing
the left and the right component of the formula, respectively.

The procedure Consistency-DL4,×
D is based on the data-structure implemented

by the class Tableau. This class uses the instances of the class Node that repre-
sents the nodes of the KEγ-tableau. The class Node has a tree-shaped structure
and four fields: the field setFormula, of type vector of Formula, that collects
the formulae of the current node, and three pointers to instances of the class
Node. These are the leftchild, rightchild, and father fields, which point to
the left child node, right child node, and father node, respectively.

The root node of the class Tableau contains the field root of type pointer
to Node. The fields openbranches and closedbranches collect the set of open
branches and of closed branches, respectively. In addition, the class Tableau

is provided with the field EqSet that is a three-dimensional vector of integers
storing the equivalence classes induced by atomic formulae of type X0 = Y 0. In
particular, EqSet stores a vector containing the indices of VVL corresponding to
the variables belonging to the equivalence classes.

As mentioned above, the reasoner takes as input an OWL ontology compat-
ible with the DL4,×

D requirements, also admitting SWRL rules, and serialized in
the OWL/XML syntax. As first step, the function readOWLXMLontology pro-
duces the internal coding of all axioms and assertions of the ontology, yielding a
list of strings. Then the reasoner builds from the output of readOWLXMLontology
the objects of type Formula that implement the 4LQSRDL4,×

D
-formulae represent-

ing the KB, and stores them in the field root of an object of type Tableau.
In this phase, formulae are transformed in CNF and universal quantifiers are
moved as inward as possible and renamed in such a way as to be pairwise dis-
tinct. The object of type Tableau representing the KEγ-tableau is the input
to the procedure expandGammaTableau that expands the KEγ-tableau by iter-
atively selecting and fulfilling purely universal quantified input formulae. Once
a purely universal quantified formula has been selected, expandGammaTableau
builds iteratively the set of substitutions τ to be applied to the selected formula.
A substitution τ is a map from the indices of the quantified variables of the
formula, selected in order of appearance, to the elements of the vector VVL. The
implementation of τ applies standard techniques for computing the variations
with repetition of the set of indices of the elements of VVL taken to k by k, where
k is the number of quantified variables occurring in the selected formula.

The procedure expandGammaTableau fulfills the formula selected by system-
atically applying the functions EGrule with the current τ and PBrule, respec-
tively implementing the Eγ-rule and the PB-rule. More precisely, it works as
follows. The disjuncts of the current formula to which τ is applied are stored in
a temporary vector and selected iteratively. If a disjunct has its negation on the
branch, it is removed from the temporary vector. Once all the elements of the
temporary vector have been selected, if the last one does not have its negation
on the branch, then EGrule is applied to the formula and the last element of
the temporary vector is inserted in the branch according to Figure 2. If there is
more than one element left in the temporary vector, then the procedure PBrule

is applied. In case the stack is empty, a contradiction is found and the branch
gets closed and inserted in the vector closedbranches.

If the procedure expandGammaTableau terminates with some elements in
openbranches, then the reasoner builds the set of equivalence classes of the vari-
ables involved in formulae of type X0 = Y 0, for each element of openbranches
by means of the procedure buildsEqSet. The latter procedure updates the field
EqSet of the object of type Tableau with the new information concerning the
set of equivalence classes. After the execution of buildsEqSet, if openbranches
contains some elements, a consistent KB is returned.

Procedure HOCQAγ-DL4,×
D is implemented by the function performQuery

that takes as input the object of type Tableau returned by buildsEqSet and
a string representing the internal coding of the input query ψQ, and returns an
object of type QueryManager storing, among other information, the answer set of
ψQ w.r.t. φKB. The function performQuery uses an object of type QueryManager
that stores the input query ψQ as a string, an object of type Formula representing
ψQ, and the answer set of ψQ w.r.t. φKB, for each element of openbranches. The

answer set is implemented by endowing the object of type QueryManager with
the pair of vectors VarMatch. The first vector of VarMatch contains an integer for
each element in openbranches: this is set to 1 if the corresponding branch has
solution, 0 otherwise. The second (three-dimensional) vector contains for each
element in openbranches a vector of solutions, each one constituted by a vector
of pairs of pointers to Var. The first Var of such pair is a variable belonging to
the query, whereas the second Var is the matched individual.

For each element in openbranches, the function performQuery implements
a decision tree by means of a stack that keeps track of the partial solutions of the
query, as nodes of the decision tree. Such a stack, called matchSet, is constituted
by a vector of pairs of objects of type Var such that the first one represents the
query variable and the second one the matched element. Initially, matchSet is
empty. At first step, the procedure selects the first conjunct of the query and,
for each match found, it pushes in matchSet a vector of pairs representing the
match. The procedure selects iteratively the conjuncts of the query and then
applies to the selected conjunct the substitution that is currently at the top of
matchSet. If the literal obtained by the application of such partial solution has
one or more matches in the branch, the resulting substitutions are pushed in
matchSet. Once all the literals of the query have been processed, if matchSet is
not empty, it contains the leaves of the maximal branches of the decision tree,
which are all added to VarMatch.

3.2 Example of reasoning in DL4,×
D

Let us consider the ontology displayed in Figure 3.

Fig. 3. OWL ontology of the example.

The KB in terms of 4LQSRDL4,×
D

is the following formula:
φKB := ¬(〈xEva, xAnn〉 ∈ X3

Mother) ∧
〈xAnn, xAnn〉 ∈ X3

Relative ∧ 〈xEva, xEva〉 ∈ X3
Relative ∧

(∀z1)(∀z2)(¬(〈z1, z2〉 ∈ X3
Mother) ∨ 〈z1, z2〉 ∈ X3

Relative)

Let ψQ = 〈z, xEva〉 ∈ X3
Mother be a query represented in set-theoretic terms.

A complete KEγ-tableau for φKB and the decision trees constructed for the
evaluation of ψQ on each open branch of the KEγ-tableau are shown in Figure

4. Notice that, the decision tree constructed on the leftmost open branch of the
KEγ-tableau provides no solution.

Fig. 4. KEγ-tableau for φKB and decision trees for the evaluation of ψQ.

The internal representation of the OWL ontology is shown in Figure 5. The
KEγ-tableau computed by the reasoner and the evaluation of the query ψQ are
reported in Figure 6. Finally, Figure 7 shows a performance comparison between
our implementation of the KE-tableau presented in [7] and the KEγ-tableau
system for DL4,×

D presented in this paper. The metric used in the benchmarking
is the number of models of the input KB computed by the reasoners and the
time required to compute such models. As shown in Figure 7, the KEγ-tableau
has a better performance than the KE-tableau up to about 400%, even if in some
cases the performances of the two systems are comparable, as shown in the plot.
We conclude that the KEγ-tableau system is always convenient, also because the
expansions of quantified formulae are not stored in memory.

Fig. 5. Internal representation of the ontology.

Fig. 6. The KEγ-tableau and the evaluation of ψQ computed by the reasoner.

Fig. 7. Comparison between KE-tableau and KEγ-tableau systems.

4 Conclusions

We presented a C++ implementation of a KEγ-tableau system for the most
widespread reasoning tasks of DL4,×

D , such as consistency checking of DL4,×
D -KBs

and a generalization of the CQA problem for DL4,×
D , , called HOCQA problem,

admitting conjunctive queries with variables of three sorts. These problems have
been addressed by translating DL4,×

D -KBs and higher-order DL4,×
D -conjunctive

queries in terms of formulae of the set-theoretic fragment 4LQSRDL4,×
D

. The rea-
soner is an improvement of the KE-tableau system introduced in [7] to check
consistency of DL4,×

D -KBs, as it admits a generalization of the KE-elimination
rule incorporating the γ-rule. The reasoner takes as input OWL ontologies com-
patible with the specifications of DL4,×

D serialized in the OWL/XML format and
admitting SWRL rules.

Finally, we showed that the reasoner presented in this paper is more efficient
than the one introduced in [7], by means of suitable benchmark test sets.

We plan to extend the set-theoretic fragment underpinning the reasoner to
include also a restricted version of the operator of relational composition. This
will allow ones to reason with description logics that admit full existential and
universal quantification. In addition, we intend to improve our reasoner so as
to deal with the reasoning problem of ontology classification. Then, we shall
compare the resulting reasoner with existing well-known reasoners such as Her-
miT [12] and Pellet [18], providing some benchmarking. We also plan to allow
data type reasoning by either integrating existing solvers for the Satisfiability
Modulo Theories (SMT) problem or by designing ad-hoc new solvers. Finally, as
each branch of the KEγ-tableau can be computed by a single processing unit, we
plan to implement a parallel version of the software by using the Nvidia CUDA
library.

References

1. C. Cantale, D. Cantone, M. Nicolosi-Asmundo, and D.F. Santamaria. Dis-
tant Reading Through Ontologies: The Case Study of Catania’s Benedictines
Monastery. JIS.it, 8,3 (September 2017).

2. D. Cantone, A. Ferro, and E. G. Omodeo. Computable set theory. Number 6 in
International Series of Monographs on Computer Science, Oxford Science Publi-
cations. Clarendon Press, Oxford, UK, 1989.

3. D. Cantone and M. Nicolosi-Asmundo. On the satisfiability problem for a 4-level
quantified syllogistic and some applications to modal logic. Fundamenta Informat-
icae, 124(4):427–448, 2013.

4. D. Cantone, M. Nicolosi-Asmundo, and D. F. Santamaria. Conjunctive query
answering via a fragment of set theory. In Proc. of ICTCS 2016, Lecce, September
7-9, CEUR-WS Vol. 1720, pp. 23–35.

5. D. Cantone, M. Nicolosi-Asmundo, and D. F. Santamaria. A set-theoretic approach
to ABox reasoning services. In Costantini S., Franconi E., Van Woensel W.,
Kontchakov R., Sadri F., Roman D. Rules and Reasoning. RuleML+RR 2017.,
Lecture Notes in Computer Science, vol 10364. Springer, 2017.

6. D. Cantone, M. Nicolosi-Asmundo, and D. F. Santamaria. A set-theoretic approach
to ABox reasoning services. CoRR, 1702.03096, 2017. Extended version.

7. D. Cantone, M. Nicolosi-Asmundo, and D. F. Santamaria. A C++ reasoner for
the description logic DL4,×

D . In Proc.of CILC 2017, 26-29 September 2017, Naples,
Italy. CEUR WS, ISSN 1613-0073, Vol. 1949, pp. 276-280., 2017.

8. D. Cantone, M. Nicolosi-Asmundo, and D. F. Santamaria. A set-based reasoner
for the description logic DL4,×

D . CoRR, 1805.08606, 2018. Extended version.
9. D. Cantone, M. Nicolosi-Asmundo, and D. F. Santamaria. An optimized KE-

tableau-based system for reasoning in the description logic DL4,×
D . CoRR,

1804.11222, 2018. Extended version.
10. D. Cantone, M. Nicolosi-Asmundo, D. F. Santamaria, and F. Trapani. Onto-

ceramic: an OWL ontology for ceramics classification. In Proc. of CILC 2015,
CEUR-WS, vol. 1459, pp. 122–127, Genova, July 1-3, 2015.

11. D. Cantone, E. Omodeo, and A. Policriti. Set theory for computing: from decision
procedures to declarative programming with sets. Monographs in Computer Science.
Springer-Verlag, New York, NY, USA, 2001.

12. B. Glimm, I. Horrocks, B. Motik, G. Stoilos, and Z. Wang. HermiT: An OWL 2
Reasoner. Journal of Automated Reasoning, 53(3):245–269, 2014.

13. I. Horrocks, O. Kutz, and U. Sattler. The even more irresistible SROIQ. In Proc.
10th Int. Conf. on Princ. of Knowledge Representation and Reasoning, (Doherty,
P. and Mylopoulos, J. and Welty, C. A., eds.), pages 57–67. AAAI Press, 2006.

14. M. Mondadori M. D’Agostino. The taming of the cut. Classical refutations with
analytic cut. Journal of Logic and Computation, 4:285–319, 1994.

15. B. Motik and I. Horrocks. OWL datatypes: Design and implementation. In Proc.
of the 7th Int. Semantic Web Conference (ISWC 2008), volume 5318 of LNCS,
pages 307–322. Springer, October 26–30 2008.

16. D. F. Santamaria. A Set-Theoretical Representation for OWL 2 Profiles. LAP
Lambert Academic Publishing, ISBN 978-3-659-68797-6, 2015.

17. Jacob T. Schwartz, Domenico Cantone, and Eugenio G. Omodeo. Computational
Logic and Set Theory: Applying Formalized Logic to Analysis. Texts in Computer
Science. Springer-Verlag New York, Inc., 2011.

18. E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz. Pellet: A practical
OWL-DL reasoner. J. Web Sem., 5(2):51–53, 2007.

19. R. M. Smullyan. First-order Logic. Dover books on advanced Math. Dover, 1995.

Polarized Rewriting and Tableaux in B Set
Theory

Olivier Hermant

MINES ParisTech, PSL University, France
olivier.hermant@mines-paristech.fr

Abstract. We propose and extension of the tableau-based first-order
automated theorem prover Zenon Modulo to polarized rewriting. We
introduce the framework and explain the potential benefits. The first
target is an industrial benchmark composed of B Set Theory problems.

1 Introduction

The B Method set theory [1] has been extensively used for 20 years by the
railway industry in France to develop certified correct-by-construction software.
Recently, the BWare [18] project has tackled the issue of automatically proving
the thousands of proof obligations generated by the development process.

Zenon Modulo [11] is one of the tools developed to this aim. Originally a
tableau-based prover, Zenon [4] is used for instance by TLA+ [10] and FoCaLiZe
[14]. To help manage the axioms of set theory, but also the uncountable derived
constructs definitions (e.g. inclusion, union, functions), we deemed useful to not
let nonlogical axioms wander as formulas: a prover would easily get lost by
decomposing one or another axiom in an unorganized fashion.

We replaced them with rewrite rules, turning Zenon into an implementation
of Deduction Modulo Theory [3,5,13], which allows rewriting on terms and for-
mulas. Additionally, we equipped it with ML polymorphic types and arithmetic
[8]. On the BWare benchmark, the success rate was raised from 2.5% to 95%.

We propose to extend Zenon Modulo with polarized rewriting, a more permis-
sive rewrite relation. We first introduce the framework, then we discuss examples
and the pros and cons of the approach. There is currently no implementation,
essentially because this is a perfect match for an intern or a PhD student.

2 Polarized Tableaux Modulo Theory

We assume familiarity with first-order logic and at least one deduction system.
Tableaux calculus is a refutational calculus, thus, to show F under the assump-
tions Γ , we refute Γ,¬F . The first-order tableaux rules are recalled in Figure 1,
see textbooks [16] for details. The rules have the following characteristics:

– as customary, they are presented in a top-down fashion.
– Formulas are not in negation normal form, rules are duplicated.

– A branch may be closed, denoted �, if we find on it (including internal nodes)
an occurrence of some F and its negation, or an explicit contradiction. A
tableau is a proof iff each branch is closed.

– α-rules are for non-branching connectives rules and β-rules for branching
ones, δ-rules are for quantifier rules introducing a fresh constant c and γ-
rules for those introducing any term.

⊥ �⊥�
F,¬F ��

¬> �¬>�

¬¬F α¬¬
F

F ∧G α∧
F,G

¬(F ∨G)
α¬∨¬F,¬G

¬(F ⇒ G)
α¬⇒

F,¬G

F ∨G β∨
F | G

¬(F ∧G)
β¬∧¬F | ¬G

F ⇒ G β⇒¬F | G

∃x F (x)
δ∃

F (c)

¬∀x F (x)
δ¬∀¬F (c)

∀x F (x)
γ∀

F (t)

¬∃x F (x)
γ¬∃¬F (t)

Fig. 1: Tableaux Rules

Tableaux Modulo Theory [3] extends tableaux with a set of rewrite rules R.
A rewrite rule is a pair of terms, l→ r, where the variables of r appear in l. Given
a set R, a term t rewrites into u, denoted t→ u, if there is a rule l→ r ∈ R and
a substitution σ, such that there is an occurrence of lσ in t, and u is t where that
occurrence has been replaced with rσ. In other words, → is the closure of R by
substitution and the subterm relation. The transitive closure of→ is denoted �
and its further reflexive-symmetric closure is ≡, which is a congruence.

Deduction Modulo Theory also allows rewrite rules on formulas, provided
the left member P of such a rule P → F is atomic. The relations →,�,≡ on
formulas embed their counterparts on the subterms of the formulas.

Tableaux can be extended to rewriting with the addition of a rule allowing
to convert any formula with ≡, as in Figure 2a. When rewriting is confluent, we
can orient this rule as in Figure 2b. In practice, Deduction Modulo Theory-based
automated theorem provers [6] implement this last rule, which is a way to decide
≡ when confluence holds. Other presentations exist [3,5,8].

The calculus of Zenon Modulo [8] enjoys meta-variables, Hilbert’s ε operator,
reasoning over reflexive/transitive/symmetric relations, an equality predicate,
ML-polymorphic types, and, of course, rewriting. The simpler case of Figure 1
is sufficient here, as we focus on rewriting, that we now extend to polarity.

F ≡ , if F ≡ G
G

(a) General Case

F � , if F � G
G

(b) Confluent Case

Fig. 2: The Additional Rule of Tableaux Modulo Theory

Definition 1 (Polarity of an Occurrence). The occurrence of a formula F
in a formula G is positive (resp. negative) iff

– G is F ,
– G is G1 ∧G2, G1 ∨G2, ∀xG1, ∀xG1 or H ⇒ G1 and the occurence of F in
G1 or G2 is positive (resp. negative),

– G is ¬G1 or G1 ⇒ H and the occurrence of F in G1 is negative (resp.
positive).

Now, we consider two (proposition) rewrite systems R+ ∪R−.

Definition 2 (Polarized Rewrite Relation). Let F and G be two formulas.
F →+ G iff F → G with a term rewrite rule or there exists a positive (resp.
negative) occurrence H in F , a substitution σ, and a rule l → r ∈ R+ (resp.
R−), such that H = lσ and G is F where H has been replaced with rσ.

F →− G iff ¬F →+ ¬G, that is to say we exchange R+ and R− above.

We denote by �+ and �− the reflexive-transitive closures of →+ and →−,
respectively. Defining ≡+ and ≡− is more delicate and unlikely to be useful
practice. Polarized Tableaux combine the rules of Figure 1 and Figure 3.

F �+ , if F �+ G
G

Fig. 3: The Additional Rule of Polarized Tableaux Modulo Theory

3 Implementation

Zenon Modulo rewrites only literals, in a forward fashion. This is a further
restriction of Figure 2b and it relies on termination of term rewriting and on
confluence of the whole rewriting. Otherwise, completeness of the proof search
fails. The heuristic is, each time we meet a literal, to:

1. normalize the terms it contains;

2. rewrite the literal itself (if there is an applicable rewrite rule) on one step;
3. if the formula is in normal form or compound, stop, otherwise repeat.

To get polarized rewriting it suffices to modify the second step into “rewrite
positively if the literal is positive, negatively otherwise”. The expected gain does
not lie here, but in an optimized preprocessing for rules. Indeed [12], a polarized
rule P →+ F ∈ R+ represents/can be represented as an axiom ∀(P ⇒ F) (∀ is
the universal closure over the free variables). Similarly, a negative rewrite rule
P �− F ∈ R− is equivalent to the axiom ∀(F ⇒ P). In contrast, Deduction
Modulo Theory’s rewrite rules P → F are equivalent to ∀((P ⇔ F) [13]. Re-
mind that we are discussing propositional rewrite rules, so P has to be atomic.
Consequently, polarization offers the following improvements:

– more axioms correspond to rewrite rules, and this improves proof search [11].
Axioms of the form ∀x(P ⇒ A) and ∀x(A ⇒ P), with P atomic, become
rules of R+ and R−, respectively. In classical logic, when P is a negated
atom, we also get rewrite rules in R− and R+, respectively.

– We can Skolemize rewrite rules. This has two benefits: first, less inference
rules are necessary in the tableaux, and second, the Skolem term is uniform,
while multiple applications of δ∃ or δ¬∀ introduce different fresh symbols at
each time. This also holds in the presence of meta-variables.

Skolemizing the rules is impossible in vanilla Deduction Modulo Theory, as
rewriting applies at positive and negative occurrences. Therefore, we do not
know in advance which quantifiers are positive and negative. To illustrate the
difference, consider axioms of the type ∀x(P ⇒ A) and ∀x(A⇒ P).

– In ∀x(P ⇒ A), we can replace all the positive existential and negative uni-
versal quantifiers of A by a Skolem function symbol.

– Similarly, in ∀x(A ⇒ P), we can replace all the positive universal and neg-
ative existential quantifiers of A by a Skolem function symbol.

The very same principle applies to polarized rewrite rules. We leave the
study and the choice of the strategies for Skolemization [17] for a later stage.
Both improvements can be applied to heuristics turning assumptions (of a given
problem) into rewrite rules, and to hand-tuning of the rewrite rules of a specific
theory, for instance B Method set theory.

4 Example

Let us consider the classical example of proving a ⊆ a with the standard axiom
of inclusion ∀x∀y x ⊆ y ⇔ (∀z z ∈ x ⇒ z ∈ y). A usual tableau proof involves
the succession of rules γ∀ (twice), α∧, β⇒, δ¬∀ and α¬⇒ on the axiom. Deduction
Modulo Theory turns it into the rewrite rule x ⊆ y → (∀z z ∈ x⇒ z ∈ y), and
yields the 3-rules axiomless proof of Figure 4a.

If we switch to Polarized Deduction Modulo Theory, we get the pair R+ =
{x ⊆ y → (∀zz ∈ x ⇒ z ∈ y)} and R− = {x ⊆ y → (f(x, y) ∈ x ⇒ f(x, y) ∈
y)}. The proof of a ⊆ a is one more step smaller, as shown in Figure 4b.

¬(a ⊆ a)
� ¬(∀z z ∈ a⇒ z ∈ a)

α¬∀ ¬(c ∈ a⇒ c ∈ a)
α¬⇒ ¬(c ∈ a), c ∈ a� �

(a) Pristine Tableaux

¬(a ⊆ a)
�¬(f(a, a) ∈ a⇒ f(a, a) ∈ a)
α¬⇒¬(f(a, a) ∈ a), f(a, a) ∈ a ��

(b) Polarized Tableaux

Fig. 4: Proof of a ⊆ a in Deduction Modulo Theory

5 Conclusion

We expect the polarized approach to give at least as efficient as Zenon Modulo
itself. The proof-search algorithm needs only few changes, mostly in the rule
pre-processing. The obtained rules contain less quantifiers, allowing for fewer
rules in proof-search and potential earlier unification and branch closure, since
using a rewrite rule several times now involves the same Skolem symbol.

On the risk side, implicational axioms can now be turned into rewrite rules.
This might be a threat to termination or confluence. A study of the theoretical
framework, including models, is required.

Automated theorem provers are aggressively optimized tools, naturally lend-
ing themselves to bugs. This is why independent double checking facilities are
important. Zenon Modulo is able to produce proof-terms or proof certificates,
though it provides no rewrite steps explicitly, following Poincaré’s Principle:
computations (rewriting) in proofs give no insight, they can be quickly recon-
structed (by the checker) at will and are to be left implicit. Such a clerk/expert
distinction has for instance been studied in the Foundational Proof Certificate
project [15], at the proof level, with the help of focusing [9].

On the BWare benchmark, all statements proved by Zenon Modulo [8], that
do not involve arithmetic, are actually declared well-typed by Dedukti [2], a
type checker based on an extension of Deduction Modulo Theory to dependent
types. Dedukti’s rewriting ability made extremely smooth the reconstruction of
rewriting : there is essentially nothing to do but to declare the rules.

The challenge is to keep this skeptical double-checking approach viable. We
may need a depolarization of the proofs, perhaps following [7], or an substantial
extension of Dedukti and its foundations to polarized rewriting, perhaps with
the help of subtyping.

References

1. Abrial, J.R.: The B-book: Assigning Programs to Meanings. Cambridge University
Press, New York, NY, USA (1996)

2. Boespflug, M., Carbonneaux, Q., Hermant, O.: The λΠ-calculus modulo as a uni-
versal proof language. In: PxTP 2012, Proceedings. vol. 878, pp. 28–43. CEUR-
WS.org (2012)

3. Bonichon, R.: TaMeD : A tableau method for deduction modulo. IJCAR 2004
(2004)

4. Bonichon, R., Delahaye, D., Doligez, D.: Zenon : An extensible automated theorem
prover producing checkable proofs. In: Dershowitz, N., Voronkov, A. (eds.) Logic
for Programming, Artificial Intelligence, and Reasoning, 14th International Con-
ference, LPAR 2007, Yerevan, Armenia, October 15-19, 2007, Proceedings. Lecture
Notes in Computer Science, vol. 4790, pp. 151–165. Springer (2007)

5. Bonichon, R., Hermant, O.: A semantic completeness proof for tableaux modulo.
In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS, vol. 4246, pp. 167–181.
Springer-Verlag, Phom Penh, Cambodia (2006)

6. Burel, G.: Embedding deduction modulo into a prover. In: Dawar, A., Veith, H.
(eds.) CSL. LNCS, vol. 6247, pp. 155–169. Springer (2010)

7. Burel, G., Kirchner, C.: Regaining cut admissibility in deduction modulo using
abstract completion. Information and Computation 208(2), 140–164 (2010)

8. Bury, G., Delahaye, D., Doligez, D., Halmagrand, P., Hermant, O.: Automated
deduction in the B set theory using typed proof search and deduction modulo.
In: Fehnker, A., McIver, A., Sutcliffe, G., Voronkov, A. (eds.) LPAR 2015 – Short
presentations, Suva, Fiji. EPiC Series in Computing, vol. 35, pp. 42–58. EasyChair
(2015)

9. Chihani, Z., Miller, D., Renaud, F.: A semantic framework for proof evidence. J.
Autom. Reasoning 59(3), 287–330 (2017)

10. Cousineau, D., Doligez, D., Lamport, L., Merz, S., Ricketts, D., Vanzetto, H.: TLA
+ proofs. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012, Paris, France. LNCS,
vol. 7436, pp. 147–154. Springer (2012)

11. Delahaye, D., Doligez, D., Gilbert, F., Halmagrand, P., Hermant, O.: Zenon mod-
ulo: When achilles outruns the tortoise using deduction modulo. In: McMillan, K.,
Middledorp, A., Voronkov, A. (eds.) LPAR 2013. LNCS ARCoSS, vol. 8312, pp.
274–290. Springer (2013)

12. Dowek, G.: Polarized deduction modulo. In: IFIP Theoretical Computer Science
(2010)

13. Dowek, G., Hardin, T., Kirchner, C.: Theorem proving modulo. Journal of Auto-
mated Reasoning 31, 33–72 (2003)

14. Dubois, C., Rioboo, R.: Verified functional iterators using the focalize environment.
In: Giannakopoulou, D., Salaün, G. (eds.) SEFM 2014, Grenoble, France. Lecture
Notes in Computer Science, vol. 8702, pp. 317–331. Springer (2014)

15. Miller, D.: Foundational proof certificates. In: Delahaye, D., Woltzenlogel Paleo,
B. (eds.) All about Proofs, Proofs for All, Studies in Logic, Mathematical Logic
and Foundations, vol. 55, chap. 8, pp. 150–163. College Publications (2015)

16. Nerode, A., Shore, R.A.: Logic for Applications. Springer (1993)
17. Nonnengart, A., Weidenbach, C.: Computing small clause normal forms. In: Robin-

son, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 335–367.
Elsevier and MIT Press (2001)

18. The BWare Project: (2012), http://bware.lri.fr/

Author Index

C

Cantone, Domenico 1, 52
Casagrande, Alberto 41
Cristia, Maximiliano 19
D

Di Cosmo, Francesco 41
Dubois, Catherine 34
H

Hermant, Olivier 67
N

Nicolosi-Asmundo, Marianna 52
O

Omodeo, Eugenio G. 41
P

Policriti, Alberto 1
R

Rossi, Gianfranco 19
S

Santamaria, Daniele Francesco 52
W

Weppe, Sulyvan 34

