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Introduction

Simple temporal networks with uncertainty (STNUs)
[Morris and Muscettola, 2005, Cairo and Rizzi, 2019] have gained
wide recognition for modeling temporal constraints. They extend
Simple Temporal Networks (STNs) [Dechter et al., 1991].

Dynamic controllability [Morris and Muscettola, 2005] is currently
the most studied notion for the temporal correctness of STNUs.

For checking dynamic controllability, effective and efficient methods
with polynomial complexity have been proposed [Morris, 2014,
Cairo and Rizzi, 2019, Hunsberger and Posenato, 2022].
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A motivating example
An STNU not dynamically controllable!

Production & Delivery
[10, 20]

Parking Lot Permit

E[3,4]E

A C

X

c:10
C:−20

4−3

A,C represents the starting/ending event of “P. & D.” task.
X represents the ending event of “Parking Lot Permit” task.
Contingent link: C − A ∈ [10,20]

A scheduler executes the network assigning values to timepoints.
A scheduler only decides execution of A and X .
A scheduler only assigns a value to C when it occurs and, thus, the
duration d = C − A is revealed.
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Focus of the Talk

Dynamic controllability assumes that the duration of contingent
activities, hence the values of contingent timepoints, are only
known when they happen.

How the notion of dynamic controllability can be generalized such
that a timepoint may depend not only on timepoints which are
earlier, but also which are known earlier?
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The Motivating Example revisited
Extending STNUs with oracles

Production & Delivery
[10, 20]

Parking Lot Permit

E[3,4]E

P. & D.
Oracle

E[3,∞]E
A C

OC X
−3

c:10
C:−20

4−3

We propose to add the oracle OC as a new special timepoint.
If a contingent timepoint is associated with an oracle, then the
oracle must be executed before the contingent timepoint, and at its
execution, it reveals the duration of the contingent link in the current
execution.
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Focus of the Talk

The main novelties:
1 The formal definition of STNUO (Simple Temporal Network with

Uncertainty and Oracles).
2 A formal definition of Agile Controllability.
3 ORUL, a set of rules for propagating constraints in STNUOs.
4 An algorithm for checking Agile Controllability of STNUOs.
5 A proof-of-concept implementation of the checking algorithm.
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STNU Definition

Definition (STNU)
An STNU is a triple (T , C,L), where:

T is a finite, non-empty set of real-valued variables called
timepoints. T is partitioned into TX , the set of executable
timepoints, and TC , the set of contingent timepoints.

C is a set of binary (ordinary) constraints, each of the form
Y − X ≤ δ for some X ,Y ∈ T and δ ∈ R.

L is a set of contingent links, each of the form (A, x, y ,C), where
A ∈ TX ,C ∈ TC and 0 < x < y < ∞. A is called the activation
timepoint; C contingent timepoint.
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Dynamic Controllability: preliminary definitions

Definition (Situation)

Each situation ω = (ω1, . . . , ωK) ∈ Ω represents one possible complete set of values for the
duration of the contingent links of N (chosen by nature).

Definition (Schedule)

A schedule for an STNU N = (T , C,L) is a mapping ξ : T ∪ {⊥} → R, where we assume that
ξ(⊥) = +∞. Ξ denotes the set of all schedules for an STNU. For historical reasons, we
represent ξ(X) as [X ]ξ.

Definition (Execution Strategy)

An execution strategy S for an STNU N = (T , C,L) is a mapping S : Ω→ Ξ.

Definition (Viable Execution Strategy)

An execution strategy S for an STNU N = (T , C,L) is viable if for each situation ω ∈ Ω the
schedule S(ω) is a solution for N , i.e., an assignment that satisfies all the constraints in the
network.
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Dynamic Controllability

Definition (Dynamic Execution Strategy)

An execution strategy for an STNU N = (T , C,L) is dynamic if, for any two
situations ω′, ω′′ and any executable timepoint X ∈ TX , it holds that:

if [X ]S(ω′) = k and S(ω′)≤k = S(ω′′)≤k, then [X ]S(ω′′) = k,

where S(ω′)≤k is the set of contingent link durations observed up to and including
time k, called history until k. Since history also considers contingent durations
observed at instant k, we say that the dynamic execution strategy implements the
instantaneous reaction semantics.

Definition (Dynamic Controllability)
An STNU is dynamically controllable if there exists a viable dynamic execution
strategy for it, that is, an execution strategy that assigns the executable timepoints
with the guarantee that all constraints will be satisfied, irrespectively of the duration
values (within the specified bounds) of contingent links [Hunsberger, 2016].
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STNU graphical representation

Each STNU S = (T , C,L) has a corresponding graph
G = (T , Eo ∪ Elc ∪ Euc), also called distance graph, where the
timepoints in T serve as the graph’s nodes and the constraints in C
and L correspond to labeled, directed edges. In particular:
Eo = {X δ Y | (Y − X ≤ δ) ∈ C}
Elc = {Ac:x C | (A, x, y ,C) ∈ L}, and

Euc = {C C:−y A | (A, x, y ,C) ∈ L}.
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STNU graphical representation

Example

V

A C

X

Y

W

c:10
C:−20

−2
20
−4
6

10
−8 −

10 25
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Checking Dynamic Controllability

Rule
Pre-existing and
generated edges

Applicability Conditions

(R) XYW uv
u + v

none

(U) ACX v
c:x

C:− y

max{v − y ,−x}

(A, x, y ,C) ∈ L

(L) ACX c:xv
x + v

v ≤ 0 or X ∈ TC , X ̸≡ C, ∃(B, s, t ,X) ∈ L,
v ≤ t

Table: Edge-generation rules used by RUL [Cairo and Rizzi, 2019, Fig. 2]

Constraint propagation algorithms have been proposed to check whether an STNU
is dynamically controllable [Morris, 2014, Cairo et al., 2018,
Hunsberger and Posenato, 2022, Hunsberger and Posenato, 2023].
The algorithm terminates when either reaching network quiescence (the network is
dynamically controllable), or a negative cycle is found (the network is not
dynamically controllable).
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Extending STNUs with Oracles

Definition (STNU with Oracles (STNUO))
An STNUO is a tuple (T , C,L,O), where:
T is a finite, non-empty set of real-valued variables called timepoints. T is partitioned into
TX , the set of executable timepoints and TC , the set of contingent timepoints. TO ⊆ TX ,
is the set of oracle timepoints.
C is a set of binary (ordinary) constraints, each of the form Y − X ≤ δ for some X ,Y ∈ T
and δ ∈ R.

L is a set of contingent links, each of the form (A, x, y ,C), where A ∈ TX ,C ∈ TC and
0 < x < y <∞. A is called the activation timepoint; C contingent timepoint. If
(A1, x1, y1,C1) and (A2, x2, y2,C2) are distinct contingent links, then C1 ̸= C2.

O : TC → TO ∪ {⊥} is a function that associates a contingent
timepoint with its corresponding oracle, if any. For the sake of
simplicity and without loss of generality, we assume that each
oracle is associated with a single contingent timepoint.
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Extending Execution Strategies

Definition (Agile Execution Strategy with Oracles)
Let N = (T , C,L,O) be an STNUO. An execution strategy with
oracles SO for N is agile if, for any two situations ω′, ω′′ and any
executable timepoint X ∈ T , it holds that:

if [X ]SO(ω′) = k and SO(ω′)≤k = SO(ω′′)≤k, then [X ]SO(ω′′) = k

where SO(ω) is a schedule determined by the execution strategy with
oracles SO given the situation ω, and SO(ω)≤k is the oracle history
until k.

Definition (Agile Controllability (AC))
An STNUO N = (T , C,L,O) is agilely controllable if it admits a viable
agile execution strategy with oracles.
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Controllability of STNUs with Oracles

Example
Let us consider an STNUO N = (T , C,L,O) where OC is the oracle
for C that must be executed 3 time units after the activation timepoint
A. Let d ∈ [10,20] be the duration revealed by the oracle OC.

V

A C

X

Y

W

OC

c:10
C:−20

3
−3

−2
20
−4
6

10
−8 −

10 25

0
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Scheduling STNUs with Oracles - I

Example
1 V can neither be scheduled with nor without an oracle because if
the contingent link lasts 10, the oracle is executed too late to allow
V to be executed, satisfying the constraint with C.

2 W must be scheduled before the oracle to satisfy the constraint
with C. Therefore, the oracle is not relevant for scheduling W .

V

A C

X

Y

W

OC

c:10
C:−20

3
−3

10
−8 −

10 25
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Scheduling STNUs with Oracles - II

Example (Oc reveals duration d)
3 X can be scheduled without oracle (for example, X = A+ 2) or
with oracle (for example, X = OC − 3 + d − 4 = A+ d − 4, where 4
is one of the possible values to choose.)

4 Y can be scheduled only with oracle: Y = OC − 3 + d − 5 =
A+ d − 5. Thus, Y can be executed only after OC .

V

A C

X

Y

W

OC

c:10
C:−20

3
−3

−2
20
−4
6

0
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Scheduling STNUs with Oracles - III

Example
V

A C

X

Y

W

OC

c:10
C:−20

3
−3

−2
20
−4
6

0

Node X can be scheduled since the contingency of C is 10 smaller
than 18, the range of possible distances between C and X .
For node Y , these values are 10 and 2. Applying the rules U and L
to Y ,C, and A leads to a negative cycle.
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Rule propagation and oracles
For the propagation of constraints, this has the following
consequences:

1 If the oracle is not used, then the L and U rules must be applied.
2 If the oracle is used, then the L and U rules must not be applied
on X and C, but the additional constraint Oc ≤ X must be added to
the STNUO.

Example
Using the oracle avoids the negative cycle resulting from
propagation in case (1), such as Y .
Using the oracle as in case (2) might lead to a conflict that was not
there, such as W .
For timepoint X , there is the choice to either apply the rules L and U
or consider the oracle OC and introduce constraint Oc ≤ X .
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Using Oracles or not?

Definition (Oracle Candidate)
We call U = {(X ,C) | X ∈ TX ,C ∈ TC , O(C) ̸= ⊥} the set of all
potential oracle candidates. If there is constraint X ≤ C + δ, or a
constraint C ≤ X + δ′ with C ∈ TC , O(C) ̸= ⊥, X ∈ TX , δ < 0, and
0 ≤ δ′, then we call (X ,C) an oracle candidate since a viable
execution strategy could require the usage of the oracle.

Example
All pairs (V ,C), (W ,C), (X ,C), (Y ,C) are oracle candidates.

Example
(Y ,C) is named oracle dependent as there is no viable execution
strategy without using the oracle OC .
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ORUL: Propagation rules for STNUOs
Rule Pre-existing and

generated edges
Conditions

Relax (REL) XYW uv
u + v none

Upper (UPP) ACX v
c:x

C:− y

max{v − y ,−x}

(X ,C) ∈ U− or O(C) = ⊥ or X ∈ TC

Lower (LOW) ACX c:xv
x + v

X ∈ TX ,
((X ,C) ∈ U− or O(C) = ⊥), v ≤ 0,
or X ∈ TC , X ̸≡ C, ∃(B,w , y ,X) ∈ L,
v ≤ y

Oracle (ORC) ACX

OC

c:x
C:− yv

0
X ∈ TX , (X ,C) ∈ U+

U+ is the set of all oracle candidates for which the oracle has to be
used, and
U− is the set of all oracle candidates for which the oracle has not to
be used.
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Agile Controllability

Theorem

Let
N = (T , C,L,O) be an STNUO;
U = {(X ,C) | X ∈ TX ,C ∈ TC , O(C) ̸= ⊥} be the set of all
possible pairs (ordinary node, contingent node) where the
contingent node has its corresponding oracle.

N is Agilely Controllable if ∃ U+,U− such that U = U+ ∪ U−,
U+ ∩ U− = ∅, and the closure of N considering U+, U− for the
propagation rules of ORUL does not include a negative cycle.
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The Checking Algorithm CheckAC
Input: N an STNUO, U−, U+

Output: Agile controllability status
1 ok← applyRules(N ,U−,U+);
2 if ok then
3 save(N ,U−,U+);
4 U0 ← getOpenOracles(N ,U−,U+);
5 if U0 ̸= ∅ then
6 (X ,C)← select(U0);
7 if interval(X ,C) > contingencyInterval(C) then
8 U− ← U− ∪ {(X ,C)};
9 ok← checkAC(N ,U−,U+);
10 if not ok then
11 restore(N ,U−,U+);

12 if (X ,C) ̸∈ U− then
13 U+ ← U+ ∪ {(X ,C)};
14 ok← checkAC(N ,U−,U+);
15 if not ok then
16 restore(N ,U−,U+);

17 return ok
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Applying CheckAC on an STNUO I

Example

A

C

X

OC

Y

c:
20

C
:−

30

−415

9

20

I

A

C

X

OC

Y

c:
20

C
:−

30

−
415

9

5

29

25 20

II
III

A

C

X

OC

Y

−1

c:
20

C
:−

30

−4

15,14, 13

1, 0
9

5

5, 4

29
−

21
,−

20
,−

19

25
,1

6
−

17
,−

16
,−

15

0

20

−12,−
11,−

10

−4
5

25
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Applying CheckAC on an STNUO II

Example

A

C

X

OC

Y
c:

20
C
:−

30

−
415

9

5

29

25 20

II
III

A

C

X

OC

Y

−1

c:
20

C
:−

30

−4

15,14, 13

1, 0
9

5

5, 4

29
−

21
,−

20
,−

19

25
,1

6
−

17
,−

16
,−

15

0

20

−12,−
11,−

10

−4
5

25

IV

A

C

X

OC

Y

c:
20

C
:−

30

−415

9

5

29

25

0

20

−4
5

25

V

A

C

X

OC

Y

c:
20

C
:−

30

−415

9

5

29

25

0

20

−2
0

−4
5

25
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Proof-of-concept prototype1

The algorithm has been implemented in Java.
Experiments on an Ubuntu 22 machine having 16GB of RAM and an
AMD EPYC-Rome (8) @ 2.6GHz CPU.
Input data from the OSTNU benchmark, which is available online at
https://profs.scienze.univr.it/~posenato/software/
benchmarks/OSTNUBenchmarks2024.tgz [Posenato, 2022].
30 random STNUO instances with 30 nodes (5 contingent and 2
oracles).
All execution average times are below 3 s.
Comparable to the algorithm presented by Posenato et
al. [Posenato et al., 2024].
1The source code of the prototype implementation, the parser of the data sets

used for the experiments, and the complete results are publicly available at
https://git-isys.aau.at/ics/Papers/stnuo.git
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Concluding remarks

We proposed agile controllability (AC) as a proper generalization of
the well-established notion of dynamic controllability for STNUs,
STUNOs, Simple Temporal Networks with Uncertainty and Oracles,
can express when information about the timepoint of future
contingent links is available,
AC is expected to support a wide range of applications as it
provides a less restrictive notion of temporal correctness of plans,
processes, requirements, contracts, etc.
Indeed, the algorithm CheckAC and its related proof-of-concept
implementation, as it is presented here, is intended to demonstrate
the existence of an effective backtracking algorithm to check the
agile controllability of an STNUO. Optimizations are part of the of
ongoing research.
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