
Faster Algorithm for Converting an STNU
into Minimal Dispatchable Form

Luke Hunsberger1 Roberto Posenato2

1Department of Computer Science, Vassar College, Poughkeepsie, NY USA

2Department of Computer Science, University of Verona, Verona, Italy

TIME 2024
October 28–30, 2024
Montpellier, France

Motivation

Simple Temporal Network with Uncertainty (STNU):
A data structure for representing and reasoning about actions with
uncertain, but bounded durations [7].

Dynamic Controllability (DC) property:
Ensures existence of a dynamic execution strategy satisfying all the
constraints no matter how the uncertain durations turn out [7].

Dispatchability property (for DC STNUs):
Ensures STNU can be successfully executed in real time,
maintaining max flexibility but requiring only min computation [5].
A DC STNU can be converted into an equivalent dispatchable
network having a minimal number of edges in O(kn3) time [3].

We wanted to reduce the computational time of this conversion.
In this work we present a faster O(n3)-time algorithm for
converting a DC STNU into an equivalent dispatchable network
having a minimal number of edges.

L. Hunsberger, R. Posenato Faster STNU Minimal Dispatchable Form 1 / 23

Overview

In this presentation, we:
present the foundations of dispatchability for STNs and STNUs;
an example of the critical phase of the previous algorithm for
converting a DC STNU into a minimal dispatchable form;
the idea how we simplified the critical phase obtaining the new
algorithm;

L. Hunsberger, R. Posenato Faster STNU Minimal Dispatchable Form 2 / 23

DC-Checking Algorithms for STNUs

Different DC-checking algorithms use different sets of rules to
propagate constraints (equiv., generate new edges from
old) [7, 8, 4, 5, 1, 2]
Most DC-checking algorithms generate a new kind of
constraint/edge called a wait: [8]
“While (contingent) C unexecuted, Y must wait at least 5 after A.”

Y C:-5 A
An STNU, together with generated waits, is called an extended
STNU (ESTNU) [5].
Wait constraints are necessary for the dispatchability. So, here we
consider the dispatchability on ESTNUs.

L. Hunsberger, R. Posenato Faster STNU Minimal Dispatchable Form 3 / 23

Graphical Characterization of STN Dispatchability

A Simple Temporal Network (STN) is an STNU without any
contingent links.

V

C A

W

−2
2

−2
8 13

Morris [6]: A Simple Temporal Network (STN) S is dispatchable iff
for each pair of timepoints X and Y , if there is a path from X to Y
in S, then there is a shortest path from X to Y that is a vee-path.

A vee-path (V-path) is a path comprising zero or more negative
edges followed by zero or more non-negative edges.
·

·
·

·
·−

− +

+

A vee-path that is a shortest path is called a shortest vee-path.

L. Hunsberger, R. Posenato Faster STNU Minimal Dispatchable Form 4 / 23

Graphical Characterization of STN Dispatchability

A Simple Temporal Network (STN) is an STNU without any
contingent links.

V

C A

W

−2
2

−2
8 13 Dispatchable!

There is a shortest vee-path for
each pair of timepoints connected
by a path!

Morris [6]: A Simple Temporal Network (STN) S is dispatchable iff
for each pair of timepoints X and Y , if there is a path from X to Y
in S, then there is a shortest path from X to Y that is a vee-path.

A vee-path (V-path) is a path comprising zero or more negative
edges followed by zero or more non-negative edges.
·

·
·

·
·−

− +

+

A vee-path that is a shortest path is called a shortest vee-path.

L. Hunsberger, R. Posenato Faster STNU Minimal Dispatchable Form 5 / 23

Graphical Characterization of STN Dispatchability

A Simple Temporal Network (STN) is an STNU without any
contingent links.

V

C A

W

−4
2

−2
−1 13 Not Dispatchable!

Shortest path from V to W has
length −3, but no shortest vee-path
from V to W .

Morris [6]: A Simple Temporal Network (STN) S is dispatchable iff
for each pair of timepoints X and Y , if there is a path from X to Y
in S, then there is a shortest path from X to Y that is a vee-path.

A vee-path (V-path) is a path comprising zero or more negative
edges followed by zero or more non-negative edges.
·

·
·

·
·−

− +

+

A vee-path that is a shortest path is called a shortest vee-path.

L. Hunsberger, R. Posenato Faster STNU Minimal Dispatchable Form 6 / 23

Graphical Characterization of ESTNU Dispatchability
Stand-in Edges

Morris [5]: An ESTNU S is dispatchable iff each of its STN
projections is dispatchable (as an STN).

An STN projection is an STN obtained from an ESTNU by
constraining all contingent links to fixed values.

V

C A

W

C:−6
c:2

C: −8
8 13

L. Hunsberger, R. Posenato Faster STNU Minimal Dispatchable Form 7 / 23

Graphical Characterization of ESTNU Dispatchability
Stand-in Edges

Morris [5]: An ESTNU S is dispatchable iff each of its STN
projections is dispatchable (as an STN).

An STN projection is an STN obtained from an ESTNU by
constraining all contingent links to fixed values.

V

C A

W

C:−6
c:2

C: −8
8 13

V

C A

W

−2
2

−2
8 13

C − A = 2
|VACW | = 8

L. Hunsberger, R. Posenato Faster STNU Minimal Dispatchable Form 8 / 23

Graphical Characterization of ESTNU Dispatchability
Stand-in Edges

Morris [5]: An ESTNU S is dispatchable iff each of its STN
projections is dispatchable (as an STN).

An STN projection is an STN obtained from an ESTNU by
constraining all contingent links to fixed values.

V

C A

W

C:−6
c:2

C: −8
8 13

V

C A

W

−6
8

−8
8 13

C − A = 8
|VAW | = 7

L. Hunsberger, R. Posenato Faster STNU Minimal Dispatchable Form 9 / 23

Graphical Characterization of ESTNU Dispatchability
Stand-in Edges

Morris [5]: An ESTNU S is dispatchable iff each of its STN
projections is dispatchable (as an STN).

An STN projection is an STN obtained from an ESTNU by
constraining all contingent links to fixed values.

V

C A

W

C:−6
c:2

C: −8
8 13

V

C A

W

−2
2

−2
8 13

V

C A

W

−6
8

−8
8 13

The above ESTNU is dispatchable because each of its STN
projections is.

L. Hunsberger, R. Posenato Faster STNU Minimal Dispatchable Form 10 / 23

Graphical Characterization of ESTNU Dispatchability
Stand-in Edges

Morris [5]: An ESTNU S is dispatchable iff each of its STN
projections is dispatchable (as an STN).

An STN projection is an STN obtained from an ESTNU by
constraining all contingent links to fixed values.

V

C A

W

C:−6
c:2

C: −8
8 13

V

C A

W

−2
2

−2
8 13

V

C A

W

−6
8

−8
8 13

The above ESTNU is dispatchable because each of its STN
projections is.
Key observation: Shortest vee-path from V to W can take a
different route in different projections and the minimization
depends on shortest vee-paths!

L. Hunsberger, R. Posenato Faster STNU Minimal Dispatchable Form 11 / 23

Graphical Characterization of ESTNU Dispatchability
Stand-in Edges

We proved it is possible to represent different shortest vee-paths in
the different STN projections as a single temporary ordinary
constraint, called “stand-in” constraint. [3]

V

C A

W

C:−6
c:2

C: −8
8 13

8

“stand-in” edge is the maximum shortest
vee-path from V to W .
Given a pair (V , W), it can be determined
in constant time.

They are removed at the end.

L. Hunsberger, R. Posenato Faster STNU Minimal Dispatchable Form 12 / 23

Edges Entailed by Nested Diamond Structures

A

C1 A1

W

V

C

c1:1
C1:−10

c:1
C:−10

138

C 1:−
6 9

2

C:
−6

3

2

8

“Stand-in” edges are very usefull, but their determination can be
expensive when the network becomes more complex.

L. Hunsberger, R. Posenato Faster STNU Minimal Dispatchable Form 13 / 23

Edges Entailed by Nested Diamond Structures

A

C1 A1

W

V

C

c1:1
C1:−10

c:1
C:−10

138

C 1:−
6 9

2

C:
−6

3

2

8

The orange edges entail the dashed orange “stand-in” edge in every
projection.

L. Hunsberger, R. Posenato Faster STNU Minimal Dispatchable Form 14 / 23

Edges Entailed by Nested Diamond Structures

A

C1 A1

W

V

C

c1:1
C1:−10

c:1
C:−10

138

C 1:−
6 9

2

C:
−6

3

2

8

The green edges entail the dashed green “stand-in” edge in every
projection.

L. Hunsberger, R. Posenato Faster STNU Minimal Dispatchable Form 15 / 23

Edges Entailed by Nested Diamond Structures

A

C1 A1

W

V

C

c1:1
C1:−10

c:1
C:−10

138

C 1:−
6 9

2

C:
−6

3

2

8

The orange edges, together with the dashed green edge, entail the
dashed blue “stand-in” edge in every projection.

L. Hunsberger, R. Posenato Faster STNU Minimal Dispatchable Form 16 / 23

Complexity of Previous Algorithm [3]

To generate all “stand-in” edges, it suffices to explore nested
diamond structures up to a maximum depth of k [3].
After each iteration, to update the distances of all ordinary paths
affected by inserting the new “stand-in” edges, the algorithm calls
Johnson’s algorithm yielding an overall time-complexity of
O(kn3) [3].

L. Hunsberger, R. Posenato Faster STNU Minimal Dispatchable Form 17 / 23

New Algorithm
Key Insights

Previous algorithm:
generates more dashed edges than necessary on each iteration; and
so cannot obtain any savings from determining an optimal order in
which to process nested diamond structures.

New algorithm:
determines an optimal partial order for processing nested diamonds;
still does k iterations;
after each iteration, updates a more restrictive (but still sufficient) set
of distances affected by the new “stand-in” edges.
does one final iteration to compute complete set of ordinary
distances.

L. Hunsberger, R. Posenato Faster STNU Minimal Dispatchable Form 18 / 23

New Algorithm
Key Insight RE: Order of Nesting of Diamond Structures

We formally proved that:
when exploring the diamond
⟨Vi , Ai , Ci , Wi⟩, nested inside the
diamond ⟨Vj , Aj , Cj , Wj⟩ . . .
relevant stand-in edges (e.g.,
(Vi , τi , Wi) and (Vj , τj , Wj)) are possible
only if the path from Aj to Ai comprises
zero or more negative ordinary edges
followed by a single wait edge.
We call such paths negOrdWait paths.
negOrdWait paths determine a strict
partial order on relevant nestings.

Vi

Ai

Wi

Ci

Aj

Wj

Vj

Cj

C i:−
v i

Ci :−yi

ci :xi

δi

a

b

γ i

γ j

Cj :−yj

cj :xj

C j:−
v j

τi

τj

L. Hunsberger, R. Posenato Faster STNU Minimal Dispatchable Form 19 / 23

New Algorithm
getPCInfo: Get Parent/Child Info for Nesting Order

getPCInfo Algorithm:
Does k iterations.
On each iteration, starts from an activation timepoint Ai ,
back-propagating along negOrdWait paths.

Uses potential function to re-weight ordinary and upper-case edges,
thereby allowing Dijkstra-like traversal of edges.
Records instances of any negOrdWait paths that it discovers from
any activation timepoint Aj to Ai . (Aj is the parent, Ai is the child.)

Populates vectors of (redundant) parent/child hash-tables:
For each Ai , parent[Ai] = list of parent activation timepoints.
For each Aj , child[Aj] = list of child activation timepoints.

Overall complexity of k iterations of Dijkstra-like traversal is
O(mk + kn logn) ∈ O(n3).

L. Hunsberger, R. Posenato Faster STNU Minimal Dispatchable Form 20 / 23

newGenStandIns: (New) Generate Stand-In Edges

Initialize a potential function for the ordinary edges.
Process diamond structures according to a topological sort based
on the strict partial order computed by getPCinfo: do not process
diamonds involving (Aj , xj , yj , Cj) until all of Aj ’s children have
already been processed.
Instead of computing all ordinary distances affected by stand-in
edges entailed (Aj , xj , yj , Cj), only need to update ordinary
distances of paths emanating from Aj (i.e., single source).
Use Dijkstra-like traversal of paths emanating from Aj . Then
update the potential function.
After all nested diamonds have been processed, one iteration of
the original genStandIns algorithm generates all remaining
stand-in edges, followed by a single call to Johnson’s algorithm to
update ordinary distances.

L. Hunsberger, R. Posenato Faster STNU Minimal Dispatchable Form 21 / 23

Complexity of New Algorithm

The k iterations of newGenStandIns take a total of
O(mk + nk2 + kn logn) time (instead of O(kn3)).
The single call to Johnson’s algorithm after newGenStandIns costs
O(n3) time.
Therefore, the complexity of the new algorithm is dominated by the
final call to Johnson’s algorithm: O(n3).

L. Hunsberger, R. Posenato Faster STNU Minimal Dispatchable Form 22 / 23

Conclusions

Presented a new, faster O(n3)-time algorithm that, given a DC
STNU, computes an equivalent dispatchable ESTNU having a
minimal number of edges.
The previous algorithm had a worst-case time-complexity of
O(kn3).
The new algorithm achieves its better performance by:

Computing a strict partial order among the activation timepoints that
it uses to order its processing of the corresponding nested diamond
structures; and
On each iteration, only updating distances of paths emanating from a
single source (the activation timepoint).

L. Hunsberger, R. Posenato Faster STNU Minimal Dispatchable Form 23 / 23

References I

[1] Massimo Cairo, Luke Hunsberger, and Romeo Rizzi.
Faster Dynamic Controllablity Checking for Simple Temporal Networks
with Uncertainty.
In 25th International Symposium on Temporal Representation and
Reasoning (TIME-2018), volume 120 of LIPIcs, pages 8:1–8:16, 2018.
doi:10.4230/LIPIcs.TIME.2018.8.

[2] Luke Hunsberger and Roberto Posenato.
Speeding up the RUL− Dynamic-Controllability-Checking Algorithm for
Simple Temporal Networks with Uncertainty.
In 36th AAAI Conference on Artificial Intelligence (AAAI-22), volume
36-9, pages 9776–9785. AAAI Pres, 2022.
doi:10.1609/aaai.v36i9.21213.

L. Hunsberger, R. Posenato Faster STNU Minimal Dispatchable Form 1 / 4

https://doi.org/10.4230/LIPIcs.TIME.2018.8
https://doi.org/10.1609/aaai.v36i9.21213

References II

[3] Luke Hunsberger and Roberto Posenato.
Converting Simple Temporal Networks with Uncertainty into Minimal
Equivalent Dispatchable Form.
In Proceedings of the Thirty-Fourth International Conference on
Automated Planning and Scheduling (ICAPS 2024), volume 34, pages
290–300, 2024.
doi:10.1609/icaps.v34i1.31487.

[4] Paul Morris.
A Structural Characterization of Temporal Dynamic Controllability.
In Principles and Practice of Constraint Programming (CP-2006),
volume 4204, pages 375–389, 2006.
doi:10.1007/11889205_28.

L. Hunsberger, R. Posenato Faster STNU Minimal Dispatchable Form 2 / 4

https://doi.org/10.1609/icaps.v34i1.31487
https://doi.org/10.1007/11889205_28

References III

[5] Paul Morris.
Dynamic controllability and dispatchability relationships.
In Int. Conf. on the Integration of Constraint Programming, Artificial
Intelligence, and Operations Research (CPAIOR-2014), volume 8451
of LNCS, pages 464–479. Springer, 2014.
doi:10.1007/978-3-319-07046-9_33.

[6] Paul Morris.
The Mathematics of Dispatchability Revisited.
In 26th International Conference on Automated Planning and
Scheduling (ICAPS-2016), pages 244–252, 2016.
doi:10.1609/icaps.v26i1.13739.

[7] Paul Morris, Nicola Muscettola, and Thierry Vidal.
Dynamic control of plans with temporal uncertainty.
In 17th Int. Joint Conf. on Artificial Intelligence (IJCAI-2001),
volume 1, pages 494–499, 2001.
URL: https://www.ijcai.org/Proceedings/01/IJCAI-2001-e.pdf.

L. Hunsberger, R. Posenato Faster STNU Minimal Dispatchable Form 3 / 4

https://doi.org/10.1007/978-3-319-07046-9_33
https://doi.org/10.1609/icaps.v26i1.13739
https://www.ijcai.org/Proceedings/01/IJCAI-2001-e.pdf

References IV

[8] Paul H. Morris and Nicola Muscettola.
Temporal dynamic controllability revisited.
In 20th National Conference on Artificial Intelligence (AAAI-2005),
pages 1193–1198, 2005.
URL: https://www.aaai.org/Papers/AAAI/2005/AAAI05-189.pdf.

L. Hunsberger, R. Posenato Faster STNU Minimal Dispatchable Form 4 / 4

https://www.aaai.org/Papers/AAAI/2005/AAAI05-189.pdf

	Overview
	Appendix
	References

