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Motivation
Simple Temporal Networks with Uncertainty (STNUs)

Simple Temporal Network with Uncertainty (STNU)
a data structure for representing and reasoning about events and
actions with uncertain, but bounded durations [11].

STNUs [11] are attractive for planning and scheduling applications
in different fields [4, 13, 5, 8, 16].

Dynamic Controllability (DC)
a property that ensures the existence of a dynamic strategy for
executing the controllable events such that all relevant constraints
will be satisfied no matter how the uncertain durations turn out [11].

The current fastest algorithm for solving the DC-checking decision
problem (RUL2021) runs in O(mn + k2n + 2n logn) time [7, 3].

n = #events, m = #constraints, k = #uncertain durations
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Motivation (continued)
Finding Semi-Reducible Negative (SRN) Cycles in Non-DC STNUs

What about non-DC STNUs?
Non-DC STNUs necessarily have one or more semi-reducible
negative (SRN) cycles [9].

SRN cycles can have exponentially many (repeated) edges [6].

Finding SRN cycles helps to restore the DC property, but existing
algorithms are based on less efficient DC-checking algorithms
and give scant attention to repeated edges [18, 19, 17, 1, 2].
This paper presents a faster algorithm for solving the search
version of the DC problem. For non-DC networks, it returns:

one SRN cycle (in a compact form)
in time O(mn + k2n + kn logn)
and space O(mk + k2n).
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Simple Temporal Networks with Uncertainty
Definition [11]

An STNU is a triple, S = (T , C, L), where:
T = TX ∪ TC is a set of real-valued variables called timepoints
(instantaneous events);
C is a set of ordinary constraints, each of the form Y − X ≤ δ,
where X ,Y ∈ T and δ ∈ R
L is a set of contingent links (actions with uncertain durations),
each of the form (A, x, y ,C):

A ∈ TX is the activation timepoint.
C ∈ TC is the contingent timepoint.
C − A ∈ [x, y ] but uncontrollable

Executing an STNU: Assign values to the non-contingent timepoints
(i.e., those in TX ) aiming to satisfy all constraints in C.

Contingent links: Agent executes A, but only observes the
execution of C in real time, knowing that C − A ∈ [x, y ].
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Simple Temporal Networks with Uncertainty
STNU Graph [12]

Each STNU has a graphical form [12] where:
Timepoints ⇐⇒ nodes
Ordinary constraints ⇐⇒ ordinary edges:
Y − X ∈ [3, 7] ⇐⇒ X Y7

−3

Contingent Links ⇐⇒ Labeled Edges
(A, 3, 7,C) ⇐⇒ A Cc:3

C:−7
The lower-case edge, A c:3 C, represents
the uncontrollable possibility C − A might equal 3 (minimum).

The upper-case edge, A C:−7 C, represents
the uncontrollable possibility C − A might equal 7 (maximum).

In general, any path (or cycle) from X to Y is semi-reducible (SR)
if it entails a path of the same length from X to Y that contains no
lower-case edges.
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Simple Temporal Networks with Uncertainty
Sample STNU Graph

Z A

C

X

Y

10

−1

c:1

C:−5 y :0

Y :−1

6

Z is the blood sample extraction event: Z = 0.
Blood test must start at least one day after the extraction

(i.e., Z − A ≤ −1; equivalently, A ≥ 1).
Blood test may one to five days: contingent link (A, 1, 5,C).
The test result must be reported to a doctor within 1 day: X − C ∈ [0, 1].
The validation/communication of test result takes up to one day:

contingent link (X , 0, 1,Y ).
The entire process must take at most 6 days: Y − Z ≤ 6 (i.e., Y ≤ 6).
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The Sample STNU is not DC!

Z A

C

X

Y

10

−1

c:1

C:−5 y :0

Y :−1

6

It contains the (red) SRN cycle:
(Z, 6,Y ,Y :−1,X , 0,C,C:−5,A, −1, Z)
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The RUL2021 DC-Checking Algorithm [7]
Key Features

Key idea: propagate backward from upper-case edges, along
ordinary and lower-case edges, aiming to generate bypass edges.

Back-propagation is guided by a priority queue and a potential
function to re-weight the edges to non-negative values, as in
Johnson’s algorithm.

The bypass edges are the only new edges inserted into the graph.

Use a separate, Dijkstra-like back-propagation to update the
potential function after the insertion of bypass edges.

Inserting bypass edges is sufficient for DC checking, but not for
finding SRN cycles (in the case of non-DC STNUs).
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The RUL2021 DC-Checking algorithm
Key Observations

Three different ways that RUL2021 detects that an STNU is not DC:

1. Failure to update the potential function
2. Cycle of interruptions

A1C1UA2C2

V WC3A3

C1:−9−12C2:−8

3

−1 C3:−7

−1

−1

1122
−2−2

3. CC loops

A C

XW

c:1
C:−9

41

−3

−1
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The FindSRNC (Find SRN Cycle) Algorithm
Key features

Preserves the general structure of the RUL2021 algorithm.
If the input is a non-DC STNU, it outputs a compact
representation of an SRN cycle (negCycle, edgeAnnotation):

negCycle: a negative cycle of (labeled) edges;
edgeAnnotation: a hash table (bypassEdge, path) entries, where:
bypassEdge is an edge generated by the algorithm, and
path is the path used to generate that edge.

X W

Y

VC

Z

X · · W

Y · V

V · C

This polynomial-sized representation is the most convenient
since, in the worst case, unpacking all the edges in the SRN cycle
could result in an exponential number of repeated edges.
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The FindSRNC (Find SRN Cycle) Algorithm
Key features

We enriched the RUL2021 algorithm to temporarily store paths
during back propagation (in loc.path) and permanently store
paths associated with bypass edges (in edgeAnnotation).

≈ 25% new instructions sufficient for obtaining an SRN cycle in case
of “Failure to update the potential function” or “CC loops”.
A new procedure AddNegCycle builds the relevant SRN cycle in case
of a “Cycle of interruptions”.

Correctness follows from the correctness of RUL2021:
Just added instructions to store the relevant paths in the appropriate
hash tables.
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The FindSRNC (Find SRN Cycle) Algorithm
Time and Space Complexity

Most time-consuming operation: Prepending an edge to an
existing path. Achievable in constant time. (This occurs at most
once per visited edge.)

Worst-case time complexity: O(mn + k2n + kn logn) (= RUL2021)

Worst-case space complexity: O(mk + k2n)
TryBackProp requires space for accumulating path information. It is
called ≤ 2k times; each time it requires O(m + nk) space.
Total space across O(k) iterations: O(mk + k2n).
The edgeAnnotation hash table has O(nk) entries (one for each
bypass edge).
The AddNegCycle procedure generates a compact SRN cycle joining
at most k paths. Each path can have at most n edges ⇒ O(nk).

The pair (negCycle, edgeAnnotation) avoids redundantly storing
repeated structures.
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Magic Loops

There exists a family of STNUs, each containing an indivisible
SRN cycle, called a magic loop, that has an exponential number
of edges [6].

Since each STNU has at most n2 + 2k edges, magic loops
necessarily contain many repeated edges!

A magic loop of order k contains
k contingent links, and
3(2k) − 2 edges.

L. Hunsberger, R. Posenato Finding Negative Cycle in STNUs 12 / 17



Sample Magic Loop of Order 3

A2 C2 C1 C3 A3

A1 X
c 1:1

C 1:−
3

c2:1
C2:−10 C3:−36

c3:18
−1 −2948

−7
34

5, π
1 31, π 2

45, π3

21, π4

35, π5

−1, π6

3 contingent links; 6 constraints across contingent timepoints; and
a non-contingent timepoint X that must be scheduled before C1.
Bypass edges are dashed.
The SRN cycle is
(A3, c3:1,C3, 21,A2, c2:1,C2, 5,A1, c1:1,C1, −29,X , −1,A3),
and its length (one traversal) is −1.
It occurs when all contingent links assume their min value.
But it is not the only thing...
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Sample Magic Loop of Order 3 (continued)

Representing all bypass edges in terms of original edges,
#edges = 3(23) − 2 = 22, exponential w.r.t. #contingent links.
Edges of contingent link (A1, 1, 3,C1) are present 4 times each.

C1 A1 C1 C2 A2

⟳−1
C2 C1 A1 C1

X

C1:−3 c1:1 −1 C2:−10 c2:1 8 C1:−3 c1:1
−29

C1A1C1C2A2C2C1A1C1
48

C1:−3c1:1−1C2:−10c2:18C1:−3
c1:1C3

A3

C3

−7

C
3 :−36

c 3:1
34

5, π1

5, π1

31, π2

45, π3

21, π4

35, π5

−1, π6
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Proof of Concept

The FindSRNC algorithm is implemented in the CSTNU Tool [15].
The CSTNU Tool enables users to manage different kinds of
temporal constraint networks and to verify automatically certain
properties (e.g., dynamic controllability, dispatchability).
For STNUs: it allows DC checking and, in case the network is not
DC, the determination of an SRN cycle.
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Proof of Concept

We empirically evaluated FindSRNC on a published
benchmark [14] to confirm that the execution times of FindSRNC
and RUL2021 are equivalent.

500 1,000 1,500 2,000 2,500
0.01

0.1

1

Number of nodes, n

Av
er

ag
e

Ex
ec

ut
io

n
Ti

m
e

[s
]

FindSRNC
RUL2021
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SRN
cycle
length

%
Simple
SRN
cycles

Avg. SRN
expanded
cycle
length

500 8.0 63% 14.1
1000 7.9 64% 14.4
1500 7.6 74% 15.3
2000 8.5 72% 14.0
2500 8.6 63% 14.4
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Conclusion

We presented the FindSRNC algorithm which extends the fastest
DC-checking algorithm for STNUs to determine and compactly
represent an SRN cycle when the input is not DC.

We showed that FindSRNC does not require more time than the
fastest DC-checking algorithm to find the SRN cycle.

We provided a Java implementation within the CSTNU Tool
library.

FindSRNC can be used to identify constraints to relax or
contingent durations to tighten when seeking to restore the DC
property.
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Simple Temporal Networks with Uncertainty
Dynamic Controllability [11]

An STNU is dynamically controllable (DC) if:
there exists a dynamic strategy . . .
for executing the non-contingent timepoints . . .
such that all the constraints will be satisfied . . .
no matter how the contingent durations turn out.

On-line vs Off-line Scheduler
A dynamic (on-line) scheduler for a DC STNU must be able to react to
any possible combination of contingent durations.
In contrast, an off-line scheduler can require exponential space to
store all possible combinations of contingent durations.
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Simple Temporal Networks with Uncertainty
DC-Checking Algorithms for STNUs

Algorithm Complexity
Morris06 O(n4)
Morris14 O(n3)
RUL− [3] O(mn+k2n+kn logn)

RUL2021 [7] O(mn+k2n+kn logn)

- All algorithms are based on
propagation rules that are
used to make some implicit
constraints explicit.

Rule Graphical Representation Conditions
(NC) X Y Wv w

v + w
(none)

(UC) X Y Av C:w
C:v + w

(none)

(LC) A C Xc:x w
x + w

w < 0

(CC) A C Bc:x K:w
K:x + w

K ̸≡ C, w < 0

(LR) X A CC:w c:x
w

w ≥ −x
Morris & Muscettola Rules [12, 10]

Rule Graphical representation Applicability Conditions

(R) P Q Cv w
v + w Q ∈ TX ,w < ∆C ,C ∈ TC

(L)
Aj C′ Cc′:x′ w

xj + w C′ ̸≡ C,w < ∆C ,C ∈ TC

(Ulp)
P C Av C:−y

v − y
RUL2021 Rules [7]

Theorem 1 (Morris [9])
An STNU is Dynamically Controllable if and only if it does not have a
semi-reducible negative (SRN) cycle.
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The FindSRNC algorithm
Example of a bypass edge and determination of its generation path

ACXC2A2WTS

(∆C = 12)

c:8
C:−2013c2:2352

(R) 4(L) 6(R) 9(R) 14

(Ulp) −6

loc.path hash table erased
Node Path Compact Representation
X (X , 1,C,C:−20,A)
C2 (C2, 3,X , 1,C,C:−20,A) (C2, 3,X ) + loc.path(X )
A2 (A2, c2:2,C2, 3,X , 1,C,C:−20,A) (A2, c2:2,C2) + loc.path(C2)
W (W , 3,A2, c2:2,C2, 3,X , 1,C,C:−20,A) (W , 3,A2) + loc.path(A2)
T (T , 5,W , 3,A2, c2:2,C2, 3,X , 1,C,C:−20,A) (T , 5,W ) + loc.path(W )

edgeAnnotation hash table
BypassEdge Path

(T ,A) (T , 5,W , 3,A2, c2:2,C2, 3,X , 1,C,C:−20,A)
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