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Higher-Order Recursion Scheme (HORS): higher-order grammar that generates trees:

S—Ac
Ax—ax(A(bx))

more complex expressions generated by
® expansion of grammar nonterminals
® [-reduction

limit of expressions exists, defines tree

S=Ac
= (a x (A b x))[c/x]
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Higher-Order Recursion Schemes

Higher-Order Recursion Scheme (HORS): higher-order grammar that generates trees:

S—=Ac
Ax—ax(A(bx))

more complex expressions generated by
® expansion of grammar nonterminals
® [-reduction

limit of expressions exists, defines tree

S=Ac
= (a x (A b x))[c/x]
=ac(A(bo))
=ac(ax(A(bx))[(bc/x]
=ac(a(bc)(A(bbc)))

C/a\a
/ N\
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Higher-Order Recursion Schemes

Higher-Order Recursion Scheme (HORS): higher-order grammar that generates trees:

S—Ac

Ax—ax(A(bx)) /a\

more complex expressions generated by

® expansion of grammar nonterminals / \

® [-reduction b a
limit of expressions exists, defines tree | / \

S Ac c A(bbc)

b
= (ax (Abx))c/A] |
=ac(A(bc) b
— ac(ax(Ab))bc/x |
=ac(a(bc)(A(bbc))) ¢
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Model-Checking for HORS

parity tree automata (APT):
® acceptance explained as two-player game between verifier and spoiler
® play of game defines labeling of path in tree by states of APT
¢ infinite plays decided by parity condition

model-checking problem for HORS: given a HORS G and an APT A, does A accept
the tree generated by G?

Prop.: (Ong'06) For order-k HORS, the HORS model-checking problem is
k-EXPTIME-complete.

order of a HORS: order of highest type of argument, e.g.,
® order 1: set of trees,
® order 2: set of trees — set of trees,
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The Challenge of Dense Linear Time and Higher-Order

trees generated by HORS vyield only qualitative, discrete semantics

no possibility to make fine-grained statements on e.g.,
® the time after which a certain action happens,
® bounded time-frames after which a request must be answered,
® the aggregate length of a sequence of individual actions,
® etc.

potential problems:
® theory of HORS is quite complex

® HORS are genuinely non-regular ~» must avoid adding non-regularity of
verification device for decidability reasons

timed automata are well-established, rather simple, and regular in character ~ good fit
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The Plan

goal: incorporate real-time semantics onto HORS using timed automata ...

... without giving up established theory of HORS model-checking

proposal:
® annotate tree constructors by intervals (intuition: duration of an action)

® add timed automata as extra verification device alongside APT

main challenges:
® timed automata invented as models of systems, not as verification device

® need meaningful interaction between timed automaton and APT for useful
specifications
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Construction Details
timed HORS:
® tree constructors annotated by intervals

® only finitely many intervals appear due to finiteness of grammar

timed automaton:
® standard TA model, but semantics controlled by verifier
® propositions same as state set of APT
® when time flows, only locations enabled that are labeled by current APT state

timed APT:

e transition function depends on (untimed) tree label, current state, and clock
evaluations of TA

® presentation finite due to only finitely many clock constraints allowed

general flow of acceptance game:
e verifier lets time flow according to current tree label
® then APT transitions
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Example
timed HORS:

S—T(Fe)(Ge)
T xy=apoxy(T (Fy)G x))
Fz— C[172] W[374] z
Gt W[2,3] V4
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timed HORS:

a[0,0]
2] W23 4[0,0]

\ \ VAN
W3,4] € 2 W[2,3]  9[0,0]
| o
e Waa  quy
\ \
W3 W3l

e e
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=y Example

s S, Pw; Pc

timed HORS:
Pw; Pc
APT:
5(57 - a) = (57 57 S)
6(77}( > 477) =1 5(7’X < 4, C) = (pC) a[0,0]
S(x<de) =T 5 x < 4,w) = (puw) N
2] W23 9[0,0]
\ \ PN
W3,4] € Q2 W23 9,0
| o
e W34 12 :

W23l W34

e e
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v} 5, Pus e Example

a.@ timed HORS:

APT:
5(57 - a) = (57 57 S)
i(Lx>4,)=1 6(Lx<4,c)=(pc) a0,0]
S(x<de) =T 5 x < 4,w) = (puw) N
2 W23 4[0,0]
APT state: TA location: clock values: tree address: | | 2N
s lo x—0,y—0 € 3.4 I o B G B G
) ‘ ‘ ‘ |
e W34l 2] :

W23l W34

e e
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v} s
s s Pws Pc

OO, e

timed HORS:
APT:
5(57 - a) = (57 57 S)
S(Lx>4,_)=1 d(_,x<4,¢c)=(pc)
a[0,0]
d(Lx<4e)=T 6(L,x < 4,w) = (pw)
2] W23 9[0,0]
APT state: TA location: clock values: tree address: | \ VA N
s lo x—0,y—0 € W(3 4] € 2 W23 9,0
s U x—0,y—0 € \ \ \ ‘
e Waal  Cua

| |
Wps)  Wisa)

e e
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y

°.s os’ Prope Example
timed HORS:
APT:
5(57 - a) = (57 57 S)
o x>4,_)=1 d(_,x<4,¢c)=(pc)
9[0,0]
0(_,x<4,e)=T 0 ,x<4,w)=(pw) /
- - /N
C1,2] W3 a[0,0]
APT state: TA location: clock values: tree address: e AN
s lo x—0,y—0 € W(3 4] € 2 W23 9,0
s U x—=0,y—0 € ‘
s 0y x—=0,y—0 2 e W34 12
23] W34
e e
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s

s Pws Pc

Example

clock values: tree address:

APT:
o(s,_,a) =(s,s,s)
0 x>4,_)=1
0(_,x<4,e)=T
APT state: TA location:
S fo
S 61
S fl

x—=0,y—0 ¢

x—0,y—0 2
x—0y—0 2.0

timed HORS:

4[0,0]

SN

e "R a[0,0]
\ \ VN

Wi3.4] € W23 9o

a2

e W[3,4]
|

Wi3.4]

W2,3]

e e
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v} s
s s Pws Pc

e
timed HORS:

APT:
d(s,_,a) = (s,s,5)
5(77X>477):J- 5( ’XS47C):(pC)
9[0,0]

0(_,x<4,e)=T 0 ,x<4,w)=(pw) // \

2] W23 9[0,0]
APT state: TA location: clock values: tree address: \ \ VA RN
s lo x—0,y—0 € W(3 4] € 2 W23 o0
s U x—=0,y—0 2 \ \ \ ‘
s 0 x—=0,y—0 2.0 e W34l C1,2] :
s 4 x—1l4y—0 2.0 ‘ ‘

W23 W3]

e e



E. Alsmann, F. Bruse: Real-Time Higher-Order Recursion Schemes
s y Pw; Pc s

Example

APT:

o(s,_,a) =(s,s,s)
M x>4,)=1

PP timed HORS:

4[0,0]

5(77)( <4 e) =T (5(7,}( <4, W) - (Pw)
APT state: TA location: clock values: tree address:
s by x—=0,y—0 ¢
s 2 x—=0,y—0 2
s 0 x—=1l4y—0 2.0
Pe /1 x—14y—0 2-0-0

SN

Qo W) 3[0,0]

\ \ VAN
Waa e T Wpa A
| o
e Waa o quy

W23 W34

e e
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Example

APT:
o(s,_,a) =(s,s,s)

§(x>4,_)=1 o(,x < 4,¢) = (pc)
§(,x<4e)=T 6(L,x < 4,w) = (pw)
APT state: TA location: clock values: tree address:
s Lo x—=0,y—0 ¢
s 2 x—=0,y—0 2
s 0y x—14y—-0 2.0
Pe ly x—1l4y—0 2-0-0
Pe Uy x—=0,y—0 2-0-0

1,2]
\

W34

e

PP timed HORS:

4[0,0]

SN

W2,3]

e

aj0,0]
VA RN
Lz Wz o)
\ \ !
Waal  qua
| |
W3 W4

e e
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s y Pw; Pc s

. Example
7" timed HORS:
APT:
o(s,_,a) =(s,s,s)
0 x>4,_)=1 5, x<4,¢)=(pc)
6(,x<4,e)=T (L, x<4,w)=(pw) ao0,0]
N
APT state: TA location: clock values: tree address: C[1"2] W[‘m] /3[0‘,01 N
s lo x—=0,y—0 ¢
s 2 x—=0,y—0 2 M4 ¢ A M3 ool
b) |
s ly x—14y—0 2.0 | W‘ C‘ :
Pe l x—14y—0 2-0-0 € R
P 0 x5 0,70 2.0-0 | |
Pe Uy x—32,y—0 2-0-0 W23 W34

e e
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s 3 Pw, Pc
. Example
{x.y} Pu Pe
il PP timed HORS:
Pw
APT:
o(s,_,a) =(s,s,s)
§(x>4,_)=1 o(,x < 4,¢) = (pc)
6(,x<4,e)=T (L, x<4,w)=(pw) ao0,0]
N
APT state: TA location: clock values: tree address: C[1"2] W[‘m] /3[0‘,01 N
s lo x—=0,y—0 ¢
S é]_ X H 0 y *—> 0 W[374] e C[172] W[273] 3[0,0]
s ly x—14y—0 2.0
e W34 1,2
| |
Pe Uy x—32,y—0 2-0-0 W3] W34
Pw Is x—32,y—0 2:-0-0-0

e e
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5]

S, Pw, Pe Example

G b pwypctlmed HORS:
APT:
5(57 - a) = (57 57 S)
6(7?}( > 477) =1 5(7’ X S 47 C) = (pC) a[O,O]
i(Lx<4e)=T 6(Lx<4,w)=(pw) // \
2 W23 4[0,0]
APT state: TA location: clock values: tree address: | | 2N
s lo x—0,y—0 € 3.4 ¢ A M3 ool
s 0 x—=0,y—0 2 | W‘ . | :
s A x—14,y—0 2.0 e B4l L2
pe s %3270 2.0-0 | |
Pw Us x—32,y—0 2.-0-0-0 23] W34
Pw l3 x—54y—0 2-0-0-0-0 \ \

e e
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5]

S, Pw, Pe Example

G b pwypctlmed HORS:
Pw
APT:
5(57 - a) = (57 57 S)
6(7?}( > 477) =1 5(7’ X S 47 C) = (pC) a[O,O]
i(Lx<4e)=T 6(Lx<4,w)=(pw) // \
2 W23 4[0,0]
APT state: TA location: clock values: tree address: | | 2N
s lo x—0,y—0 € 3.4 ¢ A W3 ool
s 0 x—=0,y—0 2 | W‘ . | :
s A x—14,y—0 2.0 e B4l L2
pe s %3270 2.0-0 | |
Pw Us x—32,y—0 2.-0-0-0 23] W34
Pw l3 x—54y—0 2-0-0-0-0 \ \
77 /3 x—54y—-0 2:-0-0-0-0 e e
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Upper Bounds for Timed-HORS Model-Checking

Model-checking order-k timed HORS is in (k + 1)-EXPTIME

Proof sketch:
e discretize state space generated by timed automaton  via (well-known)
region-graph construction (yields graph R(.A))
® incorporate resulting graph into APT (~~ exponential blowup)

exp.
tAPT P, TA A

APT P x R(A)
lin.
timed HORS G |—> untimed HORS &’
in.

main difficulty:
® interaction to let time flow cannot be added directly into APT logic
® needs to be emulated on grammar side via gadgets
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Lower Bound for kK =1

Model-Checking order-1 timed HORS is 2-EXPTIME-complete.

Prop.: (Chandra, Kozen, Stockmeyer) acceptance of a 2-EXPTIME DTM on input w
witnessed by 22" 5 22 taple listing the configurations in order

qo, | n plul| t|O|...|0O

a |nagi|plu|t|O|...|0O

Fe|3 |FR[3E F(F®

F |3 [ FR[FE [FH|F*

ge, | O |O|O|O0|0o| 0|0

important observation: whether a cell of the table contains an entry depends only on
® boundary conditions (# on sides, first and last row), and
® the cells directly or diagonally above the cell in question

~> existence of a table can be checked recursively checking for local consistency!
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Counting with HORS, APT and TA

® working with an acc. witnessing table requires encoding numbers in [0,22|W‘ —1]
* re-use idea from TIME'22 [B./Lange]: integral clock values in [0, 2" — 1] as bits

Lemma 1: There is an APT that implements Boolean logic over a suitable HORS
(including negation!)

Lemma 2: Quantification over bits (= clock values) is possible using a TA.

Lemma 3: Manipulation of numbers in [0,22|W‘ — 1] is possible using a suitable timed
APT, TA and timed HORS.

Lemma 4: The logical structure of an acc. witnessing table can be encoded into (the
tree generated by) a timed HORS, using Lemma 3 for indexing of cells.

Proof of Theorem 2: verify structure of tree from Lemma 4 using an extension if the
APT from Lemma 1, and the TA from Lemma 2/3.
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® first combination of higher-order structures and real-time mechanics

® upper bound as expected: adding real time costs one exponential (cf. [B./Lange
Time'21,'22]

® lower bound for k = 1: added exponential is unavoidable

future work:

e find specification logic in place of APT and timed automata (likely version of
timed p-calculus)

® requires TA in universal semantics (i.e., spoiler can also control flow of time)
® lower bound for all k

® practical implementation (zone graphs and higher order?)

Questions? On to the wine and cheese!
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