# Real-Time Higher-Order Recursion Schemes

Eric Alsmann<sup>1</sup> and <u>Florian Bruse<sup>1,2</sup></u>

<sup>1</sup> University of Kassel, Germany
 <sup>2</sup> Technical University of Munich, Germany
 TUM School of Computation, Information and Technology

31st Int. Symp. on Temporal Representation and Reasoning, TIME'24 28/10 - 30/10/2024 Montpellier, France

Higher-Order Recursion Scheme (HORS): higher-order grammar that generates trees:

 $S \mapsto A c$  $A x \mapsto a x (A (b x))$ 

Higher-Order Recursion Scheme (HORS): higher-order grammar that generates trees:

 $S \mapsto A c$  $A x \mapsto a x (A (b x))$ 

more complex expressions generated by

- expansion of grammar nonterminals
- $\beta$ -reduction

Higher-Order Recursion Scheme (HORS): higher-order grammar that generates trees:

Ac

 $S \mapsto A c$  $A x \mapsto a x (A (b x))$ 

more complex expressions generated by

- expansion of grammar nonterminals
- $\beta$ -reduction

limit of expressions exists, defines tree

 $S \Rightarrow A c$ 

Higher-Order Recursion Scheme (HORS): higher-order grammar that generates trees:

 $S \mapsto A c$  $A x \mapsto a x (A (b x))$ 

more complex expressions generated by

- expansion of grammar nonterminals
- $\beta$ -reduction

limit of expressions exists, defines tree

 $S \Rightarrow A c$  $\Rightarrow (a \times (A b \times))[c/x]$ 



Higher-Order Recursion Scheme (HORS): higher-order grammar that generates trees:

 $S \mapsto A c$  $A x \mapsto a x (A (b x))$ 

c A(b c)

more complex expressions generated by

- expansion of grammar nonterminals
- $\beta$ -reduction

limit of expressions exists, defines tree

 $S \Rightarrow A c$  $\Rightarrow (a \times (A b \times))[c/x]$ = a c (A (b c))

Higher-Order Recursion Scheme (HORS): higher-order grammar that generates trees:

 $S \mapsto A c$  $A x \mapsto a x (A (b x))$ 

more complex expressions generated by

- expansion of grammar nonterminals
- $\beta$ -reduction

limit of expressions exists, defines tree

 $S \Rightarrow A c$   $\Rightarrow (a \times (A b \times))[c/x]$  = a c (A (b c)) $\Rightarrow a c (a \times (A (b \times)))[(b c/x]]$ 



Higher-Order Recursion Scheme (HORS): higher-order grammar that generates trees:

 $S \mapsto A c$  $A x \mapsto a x (A (b x))$ 

more complex expressions generated by

- expansion of grammar nonterminals
- $\beta$ -reduction

limit of expressions exists, defines tree

$$S \Rightarrow A c$$
  

$$\Rightarrow (a \times (A b \times))[c/x]$$
  

$$= a c (A (b c))$$
  

$$\Rightarrow a c (a \times (A (b \times)))[(b c/x]]$$
  

$$= a c (a (b c) (A (b b c)))$$
  
...



Higher-Order Recursion Scheme (HORS): higher-order grammar that generates trees:

С

 $S \mapsto A c$  $A x \mapsto a x (A (b x))$ 

more complex expressions generated by

- expansion of grammar nonterminals
- $\beta$ -reduction

limit of expressions exists, defines tree





parity tree automata (APT):

- acceptance explained as two-player game between verifier and spoiler
- play of game defines labeling of path in tree by states of APT

parity tree automata (APT):

- acceptance explained as two-player game between verifier and spoiler
- play of game defines labeling of path in tree by states of APT
- infinite plays decided by parity condition

parity tree automata (APT):

- acceptance explained as two-player game between verifier and spoiler
- play of game defines labeling of path in tree by states of APT
- infinite plays decided by parity condition

model-checking problem for HORS: given a HORS  $\mathcal{G}$  and an APT  $\mathcal{A}$ , does  $\mathcal{A}$  accept the tree generated by  $\mathcal{G}$ ?

parity tree automata (APT):

- acceptance explained as two-player game between verifier and spoiler
- play of game defines labeling of path in tree by states of APT
- infinite plays decided by parity condition

model-checking problem for HORS: given a HORS  $\mathcal{G}$  and an APT  $\mathcal{A}$ , does  $\mathcal{A}$  accept the tree generated by  $\mathcal{G}$ ?

**Prop.:** (Ong'06) For order-k HORS, the HORS model-checking problem is k-EXPTIME-complete.

order of a HORS: order of highest type of argument, e.g.,

- order 1: set of trees,
- order 2: set of trees  $\rightarrow$  set of trees,

• . . .

trees generated by HORS yield only qualitative, discrete semantics

no possibility to make fine-grained statements on e.g.,

• the time after which a certain action happens,

trees generated by HORS yield only qualitative, discrete semantics

no possibility to make fine-grained statements on e.g.,

- the time after which a certain action happens,
- bounded time-frames after which a request must be answered,

trees generated by HORS yield only qualitative, discrete semantics

no possibility to make fine-grained statements on e.g.,

- the time after which a certain action happens,
- bounded time-frames after which a request must be answered,
- the aggregate length of a sequence of individual actions,
- etc.

trees generated by HORS yield only qualitative, discrete semantics

no possibility to make fine-grained statements on e.g.,

- the time after which a certain action happens,
- bounded time-frames after which a request must be answered,
- the aggregate length of a sequence of individual actions,
- etc.

potential problems:

• theory of HORS is quite complex

trees generated by HORS yield only qualitative, discrete semantics

no possibility to make fine-grained statements on e.g.,

- the time after which a certain action happens,
- bounded time-frames after which a request must be answered,
- the aggregate length of a sequence of individual actions,
- etc.

potential problems:

- theory of HORS is quite complex
- HORS are genuinely non-regular view must avoid adding non-regularity of verification device for decidability reasons

trees generated by HORS yield only qualitative, discrete semantics

no possibility to make fine-grained statements on e.g.,

- the time after which a certain action happens,
- bounded time-frames after which a request must be answered,
- the aggregate length of a sequence of individual actions,
- etc.

potential problems:

- theory of HORS is quite complex
- HORS are genuinely non-regular ~> must avoid adding non-regularity of verification device for decidability reasons

timed automata are well-established, rather simple, and regular in character  $\rightsquigarrow$  good fit

timed automaton introduced as model of real-time systems

timed automaton introduced as model of real-time systems

example:



semantics explained via clock evaluations (mappings from clocks x, y, ... to  $\mathbb{R}^{\geq 0}$ ) position in TA is pair of location and clock evaluation, e.g., ( $\ell_0, (x \mapsto 1, y \mapsto 0.3423)$ )

timed automaton introduced as model of real-time systems

example:



semantics explained via clock evaluations (mappings from clocks x, y, ... to  $\mathbb{R}^{\geq 0}$ ) position in TA is pair of location and clock evaluation, e.g., ( $\ell_0$ , ( $x \mapsto 1, y \mapsto 0.3423$ )) flow of time (by amount *t* controlled by verifier, she can:

move alongside transitions,

timed automaton introduced as model of real-time systems

example:



semantics explained via clock evaluations (mappings from clocks x, y, ... to  $\mathbb{R}^{\geq 0}$ ) position in TA is pair of location and clock evaluation, e.g., ( $\ell_0$ , ( $x \mapsto 1, y \mapsto 0.3423$ ))

flow of time (by amount t controlled by verifier, she can:

- move alongside transitions,
- let time flow (increases value of all clocks simultaneously), or
- do arbitrary combinations

timed automaton introduced as model of real-time systems

example:



semantics explained via clock evaluations (mappings from clocks x, y, ... to  $\mathbb{R}^{\geq 0}$ ) position in TA is pair of location and clock evaluation, e.g., ( $\ell_0, (x \mapsto 1, y \mapsto 0.3423)$ )

flow of time (by amount *t* controlled by verifier, she can:

- move alongside transitions,
- let time flow (increases value of all clocks simultaneously), or
- do arbitrary combinations

timed automaton introduced as model of real-time systems

example:



semantics explained via clock evaluations (mappings from clocks x, y, ... to  $\mathbb{R}^{\geq 0}$ ) position in TA is pair of location and clock evaluation, e.g., ( $\ell_0, (x \mapsto 1, y \mapsto 0.3423)$ )

flow of time (by amount *t* controlled by verifier, she can:

- move alongside transitions,
- let time flow (increases value of all clocks simultaneously), or
- do arbitrary combinations

timed automaton introduced as model of real-time systems

example:



semantics explained via clock evaluations (mappings from clocks x, y, ... to  $\mathbb{R}^{\geq 0}$ ) position in TA is pair of location and clock evaluation, e.g.,  $(\ell_0, (x \mapsto 1, y \mapsto 0.3423))$ 

flow of time (by amount *t* controlled by verifier, she can:

- move alongside transitions,
- let time flow (increases value of all clocks simultaneously), or
- do arbitrary combinations

timed automaton introduced as model of real-time systems

example:



semantics explained via clock evaluations (mappings from clocks x, y, ... to  $\mathbb{R}^{\geq 0}$ ) position in TA is pair of location and clock evaluation, e.g.,  $(\ell_0, (x \mapsto 1, y \mapsto 0.3423))$ 

flow of time (by amount *t* controlled by verifier, she can:

- move alongside transitions,
- let time flow (increases value of all clocks simultaneously), or
- do arbitrary combinations

goal: incorporate real-time semantics onto HORS using timed automata ... ...without giving up established theory of HORS model-checking

goal: incorporate real-time semantics onto HORS using timed automata ... ...without giving up established theory of HORS model-checking

proposal:

• annotate tree constructors by intervals (intuition: duration of an action)

goal: incorporate real-time semantics onto HORS using timed automata ....

... without giving up established theory of HORS model-checking

proposal:

- annotate tree constructors by intervals (intuition: duration of an action)
- add timed automata as extra verification device alongside APT

goal: incorporate real-time semantics onto HORS using timed automata ....

... without giving up established theory of HORS model-checking

proposal:

- annotate tree constructors by intervals (intuition: duration of an action)
- add timed automata as extra verification device alongside APT

main challenges:

- timed automata invented as models of systems, not as verification device
- need meaningful interaction between timed automaton and APT for useful specifications

timed HORS:

- tree constructors annotated by intervals
- only finitely many intervals appear due to finiteness of grammar

timed HORS:

- tree constructors annotated by intervals
- only finitely many intervals appear due to finiteness of grammar

timed automaton:

standard TA model, but semantics controlled by verifier

timed HORS:

- tree constructors annotated by intervals
- only finitely many intervals appear due to finiteness of grammar

timed automaton:

- standard TA model, but semantics controlled by verifier
- propositions same as state set of APT
- when time flows, only locations enabled that are labeled by current APT state

timed HORS:

- tree constructors annotated by intervals
- only finitely many intervals appear due to finiteness of grammar

timed automaton:

- standard TA model, but semantics controlled by verifier
- propositions same as state set of APT
- when time flows, only locations enabled that are labeled by current APT state

timed APT:

- transition function depends on (untimed) tree label, current state, and clock evaluations of TA
- presentation finite due to only finitely many clock constraints allowed

timed HORS:

- tree constructors annotated by intervals
- only finitely many intervals appear due to finiteness of grammar

timed automaton:

- standard TA model, but semantics controlled by verifier
- propositions same as state set of APT
- when time flows, only locations enabled that are labeled by current APT state

timed APT:

- transition function depends on (untimed) tree label, current state, and clock evaluations of TA
- presentation finite due to only finitely many clock constraints allowed

general flow of acceptance game:

- verifier lets time flow according to current tree label
- then APT transitions
#### Example

timed HORS:  $S \mapsto T (F e) (G e)$   $T \times y \mapsto a_{[0,0]} \times y (T (F y)(G x))$   $F z \mapsto c_{[1,2]} w_{[3,4]} z$   $G t \mapsto w_{[2,3]} z$ 

### Example

#### timed HORS:

 $S \mapsto T (F e) (G e)$  $T \times y \mapsto a_{[0,0]} \times y (T (F y)(G x))$  $F z \mapsto c_{[1,2]} w_{[3,4]} z$  $G t \mapsto w_{[2,3]} z$ 





timed HORS:  $S \mapsto T (F e) (G e)$   $T \times y \mapsto a_{[0,0]} \times y (T (F y)(G x))$   $F z \mapsto c_{[1,2]} w_{[3,4]} z$   $G t \mapsto w_{[2,3]} z$ 





timed HORS:  $S \mapsto T (F e) (G e)$   $T \times y \mapsto a_{[0,0]} \times y (T (F y)(G x))$   $F z \mapsto c_{[1,2]} w_{[3,4]} z$   $G t \mapsto w_{[2,3]} z$ 



$$\begin{split} \delta(s,\_,a) &= (s,s,s) \\ \delta(\_,x > 4,\_) &= \bot \\ \delta(\_,x \le 4,e) &= \top \\ \delta(\_,x \le 4,w) &= (p_w) \end{split}$$

1

`



APT:

c/

 $S \mapsto T (F e) (G e)$  $T \times y \mapsto a_{[0,0]} \times y \left( T \ (F \ y)(G \ x) \right)$  $F \ z \mapsto c_{[1,2]} \ w_{[3,4]} \ z$  $G t \mapsto w_{[2,3]} z$ 

е





APT:

APT state:

s

s

| $\delta(s,\_,a) = (s,s,s)$                        |                                                   |
|---------------------------------------------------|---------------------------------------------------|
| $\delta(\_, \mathtt{x} > \mathtt{4}, \_) = \bot$  | $\delta(, \mathtt{x} \leq 4, c) = (p_c)$          |
| $\delta(\_, \mathtt{x} \leq \mathtt{4}, e) = 	op$ | $\delta(\underline{\ },\mathtt{x}\leq 4,w)=(p_w)$ |

TA location:

lo

 $\ell_1$ 

 $S \mapsto T (F e) (G e)$  $T \times y \mapsto a_{[0,0]} \times y (T (F y)(G x))$  $F z \mapsto c_{[1,2]} w_{[3,4]} z$  $G t \mapsto w_{[2,3]} z$ 







clock values:

 $x \mapsto 0, y \mapsto 0$ 

 $x \mapsto 0, y \mapsto 0$ 

 $x \mapsto 0, y \mapsto 0$ 

tree address:

 $\epsilon$ 

 $\epsilon$ 

2

#### APT:

APT state:

s

s

s

$$\begin{split} \delta(s,\_,a) &= (s,s,s) \\ \delta(\_,x > 4,\_) &= \bot \\ \delta(\_,x \le 4,e) &= \top \\ \delta(\_,x \le 4,w) &= (p_w) \end{split}$$

TA location:

lo

 $\ell_1$ 

 $\ell_1$ 

 $S \mapsto T (F e) (G e)$  $T \times y \mapsto a_{[0,0]} \times y (T (F y)(G x))$  $F z \mapsto c_{[1,2]} w_{[3,4]} z$  $G t \mapsto w_{[2,3]} z$ 



е

|  | ~ |
|--|---|
|  |   |
|  |   |







clock values:

 $x \mapsto 0, y \mapsto 0$ 

 $x \mapsto 0, y \mapsto 0$ 

 $x \mapsto 0, y \mapsto 0$ 

 $x \mapsto 1.4, y \mapsto 0$ 

 $\epsilon$ 

2

 $2 \cdot 0$ 

 $2 \cdot 0$ 

APT:

APT state:

s

s

s

s

| $\delta(s,\_,a) = (s,s,s)$                         |                                          |
|----------------------------------------------------|------------------------------------------|
| $\delta(\_, \mathtt{x} > 4, \_) = \bot$            | $\delta(, \mathtt{x} \leq 4, c) = (p_c)$ |
| $\delta(\_, \mathtt{x} \leq \mathtt{4}, e) = \top$ | $\delta(\_,\mathtt{x}\leq 4,w)=(p_w)$    |

TA location:

lo

 $\ell_1$ 

 $\ell_1$ 

 $\ell_1$ 

 $S \mapsto T (F e) (G e)$  $T \times y \mapsto a_{[0,0]} \times y (T (F y)(G x))$  $F \ z \mapsto c_{[1,2]} \ w_{[3,4]} \ z$  $G t \mapsto w_{[2,3]} z$ 















### Theorem 1

Model-checking order-k timed HORS is in (k + 1)-EXPTIME

#### Theorem 1

Model-checking order-k timed HORS is in (k + 1)-EXPTIME

Proof sketch:

- discretize state space generated by timed automaton ⊢ via (well-known) region-graph construction (yields graph R(A))
- incorporate resulting graph into APT (→ exponential blowup)

#### Theorem 1

Model-checking order-k timed HORS is in (k + 1)-EXPTIME

Proof sketch:

- discretize state space generated by timed automaton ⊢ via (well-known) region-graph construction (yields graph R(A))
- incorporate resulting graph into APT (→ exponential blowup)

tapt 
$$\mathcal{P}$$
, ta  $\mathcal{A} \xrightarrow{exp.} \text{Apt } \mathcal{P} \times \mathcal{R}(\mathcal{A})$ 

timed HORS 
$$\mathcal{G} \xrightarrow{}$$
 lin.

main difficulty:

• interaction to let time flow cannot be added directly into APT logic

#### Theorem 1

Model-checking order-k timed HORS is in (k + 1)-EXPTIME

Proof sketch:

- discretize state space generated by timed automaton ⊢ via (well-known) region-graph construction (yields graph R(A))
- incorporate resulting graph into APT (→ exponential blowup)



main difficulty:

- interaction to let time flow cannot be added directly into APT logic
- needs to be emulated on grammar side via gadgets

Theorem 2

Model-Checking order-1 timed HORS is 2-EXPTIME-complete.

#### Theorem 2

Model-Checking order-1 timed HORS is 2-EXPTIME-complete.

**Prop.:** (Chandra, Kozen, Stockmeyer) acceptance of a 2-EXPTIME DTM on input w witnessed by  $2^{2^{|w|}} \times 2^{2^{|w|}}$  table listing the configurations in order

| # | <b>q</b> <sub>0</sub> , i | n        | р | и | t |   |   |   | # |
|---|---------------------------|----------|---|---|---|---|---|---|---|
| # | а                         | $n, q_1$ | р | и | t |   |   |   | # |
| # | :                         | :        | : | ÷ | : | : |   | : | # |
| # |                           |          |   |   |   |   |   |   | # |
| # | :                         | :        | : | ÷ | : | : | : | ÷ | # |
| # | $q_f, \Box$               |          |   |   |   |   |   |   | # |

#### Theorem 2

Model-Checking order-1 timed HORS is 2-EXPTIME-complete.

**Prop.:** (Chandra, Kozen, Stockmeyer) acceptance of a 2-EXPTIME DTM on input w witnessed by  $2^{2^{|w|}} \times 2^{2^{|w|}}$  table listing the configurations in order

| # | <b>q</b> <sub>0</sub> , i | n        | р | и | t |   |   |   | # |
|---|---------------------------|----------|---|---|---|---|---|---|---|
| # | а                         | $n, q_1$ | р | и | t |   |   |   | # |
| # | ••••                      | :        | : | ÷ | : | : | : | : | # |
| # |                           |          |   |   |   |   |   |   | # |
| # |                           | :        | : | ÷ | : | : | ÷ | ÷ | # |
| # | $q_f, \Box$               |          |   |   |   |   |   |   | # |

important observation: whether a cell of the table contains an entry depends only on

boundary conditions (# on sides, first and last row)

#### Theorem 2

Model-Checking order-1 timed HORS is 2-EXPTIME-complete.

**Prop.:** (Chandra, Kozen, Stockmeyer) acceptance of a 2-EXPTIME DTM on input w witnessed by  $2^{2^{|w|}} \times 2^{2^{|w|}}$  table listing the configurations in order

| # | <b>q</b> <sub>0</sub> , i | n        | р | и | t |   |   |   | # |
|---|---------------------------|----------|---|---|---|---|---|---|---|
| # | а                         | $n, q_1$ | р | и | t |   |   |   | # |
| # | ••••                      | :        | : | ÷ | : | : |   | : | # |
| # |                           |          |   |   |   |   |   |   | # |
| # | :                         | :        | : | : | : | : | : | : | # |
| # | $q_f, \Box$               |          |   |   |   |   |   |   | # |

important observation: whether a cell of the table contains an entry depends only on

- boundary conditions (# on sides, first and last row), and
- the cells directly or diagonally above the cell in question
- $\rightsquigarrow$  existence of a table can be checked recursively checking for local consistency!

- working with an acc. witnessing table requires encoding numbers in  $[0, 2^{2^{|w|}} 1]$
- re-use idea from TIME'22 [B./Lange]: integral clock values in  $[0, 2^{|w|} 1]$  as bits

- working with an acc. witnessing table requires encoding numbers in  $[0, 2^{2^{|w|}} 1]$
- re-use idea from TIME'22 [B./Lange]: integral clock values in  $[0, 2^{|w|} 1]$  as bits

**Lemma 1:** There is an APT that implements Boolean logic over a suitable HORS (including negation!)

- working with an acc. witnessing table requires encoding numbers in  $[0, 2^{2^{|w|}} 1]$
- re-use idea from TIME'22 [B./Lange]: integral clock values in  $[0, 2^{|w|} 1]$  as bits

**Lemma 1:** There is an APT that implements Boolean logic over a suitable HORS (including negation!)

**Lemma 2:** Quantification over bits (= clock values) is possible using a TA.

- working with an acc. witnessing table requires encoding numbers in  $[0, 2^{2^{|w|}} 1]$
- re-use idea from TIME'22 [B./Lange]: integral clock values in  $[0, 2^{|w|} 1]$  as bits

**Lemma 1:** There is an APT that implements Boolean logic over a suitable HORS (including negation!)

**Lemma 2:** Quantification over bits (= clock values) is possible using a TA.

**Lemma 3:** Manipulation of numbers in  $[0, 2^{2^{|w|}} - 1]$  is possible using a suitable timed APT, TA and timed HORS.

- working with an acc. witnessing table requires encoding numbers in  $[0, 2^{2^{|w|}} 1]$
- re-use idea from TIME'22 [B./Lange]: integral clock values in  $[0, 2^{|w|} 1]$  as bits

**Lemma 1:** There is an APT that implements Boolean logic over a suitable HORS (including negation!)

**Lemma 2:** Quantification over bits (= clock values) is possible using a TA.

**Lemma 3:** Manipulation of numbers in  $[0, 2^{2^{|w|}} - 1]$  is possible using a suitable timed APT, TA and timed HORS.

**Lemma 4:** The logical structure of an acc. witnessing table can be encoded into (the tree generated by) a timed HORS, using Lemma 3 for indexing of cells.

- working with an acc. witnessing table requires encoding numbers in  $[0, 2^{2^{|w|}} 1]$
- re-use idea from TIME'22 [B./Lange]: integral clock values in  $[0, 2^{|w|} 1]$  as bits

**Lemma 1:** There is an APT that implements Boolean logic over a suitable HORS (including negation!)

**Lemma 2:** Quantification over bits (= clock values) is possible using a TA.

**Lemma 3:** Manipulation of numbers in  $[0, 2^{2^{|w|}} - 1]$  is possible using a suitable timed APT, TA and timed HORS.

**Lemma 4:** The logical structure of an acc. witnessing table can be encoded into (the tree generated by) a timed HORS, using Lemma 3 for indexing of cells.

Proof of Theorem 2: verify structure of tree from Lemma 4 using an extension if the APT from Lemma 1, and the TA from Lemma 2/3.

results

- introduced real-time HORS
- first combination of higher-order structures and real-time mechanics

results

- introduced real-time HORS
- first combination of higher-order structures and real-time mechanics
- upper bound as expected: adding real time costs one exponential (cf. [B./Lange Time'21,'22]

results

- introduced real-time HORS
- first combination of higher-order structures and real-time mechanics
- upper bound as expected: adding real time costs one exponential (cf. [B./Lange Time'21,'22]
- lower bound for k = 1: added exponential is unavoidable

results

- introduced real-time HORS
- first combination of higher-order structures and real-time mechanics
- upper bound as expected: adding real time costs one exponential (cf. [B./Lange Time'21,'22]
- lower bound for k = 1: added exponential is unavoidable

future work:

- find specification logic in place of APT and timed automata (likely version of timed μ-calculus)
  - requires TA in universal semantics (i.e., spoiler can also control flow of time)

results

- introduced real-time HORS
- first combination of higher-order structures and real-time mechanics
- upper bound as expected: adding real time costs one exponential (cf. [B./Lange Time'21,'22]
- lower bound for k = 1: added exponential is unavoidable

future work:

- find specification logic in place of APT and timed automata (likely version of timed μ-calculus)
  - requires TA in universal semantics (i.e., spoiler can also control flow of time)
- lower bound for all k

results

- introduced real-time HORS
- first combination of higher-order structures and real-time mechanics
- upper bound as expected: adding real time costs one exponential (cf. [B./Lange Time'21,'22]
- lower bound for k = 1: added exponential is unavoidable

future work:

- find specification logic in place of APT and timed automata (likely version of timed  $\mu$ -calculus)
  - requires TA in universal semantics (i.e., spoiler can also control flow of time)
- lower bound for all k
- practical implementation (zone graphs and higher order?)

### Questions?

results

- introduced real-time HORS
- first combination of higher-order structures and real-time mechanics
- upper bound as expected: adding real time costs one exponential (cf. [B./Lange Time'21,'22]
- lower bound for k = 1: added exponential is unavoidable

future work:

- find specification logic in place of APT and timed automata (likely version of timed  $\mu$ -calculus)
  - requires TA in universal semantics (i.e., spoiler can also control flow of time)
- lower bound for all k
- practical implementation (zone graphs and higher order?)

Questions? On to the wine and cheese!