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Higher-Order Recursion Schemes

Higher-Order Recursion Scheme (HORS): higher-order grammar that generates trees:

S 7→ A c

A x 7→ a x (A (b x))

more complex expressions generated by

• expansion of grammar nonterminals

• β-reduction

limit of expressions exists, defines tree

S ⇒ A c

⇒ (a x (A b x))[c/x ]

= a c (A (b c))

⇒ a c (a x (A (b x)))[(b c/x ]

= a c (a (b c) (A (b b c)))

. . .

c b

b

c

A (b b c)



E. Alsmann, F. Bruse: Real-Time Higher-Order Recursion Schemes 2

Higher-Order Recursion Schemes

Higher-Order Recursion Scheme (HORS): higher-order grammar that generates trees:

S 7→ A c

A x 7→ a x (A (b x))

more complex expressions generated by

• expansion of grammar nonterminals

• β-reduction

limit of expressions exists, defines tree

S ⇒ A c

⇒ (a x (A b x))[c/x ]

= a c (A (b c))

⇒ a c (a x (A (b x)))[(b c/x ]

= a c (a (b c) (A (b b c)))

. . .

c b

b

c

A (b b c)



E. Alsmann, F. Bruse: Real-Time Higher-Order Recursion Schemes 2

Higher-Order Recursion Schemes

Higher-Order Recursion Scheme (HORS): higher-order grammar that generates trees:

S 7→ A c

A x 7→ a x (A (b x))

more complex expressions generated by

• expansion of grammar nonterminals

• β-reduction

limit of expressions exists, defines tree

S ⇒ A c

⇒ (a x (A b x))[c/x ]

= a c (A (b c))

⇒ a c (a x (A (b x)))[(b c/x ]

= a c (a (b c) (A (b b c)))

. . .

A c

c b

b

c

A (b b c)



E. Alsmann, F. Bruse: Real-Time Higher-Order Recursion Schemes 2

Higher-Order Recursion Schemes

Higher-Order Recursion Scheme (HORS): higher-order grammar that generates trees:

S 7→ A c

A x 7→ a x (A (b x))

more complex expressions generated by

• expansion of grammar nonterminals

• β-reduction

limit of expressions exists, defines tree

S ⇒ A c

⇒ (a x (A b x))[c/x ]

= a c (A (b c))

⇒ a c (a x (A (b x)))[(b c/x ]

= a c (a (b c) (A (b b c)))

. . .

a

x [c/x ] A (b x)[c/x ]

c b

b

c

A (b b c)



E. Alsmann, F. Bruse: Real-Time Higher-Order Recursion Schemes 2

Higher-Order Recursion Schemes

Higher-Order Recursion Scheme (HORS): higher-order grammar that generates trees:

S 7→ A c

A x 7→ a x (A (b x))

more complex expressions generated by

• expansion of grammar nonterminals

• β-reduction

limit of expressions exists, defines tree

S ⇒ A c

⇒ (a x (A b x))[c/x ]

= a c (A (b c))

⇒ a c (a x (A (b x)))[(b c/x ]

= a c (a (b c) (A (b b c)))

. . .

a

c A (b c)

c b

b

c

A (b b c)



E. Alsmann, F. Bruse: Real-Time Higher-Order Recursion Schemes 2

Higher-Order Recursion Schemes

Higher-Order Recursion Scheme (HORS): higher-order grammar that generates trees:

S 7→ A c

A x 7→ a x (A (b x))

more complex expressions generated by

• expansion of grammar nonterminals

• β-reduction

limit of expressions exists, defines tree

S ⇒ A c

⇒ (a x (A b x))[c/x ]

= a c (A (b c))

⇒ a c (a x (A (b x)))[(b c/x ]

= a c (a (b c) (A (b b c)))

. . .

a

c a

x [(b c)/x ]

c

A (b x)[(b c)/x ]

b

b

c

A (b b c)



E. Alsmann, F. Bruse: Real-Time Higher-Order Recursion Schemes 2

Higher-Order Recursion Schemes

Higher-Order Recursion Scheme (HORS): higher-order grammar that generates trees:

S 7→ A c

A x 7→ a x (A (b x))

more complex expressions generated by

• expansion of grammar nonterminals

• β-reduction

limit of expressions exists, defines tree

S ⇒ A c

⇒ (a x (A b x))[c/x ]

= a c (A (b c))

⇒ a c (a x (A (b x)))[(b c/x ]

= a c (a (b c) (A (b b c)))

. . .

a

c a

b

c

A (b b c)

b

b

c

A (b b c)



E. Alsmann, F. Bruse: Real-Time Higher-Order Recursion Schemes 2

Higher-Order Recursion Schemes

Higher-Order Recursion Scheme (HORS): higher-order grammar that generates trees:

S 7→ A c

A x 7→ a x (A (b x))

more complex expressions generated by

• expansion of grammar nonterminals

• β-reduction

limit of expressions exists, defines tree

S ⇒ A c

⇒ (a x (A b x))[c/x ]

= a c (A (b c))

⇒ a c (a x (A (b x)))[(b c/x ]

= a c (a (b c) (A (b b c)))

. . .

a

c a

b

c

a

b

b

c

A (b b c)



E. Alsmann, F. Bruse: Real-Time Higher-Order Recursion Schemes 3

Model-Checking for HORS

parity tree automata (APT):

• acceptance explained as two-player game between verifier and spoiler

• play of game defines labeling of path in tree by states of APT

• infinite plays decided by parity condition

model-checking problem for HORS: given a HORS G and an APT A, does A accept
the tree generated by G?

Prop.: (Ong’06) For order-k HORS, the HORS model-checking problem is
k-EXPTIME-complete.

order of a HORS: order of highest type of argument, e.g.,

• order 1: set of trees,

• order 2: set of trees → set of trees,

• . . .
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The Challenge of Dense Linear Time and Higher-Order

trees generated by HORS yield only qualitative, discrete semantics

no possibility to make fine-grained statements on e.g.,

• the time after which a certain action happens,

• bounded time-frames after which a request must be answered,

• the aggregate length of a sequence of individual actions,

• etc.

potential problems:

• theory of HORS is quite complex

• HORS are genuinely non-regular ⇝ must avoid adding non-regularity of
verification device for decidability reasons

timed automata are well-established, rather simple, and regular in character ⇝ good fit
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Timed Automata

timed automaton introduced as model of real-time systems

example:

ℓ0

s

ℓ1
x=0

s

ℓ2

s, p

ℓ3
x=0

p, q

ℓ4

s, q

ℓ5
y=0

p, q
{x} {y}

{x, y}

semantics explained via clock evaluations (mappings from clocks x, y, . . . to R≥0)

position in TA is pair of location and clock evaluation, e.g., (ℓ0, (x 7→ 1, y 7→ 0.3423))

flow of time (by amount t controlled by verifier, she can:

• move alongside transitions,

• let time flow (increases value of all clocks simultaneously), or

• do arbitrary combinations

flow of time must respect , , and (and t)



E. Alsmann, F. Bruse: Real-Time Higher-Order Recursion Schemes 5

Timed Automata

timed automaton introduced as model of real-time systems

example:

ℓ0

s

ℓ1
x=0

s

ℓ2

s, p

ℓ3
x=0

p, q

ℓ4

s, q

ℓ5
y=0

p, q
{x} {y}

{x, y}

semantics explained via clock evaluations (mappings from clocks x, y, . . . to R≥0)

position in TA is pair of location and clock evaluation, e.g., (ℓ0, (x 7→ 1, y 7→ 0.3423))

flow of time (by amount t controlled by verifier, she can:

• move alongside transitions,

• let time flow (increases value of all clocks simultaneously), or

• do arbitrary combinations

flow of time must respect , , and (and t)



E. Alsmann, F. Bruse: Real-Time Higher-Order Recursion Schemes 5

Timed Automata

timed automaton introduced as model of real-time systems

example:

ℓ0

s

ℓ1
x=0

s

ℓ2

s, p

ℓ3
x=0

p, q

ℓ4

s, q

ℓ5
y=0

p, q
{x} {y}

{x, y}

semantics explained via clock evaluations (mappings from clocks x, y, . . . to R≥0)

position in TA is pair of location and clock evaluation, e.g., (ℓ0, (x 7→ 1, y 7→ 0.3423))

flow of time (by amount t controlled by verifier, she can:

• move alongside transitions,

• let time flow (increases value of all clocks simultaneously), or

• do arbitrary combinations

flow of time must respect , , and (and t)



E. Alsmann, F. Bruse: Real-Time Higher-Order Recursion Schemes 5

Timed Automata

timed automaton introduced as model of real-time systems

example:

ℓ0

s

ℓ1
x=0

s

ℓ2

s, p

ℓ3
x=0

p, q

ℓ4

s, q

ℓ5
y=0

p, q
{x} {y}

{x, y}

semantics explained via clock evaluations (mappings from clocks x, y, . . . to R≥0)

position in TA is pair of location and clock evaluation, e.g., (ℓ0, (x 7→ 1, y 7→ 0.3423))

flow of time (by amount t controlled by verifier, she can:

• move alongside transitions,

• let time flow (increases value of all clocks simultaneously), or

• do arbitrary combinations

flow of time must respect , , and (and t)



E. Alsmann, F. Bruse: Real-Time Higher-Order Recursion Schemes 5

Timed Automata

timed automaton introduced as model of real-time systems

example:

ℓ0

s

ℓ1
x=0

s

ℓ2

s, p

ℓ3
x=0

p, q

ℓ4

s, q

ℓ5
y=0

p, q
{x} {y}

{x, y}

semantics explained via clock evaluations (mappings from clocks x, y, . . . to R≥0)

position in TA is pair of location and clock evaluation, e.g., (ℓ0, (x 7→ 1, y 7→ 0.3423))

flow of time (by amount t controlled by verifier, she can:

• move alongside transitions,

• let time flow (increases value of all clocks simultaneously), or

• do arbitrary combinations

flow of time must respect location invariants, guards, and resets (and t)



E. Alsmann, F. Bruse: Real-Time Higher-Order Recursion Schemes 5

Timed Automata

timed automaton introduced as model of real-time systems

example:

ℓ0

s

ℓ1
x=0

s

ℓ2

s, p

ℓ3
x=0

p, q

ℓ4

s, q

ℓ5
y=0

p, q
{x} {y}

{x, y}

semantics explained via clock evaluations (mappings from clocks x, y, . . . to R≥0)

position in TA is pair of location and clock evaluation, e.g., (ℓ0, (x 7→ 1, y 7→ 0.3423))

flow of time (by amount t controlled by verifier, she can:

• move alongside transitions,

• let time flow (increases value of all clocks simultaneously), or

• do arbitrary combinations

flow of time must respect location invariants, guards, and resets (and t)



E. Alsmann, F. Bruse: Real-Time Higher-Order Recursion Schemes 5

Timed Automata

timed automaton introduced as model of real-time systems

example:

ℓ0

s

ℓ1
x=0

s

ℓ2

s, p

ℓ3
x=0

p, q

ℓ4

s, q

ℓ5
y=0

p, q
{x} {y}

{x, y}

semantics explained via clock evaluations (mappings from clocks x, y, . . . to R≥0)

position in TA is pair of location and clock evaluation, e.g., (ℓ0, (x 7→ 1, y 7→ 0.3423))

flow of time (by amount t controlled by verifier, she can:

• move alongside transitions,

• let time flow (increases value of all clocks simultaneously), or

• do arbitrary combinations

flow of time must respect location invariants, guards, and resets (and t)



E. Alsmann, F. Bruse: Real-Time Higher-Order Recursion Schemes 5

Timed Automata

timed automaton introduced as model of real-time systems

example:

ℓ0

s

ℓ1
x=0

s

ℓ2

s, p

ℓ3
x=0

p, q

ℓ4

s, q

ℓ5
y=0

p, q
{x} {y}

{x, y}

semantics explained via clock evaluations (mappings from clocks x, y, . . . to R≥0)

position in TA is pair of location and clock evaluation, e.g., (ℓ0, (x 7→ 1, y 7→ 0.3423))

flow of time (by amount t controlled by verifier, she can:

• move alongside transitions,

• let time flow (increases value of all clocks simultaneously), or

• do arbitrary combinations

flow of time must respect location invariants, guards, and resets (and t)



E. Alsmann, F. Bruse: Real-Time Higher-Order Recursion Schemes 6

The Plan

goal: incorporate real-time semantics onto HORS using timed automata . . .

. . . without giving up established theory of HORS model-checking

proposal:

• annotate tree constructors by intervals (intuition: duration of an action)

• add timed automata as extra verification device alongside APT

main challenges:

• timed automata invented as models of systems, not as verification device

• need meaningful interaction between timed automaton and APT for useful
specifications
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Construction Details

timed HORS:

• tree constructors annotated by intervals

• only finitely many intervals appear due to finiteness of grammar

timed automaton:

• standard TA model, but semantics controlled by verifier

• propositions same as state set of APT

• when time flows, only locations enabled that are labeled by current APT state

timed APT:

• transition function depends on (untimed) tree label, current state, and clock
evaluations of TA

• presentation finite due to only finitely many clock constraints allowed

general flow of acceptance game:

• verifier lets time flow according to current tree label

• then APT transitions
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Example

ℓ0

s

ℓ1
y=0

s, pw , pc

ℓ2

pw

ℓ3
y=0

pw , pc

ℓ4

pc

ℓ5
y=0

pw , pc{y}
{x, y}

{y}

{x, y}

{y}

{x, y}

{x, y}

APT:

δ(s, , a) = (s, s, s)

δ( , x > 4, ) = ⊥ δ( , x ≤ 4, c) = (pc)

δ( , x ≤ 4, e) = ⊤ δ( , x ≤ 4,w) = (pw )

APT state: TA location: clock values: tree address:
s ℓ0 x 7→ 0, y 7→ 0 ϵ
s ℓ1 x 7→ 0, y 7→ 0 2
s ℓ1 x 7→ 1.4, y 7→ 0 2 · 0
pc ℓ5 x 7→ 3.2, y 7→ 0 2 · 0 · 0
pw ℓ5 x 7→ 3.2, y 7→ 0 2 · 0 · 0 · 0
pw ℓ3 x 7→ 5.4, y 7→ 0 2 · 0 · 0 · 0 · 0
??? ℓ3 x 7→ 5.4, y 7→ 0 2 · 0 · 0 · 0 · 0

timed HORS:

S 7→ T (F e) (G e)

T x y 7→ a[0,0] x y (T (F y)(G x))

F z 7→ c[1,2] w[3,4] z

G t 7→ w[2,3] z

a[0,0]

c[1,2]

w[3,4]

e

w[2,3]

e

a[0,0]

c[1,2]

w[3,4]

w[2,3]

e

w[2,3]

c[1,2]

w[3,4]

e

a[0,0]

...
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F z 7→ c[1,2] w[3,4] z

G t 7→ w[2,3] z

a[0,0]

c[1,2]

w[3,4]

e

w[2,3]

e

a[0,0]

c[1,2]

w[3,4]

w[2,3]

e

w[2,3]

c[1,2]

w[3,4]

e

a[0,0]

...
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Upper Bounds for Timed-HORS Model-Checking

Theorem 1

Model-checking order-k timed HORS is in (k + 1)-EXPTIME

Proof sketch:
• discretize state space generated by timed automaton ⊣ via (well-known)
region-graph construction (yields graph R(A))

• incorporate resulting graph into APT (⇝ exponential blowup)

tAPT P, TA A

timed HORS G

APT P × R(A)

untimed HORS G′
lin.

exp.

lin.

main difficulty:
• interaction to let time flow cannot be added directly into APT logic
• needs to be emulated on grammar side via gadgets
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Lower Bound for k = 1

Theorem 2

Model-Checking order-1 timed HORS is 2-EXPTIME-complete.

Prop.: (Chandra, Kozen, Stockmeyer) acceptance of a 2-EXPTIME DTM on input w

witnessed by 22
|w| × 22

|w|
table listing the configurations in order

# q0, i n p u t □ . . . □ #

# a n, q1 p u t □ . . . □ #

#
...

...
...

...
...

...
...

... #

# #

#
...

...
...

...
...

...
...

... #

# qf ,□ □ □ □ □ □ □ □ #

important observation: whether a cell of the table contains an entry depends only on

• boundary conditions (# on sides, first and last row), and

• the cells directly or diagonally above the cell in question

⇝ existence of a table can be checked recursively checking for local consistency!
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Counting with HORS, APT and TA

• working with an acc. witnessing table requires encoding numbers in [0, 22
|w| − 1]

• re-use idea from TIME’22 [B./Lange]: integral clock values in [0, 2|w | − 1] as bits

Lemma 1: There is an APT that implements Boolean logic over a suitable HORS
(including negation!)

Lemma 2: Quantification over bits (= clock values) is possible using a TA.

Lemma 3: Manipulation of numbers in [0, 22
|w| − 1] is possible using a suitable timed

APT, TA and timed HORS.

Lemma 4: The logical structure of an acc. witnessing table can be encoded into (the
tree generated by) a timed HORS, using Lemma 3 for indexing of cells.

Proof of Theorem 2: verify structure of tree from Lemma 4 using an extension if the
APT from Lemma 1, and the TA from Lemma 2/3.
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Conclusion

results

• introduced real-time HORS

• first combination of higher-order structures and real-time mechanics

• upper bound as expected: adding real time costs one exponential (cf. [B./Lange
Time’21,’22]

• lower bound for k = 1: added exponential is unavoidable

future work:
• find specification logic in place of APT and timed automata (likely version of
timed µ-calculus)

• requires TA in universal semantics (i.e., spoiler can also control flow of time)

• lower bound for all k

• practical implementation (zone graphs and higher order?)

Questions? On to the wine and cheese!
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