
Robust Execution of Probabilistic STNs

Luke Hunsberger1 Roberto Posenato2

1Department of Computer Science, Vassar College, Poughkeepsie, NY USA

2Department of Computer Science, University of Verona, Verona, Italy

TIME 2024
October 28–30, 2024
Montpellier, France



Probabilistic Simple Temporal Network (PSTN)

Probabilistic Simple Temporal Network (PSTN) [8]:
a data structure for representing and reasoning about events
and actions with uncertain durations, modeled using continuous
probability density functions.

A C

A1 C1

3
2

21

L. Hunsberger, R. Posenato Robust Execution of Probabilistic STNs 1 / 18



Executing PSTN

In the literature, there are approaches to manage the uncertainty
during execution by approximating a PSTN by an STNU*, and
then using an STNU execution strategy to execute the PSTN.

A C

A1 C1

3
2

21

⇒ approximation ⇒ A C

A1 C1

c:1
C: −5

c:1
C: −5

3
2

21

*Simple Temporal Network with Uncertainty [6]
L. Hunsberger, R. Posenato Robust Execution of Probabilistic STNs 2 / 18



Executing PSTN
Previous Approximation Approaches

MIT researchers proposed to approximate PSTNs by STNUs
“choosing bounds for the approximating STNU’s contingent links
that capture as much probability mass of the probabilistic
durations as possible while preserving the strong STNU’s
controllability (SC) [1, 11, 9]
In this way, it is possible to execute the PSTN with a SC STNU
scheduler (that is an off-line scheduler!)

Two limitations:
pdf s can have infinite tails
⇒ successfully executing a PSTN cannot be guaranteed.
Strong Controllability is very restrictive!

*If (A, x, y ,C) is a contingent link approximating a probabilistic duration (A,C, p),
then the probability mass captured by the contingent link is

∫ y
x p(t )dt = F (y)− F (x),

where F is the associated cumulative distribution function (cdf) for p.
L. Hunsberger, R. Posenato Robust Execution of Probabilistic STNs 3 / 18



Approximating a PSTN by a DC STNU
More recent approach

Wang [10] proposed an iterative method to approximate a PSTN
by a dynamically controllable (DC) STNU:
(1) Use a non-linear optimization (NLO) solver to generate fixed bounds

for the STNU’s contingent links that capture as much of the
probability mass of the PSTN’s durations as possible while also
satisfying the ordinary constraints of the STNU.

(2) Use Morris’ O(n4)-time DC-checking algorithm, modified to find a
semi-reducible negative (SRN) cycle for non-DC networks.

(3) If an SRN cycle found, resolve it by inserting additional constraints,
then go back to Step 1.

A C

A1 C1

3
2

21

⇒ approximation ⇒ A C

A1 C1

c:0
C: −6

c:0
C: −6

3
2

21

NOT DC!

A C

A1 C1

3
2

21

⇒ approximation ⇒ A C

A1 C1

c:1
C: −5

c:1
C: −4

3
2

21

DC!

L. Hunsberger, R. Posenato Robust Execution of Probabilistic STNs 4 / 18



Approximating a PSTN by a DC STNU
More recent approach

To solve an SRN cycle, Wang’s approach requires inserting
potentially very many disjunctive constraints;
We proved that this can lead to sequences of nearly identical
iterations of the optimize/DC-check/resolve process.
Moreover, the methods does not consider the possibility of magic
loops (i.e., cycles of exponential number of repeated contingent
links constraints).
Interesting approach, but the lack of details precludes a proper
evaluation.

L. Hunsberger, R. Posenato Robust Execution of Probabilistic STNs 5 / 18



Approximating a PSTN by a DC STNU
Our Approach for generating the approximating STNU

Although we follow the same general approach of approximating a PSTN by
a STNU, we propose the following significant improvements:

use the FindSRNC algorithm [3] to detect when the approximating STNU
is not DC (instead of Morris14!);
solve negative cycles maximizing the combined probability mass of the
probabilistic durations captured by the STNU’s contingent links;
regarding resolving negative cycles in non-DC STNUs, we formally
proved that many of the constraints used by others when generating the
STNU approximation are unnecessary;
use the recent and fast minDispESTNU algorithm [4] to compute an
equivalent dispatchable ESTNU† having a minimal number of edges;

†ESTNU = Extended STNU (includes wait constraints)
L. Hunsberger, R. Posenato Robust Execution of Probabilistic STNs 6 / 18



Executing a PSTN by a DC STNU

Use the flexible and efficient RTE∗ algorithm [5], proposed for
STNUs, to execute the PSTN in real time (considering the
dispatchable ESTNU).

RTE∗ allows the use of different execution strategies like midpoint
strategy, earliest-first strategy, etc.

The strategy’s flexibility enables it to react to observations of
probabilistic durations, even those that fall outside the fixed bounds
of the corresponding contingent links.

We think the midpoint strategy improves execution by adjusting to
unexpected durations outside the STNU’s fixed bounds.

L. Hunsberger, R. Posenato Robust Execution of Probabilistic STNs 7 / 18



Executing a PSTN by a DC STNU
Example

A C

A1 C1

c:1
C: −5

c:1
C: −2

3
2

21

⇒Dispatchable Version ⇒ A C

A1 C1

c:1
C: −5

c:1
C: −2

C:−3 0

L. Hunsberger, R. Posenato Robust Execution of Probabilistic STNs 8 / 18



Executing a PSTN by a DC STNU
Example

RTE∗ with midpoint strategy execution
A C

A1 C1

c:1
C: −5

c:1
C: −2

C: −3 0

⇒ Time 0 ⇒ A[0] C1...5

A[3,5]
1 C4...7

1

c:1
C: −5

c:1
C: −2

C: −3 0

L. Hunsberger, R. Posenato Robust Execution of Probabilistic STNs 9 / 18



Executing a PSTN by a DC STNU
Example

RTE∗ with midpoint strategy execution
A[0] C1...5

A[3,5]
1 C4...7

1

c:1
C: −5

c:1
C: −2

C: −3 0

⇒ Time 4 ⇒ A[0] C4...5

A[4]1 C5...6
1

c:1
C: −5

c:1
C: −2

L. Hunsberger, R. Posenato Robust Execution of Probabilistic STNs 10 / 18



Executing a PSTN by a DC STNU
Example

RTE∗ with midpoint strategy execution
C is still not occurring,

while C1 occurred correctly!

A[0] C4...5

A[4]1 C5...6
1

c:1
C: −5

c:1
C: −2

⇒ Time 6 ⇒ A[0] C ...

A[4]1 C [6]1

c:1
C: −5

c:1
C: −2

L. Hunsberger, R. Posenato Robust Execution of Probabilistic STNs 11 / 18



Executing a PSTN by a DC STNU
Example

RTE∗ with midpoint strategy execution
C is occurred outside its allowed range...,

but constraint are still satisfied!

A[0] C ...

A[4]1 C [6]1

c:1
C: −5

c:1
C: −2

⇒ Time 7 ⇒ A[0] C [7]

A[4]1 C [6]1

c:1
C: −5

c:1
C: −2

3
2

21

L. Hunsberger, R. Posenato Robust Execution of Probabilistic STNs 12 / 18



Simple Temporal Networks with Uncertainty (STNUs)
Recent Relevant Algorithms for STNUs

1 FindSRNC solves the STNU DC-checking problem for STNUs,
returning a semi-reducible negative (SRN) cycle when the input
is not DC, in time O(mn + k2n + kn logn) [3].

2 FDSTNU solves the STNU DC-checking problem, returning an
equivalent dispatchable ESTNU when the input is DC in time
O(mn + k2n + kn logn). [2].

3 minDispESTNU returns a minimal dispatchable version of an
ESTNU in time O(n3) [4]

4 RTE∗ executes an ESTNU in time O(m + kn log(kn)) [5].

†n = #timepoints; m = #constraints; k = #contingent links.
L. Hunsberger, R. Posenato Robust Execution of Probabilistic STNs 13 / 18



Proof of Concept
Overview

We implemented our algorithm inside the CSTNU Tool [7].
Then, we experimentally evaluated the robust execution of PSTNs
by:

generating random PSTN instances (we transformed random
non-DC STNUs into PSTNs by assigning log-normal distributions to
the contingent links);

determining the approximating STNU using genApproxSTNU;

executing PSTNs using the RTE∗ algorithm based on the
approximating STNU, converted to a dispatchable STNU
— durations for the probabilistic links were determined according to
their distributions.

The percentage of successful executions across random trials
provides a measure of the PSTN’s robustness.

L. Hunsberger, R. Posenato Robust Execution of Probabilistic STNs 14 / 18



Proof of Concept
Results of generating DC approximating STNUs for PSTNs

Results using genApproxSTNU to generate DC
approximating STNUs for PSTNs

#PSTNs n k m exTime [s] optTime [s] #NLOprobs %probMass
24 500 50 1558 0.191 0.141 0.96 77
24 1000 100 3136 0.223 0.042 1.00 67
14 1500 150 4713 0.573 0.100 1.21 43
17 2000 200 6289 0.914 0.046 1.11 53

“exTime” is the average time to execute genApproxSTNU;
“optTime” is the average time spent to execute nlpOpt;
“#NLOprobs” is the average number of calls to nlpOpt;
“%probMass” is the average probability mass of the probabilistic links
captured by the approximating STNU;

As expected, the % of the probability mass captured by the approximating
STNU fell as the number of contingent durations increased since the
cumulative probability mass is a product of the probability masses.

L. Hunsberger, R. Posenato Robust Execution of Probabilistic STNs 15 / 18



Proof of Concept
Result of PSTNs execution

We ran the RTE∗ algorithm 200 times on each dispatchable STNU,
where the contingent durations were obtained by randomly
sampling the associated log-normal distributions (15800
executions in total).
To test the impact of the execution strategy on the rate of
successful execution, we executed each network in the same
situation (i.e., durations) twice: once with the earliest-first strategy
and once with the midpoint strategy

L. Hunsberger, R. Posenato Robust Execution of Probabilistic STNs 16 / 18



Proof of Concept
Results RTE∗ execution on PSTNs

Earliest-First (EF) vs. Midpoint (MP)
#PSTNs n k m execTP

(µs)
%trials-
in succ

EF MP

%trials-
out succ
EF MP

%trials-
out fail

EF MP
24 500 50 2500 9.16 73 73 5 5 22 22
24 1000 100 5119 14.98 66 66 8 6 26 28
14 1500 150 7883 26.14 58 58 4 7 38 35
17 2000 200 106522 31.05 53 53 8 8 39 39

‘%trials-in succ” = % trials all sampled durations are within the respective ctg. bounds;
“%trials-out succ” = % of trials where ≥ 1 ctg. durations are outside the bounds, but the
execution succeeded anyway!

“%probMass” in Table 1 and “%trials-in succ” here confirm the prob.
mass captured by STNU’s ctg. links is = situations with successful exec.
Not clear if EF or MP execution strategy can increase the rate of
successful executions (the # different PSTNs is limited).
The results provide evidence that the RTE∗ algorithm makes it possible
to have successful executions even when one or more contingent
durations are outside the STNU’s bounds.

L. Hunsberger, R. Posenato Robust Execution of Probabilistic STNs 17 / 18



Conclusion

We propose:
a new approach to the robust execution of PSTNs that takes
advantage of several recent efficient algorithms;

a new algorithm to generate an approximating STNU that aims to
maximize the combined probability mass of the PSTN’s
probabilistic durations while maintaining the dynamic
controllability of the STNU;

a formal analysis of SRN cycles that provided new insights into
how to efficiently resolve them while avoiding issues arising in
past approaches;

an empirical evaluation of our approach provides evidence of its
effectiveness on robustly executing PSTNs derived from a publicly
available benchmark.

L. Hunsberger, R. Posenato Robust Execution of Probabilistic STNs 18 / 18



References I

[1] Cheng Fang, Peng Yu, and Brian C. Williams.
Chance-constrained probabilistic simple temporal problems.
In 28th AAAI Conference on Artificial Intelligence (AAAI-2014),
volume 3, pages 2264–2270, 2014.
doi:10.1609/aaai.v28i1.9048.

[2] Luke Hunsberger and Roberto Posenato.
A Faster Algorithm for Converting Simple Temporal Networks with
Uncertainty into Dispatchable Form.
Information and Computation, 293(105063):1–21, 2023.
doi:10.1016/j.ic.2023.105063.

[3] Luke Hunsberger and Roberto Posenato.
A Faster Algorithm for Finding Negative Cycles in Simple Temporal
Networks with Uncertainty.
In 31st International Symposium on Temporal Representation and
Reasoning (TIME 2024), volume 318 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 9:1–9:15, 2024.

L. Hunsberger, R. Posenato Robust Execution of Probabilistic STNs 1 / 5

https://doi.org/10.1609/aaai.v28i1.9048
https://doi.org/10.1016/j.ic.2023.105063


References II

doi:10.4230/LIPIcs.TIME.2024.9.
[4] Luke Hunsberger and Roberto Posenato.

Faster Algorithm for Converting an STNU into Minimal Dispatchable
Form.
In 31st International Symposium on Temporal Representation and
Reasoning (TIME 2024), volume 318 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 11:1–11:14, 2024.
doi:10.4230/LIPIcs.TIME.2024.11.

[5] Luke Hunsberger and Roberto Posenato.
Foundations of Dispatchability for Simple Temporal Networks with
Uncertainty.
In 16th International Conference on Agents and Artificial Intelligence
(ICAART 2024), volume 2, pages 253–263. SCITEPRESS, 2024.
doi:10.5220/0012360000003636.

L. Hunsberger, R. Posenato Robust Execution of Probabilistic STNs 2 / 5

https://doi.org/10.4230/LIPIcs.TIME.2024.9
https://doi.org/10.4230/LIPIcs.TIME.2024.11
https://doi.org/10.5220/0012360000003636


References III

[6] Paul Morris, Nicola Muscettola, and Thierry Vidal.
Dynamic control of plans with temporal uncertainty.
In 17th Int. Joint Conf. on Artificial Intelligence (IJCAI-2001),
volume 1, pages 494–499, 2001.
URL: https://www.ijcai.org/Proceedings/01/IJCAI-2001-e.pdf.

[7] Roberto Posenato.
CSTNU Tool: A Java library for checking temporal networks.
SoftwareX, 17:100905, 2022.
doi:10.1016/j.softx.2021.100905.

[8] Ioannis Tsamardinos.
A probabilistic approach to robust execution of temporal plans with
uncertainty.
In Methods and Applications of Artificial Intelligence (SETN 2002),
volume 2308 of Lecture Notes in Artificial Intelligence (LNAI), pages
97–108, 2002.
doi:10.1007/3-540-46014-4_10.

L. Hunsberger, R. Posenato Robust Execution of Probabilistic STNs 3 / 5

https://www.ijcai.org/Proceedings/01/IJCAI-2001-e.pdf
https://doi.org/10.1016/j.softx.2021.100905
https://doi.org/10.1007/3-540-46014-4_10


References IV

[9] Andrew Wang and Brian C. Williams.
Chance-Constrained Scheduling via Conflict-Directed Risk Allocation.
In 29th Conference on Artificial Intelligence (AAAI-2015), volume 29,
2015.
doi:10.1609/aaai.v29i1.9693.

[10] Andrew J. Wang.
Risk-bounded Dynamic Scheduling of Temporal Plans.
PhD thesis, Massachusetts Institute of Technology, 2022.
URL: https://hdl.handle.net/1721.1/147542.

[11] Peng Yu, Cheng Fang, and Brian Charles Williams.
Resolving uncontrollable conditional temporal problems using
continuous relaxations.
In 24th International Conference on Automated Planning and
Scheduling, ICAPS 2014. AAAI, 2014.
doi:10.1609/icaps.v24i1.13623.

L. Hunsberger, R. Posenato Robust Execution of Probabilistic STNs 4 / 5

https://doi.org/10.1609/aaai.v29i1.9693
https://hdl.handle.net/1721.1/147542
https://doi.org/10.1609/icaps.v24i1.13623


Probabilistic Simple Temporal Network (PSTN)

Differently from many previous works, we assume that such pdf s
are log-normal distributions because they better represent the
concept of uncertain action duration.

−2 0 2 4 6 8
0

0.2

0.4

0.6

Normal pdf
µ = 2 and σ = 1

Log-normal pdf
µ = 0.58 and σ = 0.47
Mean of log-normal

L. Hunsberger, R. Posenato Robust Execution of Probabilistic STNs 5 / 5


	Overview
	Flexible and Efficient Real-Time Execution
	Proof of Concept
	Conclusion
	Appendix
	References


