Strategic Reasoning under Imperfect Information with synchronous semantics

> Sophie Pinchinat IRISA, Université de Rennes

TIME 2024

3 Remarkable Propositional Action Models

Where is Imperfect Information?

Consider the coordinated attack problem

Famous problem in the distributed systems literature

[R. Fagin, J.Y. Halpern, Y. Moses, and M.Y. Vardi. Reasoning about Knowledge. MIT Press, 1995.]

• General a and Messenger are initially together

- General a and Messenger are initially together
- General a has decided to attack at dawn, but General b does not have this information (yet)

- General a and Messenger are initially together
- General a has decided to attack at dawn, but General b does not have this information (yet)

 \Rightarrow General b has imperfect information about the initial situation

- General a and Messenger are initially together
- General a has decided to attack at dawn, but General b does not have this information (yet)

 \Rightarrow General b has imperfect information about the initial situation

• General a sends Messenger to tell General b

- General a and Messenger are initially together
- General a has decided to attack at dawn, but General b does not have this information (yet)

 \Rightarrow General b has imperfect information about the initial situation

General a sends Messenger to tell General b
⇒ General a has imperfect information about the event taking

place: "Messenger Arrived" or "Messenger caught"?

Observing and making decision under II Knowledge is around...

• An agent can be uncertain about the actual situation (e.g. General b about the intention of General a to attack at dawn)

Uncertainty = indistinguishability of some situations

• After some event, uncertainty may

shrink \searrow or grow \nearrow

Observing and making decision under II Knowledge is around...

• An agent can be uncertain about the actual situation (e.g. General b about the intention of General a to attack at dawn)

Uncertainty = indistinguishability of some situations

• After some event, uncertainty may

shrink \ or grow /

Decision only depends on what is known

Observing and making decision under II Knowledge is around...

• An agent can be uncertain about the actual situation (e.g. General b about the intention of General a to attack at dawn)

Uncertainty = indistinguishability of some situations

• After some event, uncertainty may

shrink \searrow or grow \nearrow

Decision only depends on what is known

₿

Same decisions in indistinguishable situations

• Observation of the game positions

- Observation of the game positions
- Memory along plays/histories

- Observation of the game positions
- Memory along plays/histories

Formal settings:

• Observation in position = (some of) atomic facts

- Observation of the game positions
- Memory along plays/histories

Formal settings:

- Observation in position = (some of) atomic facts
- Remembering along histories = recall

- Observation of the game positions
- Memory along plays/histories

Formal settings:

- Observation in position = (some of) atomic facts
- Remembering along histories = recall
 - Perfect Recall: remember all they observed and actions they took.
 - Imperfect Recall: all the rest

e.g. memoryless

Game Arenas (1/2)

Definition

Game arena $G = (Pos, Pos_I, Act, \delta, (\sim a)_{a \in Agt}, \lambda)$

- *Pos* positions, $Pos_I \subseteq Pos$
- Act actions
- δ : *Pos* × *Act* → *Pos* moves

Plays \subseteq (*Pos_I*.*Act*)^{ω} Histories $h \in$ *Hist* \subseteq *Pos_I*.(*Act*.*Pos*)^{*}

• indistinguishability relation of agent $a \in Agt$

 $\sim_a \subseteq Pos \times Pos \cup (Act \cup \{\epsilon\}) \times (Act \cup \{\epsilon\})$

• $\lambda : Pos \rightarrow 2^{AP}$ valuation function for atomic facts in positions

- $G = (Pos, Pos_I, Act, \delta, t, (\sim a)_{a \in Agt}, \lambda)$
 - Define $h \sim_a h' \dots$

 $G = (Pos, Pos_I, Act, \delta, t, (\sim a)_{a \in Agt}, \lambda)$

• Define $h \sim_a h' \dots$

Knowledge Agent *a*'s uncertainty in actual situation *h* is $[h]_{\sim_a}$: "Agent *a* knows property φ at history *h*

 $h \models K_a \varphi$ whenever $h' \models \varphi$ for every $h' \in [h]_{\sim_a}$

Indistinguishability relations between histories

Observations/Indistinguishability/Knowledge

• Synchronous Perfect Recall

 $h \sim_a h'$ implies |h| = |h'|

Agents hear ticks

Observations/Indistinguishability/Knowledge

• Synchronous Imperfect Recall

e.g. Memoryless: $h \sim_a h'$ when $last(h) \sim_a last(h')$ and |h| = |h'|.

Observations/Indistinguishability/Knowledge

• Asynchronous Recall

e.g. $Act = \{\alpha, \beta, \gamma\}$ with $\alpha \sim_a \epsilon$

 $\alpha\alpha\beta\alpha\gamma\sim_a\beta\gamma$

- Rational relations = arbitrary finite-state transducers
- Regular relations
- Recognizable relations

- Rational relations = arbitrary finite-state transducers
- Regular relations
- Recognizable relations

- Rational relations = arbitrary finite-state transducers
- Regular relations = synchronous finite-state transducers
- Recognizable relations

- Rational relations = arbitrary finite-state transducers
- Regular relations = synchronous finite-state transducers
- Recognizable relations

- Rational relations = arbitrary finite-state transducers
- Regular relations synchronous finite-state transducers
- Recognizable relations = relations of the form $\bigcup_{i < n} L_i \times L'_i$ with L_i, L'_i 's regular languages

- Rational relations = arbitrary finite-state transducers
- Regular relations synchronous finite-state transducers
- Recognizable relations = relations of the form $\bigcup_{i < n} L_i \times L'_i$ with L_i, L'_i 's regular languages

$Recognizable \subsetneq Regular \subsetneq Rational$

Strategic Reasoning

$_{\bigotimes}$ Here qualitative multi-player infinite-horizon games.

• Two-player games of Perfect Information

- Reachability condition: PTIME
- parity condition: NP∩CO-NP

[R. McNaughton. Infinite games played on finite graphs. Annals of Pure and Applied Logic (1993).]

[W. Zielonka. Infinite games on finitely coloured graphs with applications to automata on infinite trees.

TCS 1998.]

• LTL conditions: 2EXPTIME

[A. Pnueli & R. Rosner. On the Synthesis of an Asynchronous Reactive Module. ICALP 1989]

• Multi-player games of Perfect Information

Decidable, and non-elementary...

$\begin{array}{c} Strategic \ Reasoning \\ \textcircled{P} \ Here \ qualitative \ multi-player \ infinite-horizon \ games. \end{array}$

- Logics for multi-player games Basically, first-order quantifiers over agent strategies
 - Coalition Logic CL model-checking is PTIME-complete [M. Pauly. A Modal Logic for Coalitional Power in Games. 12(1):149–166, 2002.]
 - Alternating-time Temporal Logics ATL* model-checking is 2EXPTIME-complete
 - Strategy Logic SL model-checking is non-elementary
 - ...

Strategic Reasoning under II

• Two-player games is EXPTIME-complete

[J.H. Reif. The complexity of two-player games of incomplete information. JCSC (1984)]

[D. Berwanger et al. Strategy construction for parity games with imperfect information. Information and computation. (2010).]

Strategic Reasoning under II

Two-player games is EXPTIME-complete

[J.H. Reif. The complexity of two-player games of incomplete information. JCSC (1984)]

[D. Berwanger et al. Strategy construction for parity games with imperfect information. Information and computation. (2010).]

• Three-player games are undecidable

[G. Peterson, J.H. Reif, and S. Azhar. Lower bounds for multiplayer noncooperative games of incomplete information. C&M with A.]

[D. Berwanger and Ł. Kaiser. Information tracking in games on graphs. Journal of Logic, Language and Information. (2010).]

Strategic Reasoning under II Logical approaches

• ATL* with Perfect Recall is undecidable

[C. Dima and EL. Tiplea (2011). Model-checking ATL under imperfect information and perfect recall semantics is undecidable. arXiv]

• ATL* with Imperfect Recall is EXPTIME-complete

[PY. Schobbens, Alternating-time logic with imperfect recall. Electronic Notes in Theoretical Computer Science (2004)]

• ATL*/SL with Perfect Recall and Hierarchical Information is non-elementary (R. Berthon, B. Maubert, A. Murano, S. Rubin, and M.Y. Vardi. 2021. Strategy Logic with Imperfect Information. ACM Trans. Comput. Log. 22(1) (2021)]

Strategic Reasoning under II Logical approaches

• ATL* with Perfect Recall is undecidable

[C. Dima and EL. Tiplea (2011). Model-checking ATL under imperfect information and perfect recall semantics is undecidable. arXiv]

• ATL* with Imperfect Recall is EXPTIME-complete

[PY. Schobbens, Alternating-time logic with imperfect recall. Electronic Notes in Theoretical Computer Science (2004)]

• ATL*/SL with Perfect Recall and Hierarchical Information is non-elementary [R. Berthon, B. Maubert, A. Murano, S. Rubin, and M.Y. Vardi. 2021. Strategy Logic with Imperfect Information. ACM Trans. Comput. Log. 22(1) (2021)]

• Loop μ -calculus (for asynchoronous setting) undecidable

[S.P. & S. Riedweg. A decidable class of problems for control under partial observation. IPL (2005)], [X. Briand. Sur la décidabilité de certains problèmes de synthèse de contrôleurs. PhD Thesis, Uni. de Bordeaux (2006)], [A. Arnold and I. Walukiewicz. Nondeterministic controllers of nondeterministic processes. Logic and automata (2008).]
A Setting for Specifying Games of II with Synchronous Perfect Recall

We consider the setting Dynamic Epistemic Logic (DEL)

[H. van Ditmarsch, W. van Der Hoek, and B. Kooi. Dynamic epistemic logic. Springer Science & Business Media, 2007.]

• with II on the position in the arena

 \Rightarrow Epistemic States \mathscr{S}

• with II on taken action in the arena

 \Rightarrow Action Models \mathscr{A}

 $\mathscr{G} \xrightarrow{\mathscr{A}} \mathscr{G}'$

Coordinated attack problem

d = "attack at dawn" and $m_a =$ "Msger with General a"

 $\mathscr{G} \xrightarrow{\mathscr{A}} \mathscr{G}'$

Coordinated attack problem

d = "attack at dawn" and $m_a =$ "Msger with General a"

$$\mathscr{S}: \quad a, b \bigcirc v : \{d, m_a\} \longrightarrow u : \{m_a\} \bigcirc a, b$$

 $\mathscr{G} \xrightarrow{\mathscr{A}} \mathscr{G}'$

Coordinated attack problem: send messenger to tell "d"

 $\mathscr{S}: \quad a, b \bigcup v: \{d, m_a\} \xrightarrow{b} u: \{m_a\} \bigcirc a, b$

 $\mathscr{S} \xrightarrow{\mathscr{A}} \mathscr{S}'$

Coordinated attack problem: send messenger to tell "d"

$$\mathscr{S}: \quad a, b \frown v: \{d, m_a\} \underbrace{b}_{u: \{m_a\}} a, b$$

$$\mathscr{A} \qquad a, b \left(\begin{array}{c} \frac{\text{Arrived}}{\text{pre:} d \land m_a} \\ \text{post:} & \frac{m_a \leftarrow \bot}{m_b \leftarrow \top} \\ \end{array} \right) \xrightarrow{a, b} \left(\begin{array}{c} \text{Caught} \\ \text{pre:} \top \\ \text{post:} & m_a \leftarrow \bot \end{array} \right) a, b$$

 $\mathscr{S} \xrightarrow{\mathscr{A}} \mathscr{S}'$

Coordinated attack problem: send messenger to tell "d"

 $\mathscr{S} \xrightarrow{\mathscr{A}} \mathscr{S}'$

Coordinated attack problem: General a announces "d"

 $\mathscr{S} \xrightarrow{\mathscr{A}} \mathscr{S}'$

Coordinated attack problem: send messager to tell "d"

$$\mathscr{S}: a, b \qquad v: \{d, m_a\} \qquad b \qquad u: \{m_a\} \supset a, b$$

$$\mathscr{A} \qquad a, b \qquad \overset{\text{Arrived}}{\underset{post: \ m_a \leftarrow \bot}{pre: d \land m_a}} \qquad a \qquad \overset{\text{Caught}}{\underset{post: \ m_a \leftarrow \bot}{pre: \top}} a, b$$

$$\mathscr{S}': \qquad (v, \alpha): \{d, m_b\} \qquad a \qquad (v, \alpha'): \{d\} \qquad b \qquad (u, \alpha'): \emptyset$$

$$\bigcup \qquad \bigcup \qquad \bigcup \qquad \bigcup \qquad \bigcup$$

$$a, b \qquad a, b \qquad a, b \qquad a, b$$

 $\mathscr{Q} \xrightarrow{\mathscr{A}} \mathscr{Q}'$

Coordinated attack problem: send messager to tell "d"

 $\mathscr{Q} \xrightarrow{\mathscr{A}} \mathscr{Q}'$

Coordinated attack problem: send messager to tell "d"

From $(\mathcal{S}, \mathcal{A})$ to an infinite tree $G(\mathcal{S}, \mathcal{A})$

The denoted game arena unfolding

.

: :

History $h = v_0 \alpha_1 \alpha_2 \cdots \alpha_n$ with $v_0 \in Pos_I$ and α_i 's $\in Act$ is a position in $G(\mathcal{S}, \mathcal{A})$

 $Hist \subseteq Pos_I.Act^*$

Advantages of focusing on the DEL setting

• The state space is implicit, and might be infinite

contrary e.g. ATL*, SL

- Provides a unifying framework for:
 - epistemic planning
 - strategic reasoning
- It enables to exhibit action types

• Action models that are announcements

Announcement of property φ :

• Action models that are announcements

Announcement of property φ :

• Action models that are public actions

Putting the cube on the table:

• Action models that are announcements

Announcement of property φ :

• Action models that are public actions

Putting the cube on the table:

• Action models that are propositional

$$a, b, c \left(\begin{array}{c} \frac{\alpha}{pre:\varphi} \\ post: p_1 \leftarrow \varphi' \dots \end{array} \right) \xrightarrow{b} \begin{array}{c} \frac{\alpha'}{pre:\psi} \\ post: p_2 \leftarrow \psi' \dots \end{array} \right) a, b$$

with $\varphi, \varphi', \psi, \psi'$ propositional

 $a, b, c \in \frac{\varphi!}{pre:\varphi}$

• Action models that are announcements

Announcement of property φ :

• Action models that are public actions

Putting the cube on the table:

• Action models that are propositional

$$a, b, c \sub{\frac{\alpha}{pre:\varphi}}_{post: p_1 \leftarrow \varphi' \dots} \underbrace{b}_{post: p_2 \leftarrow \psi' \dots} \underbrace{\frac{\alpha'}{pre:\psi}}_{post: p_2 \leftarrow \psi' \dots} a, b$$

with $\varphi, \varphi', \psi, \psi'$ propositional

• Hierarchical information

$$\sim_b \subseteq \sim_a \subseteq \sim_c$$

i.e.: nested indistinguishability relations among agents

Strategic Reasoning in $G(\mathcal{S}, \mathcal{A})$

• Reachability Goals, subcase of Epistemic Planning

[T. Bolander, T. Charrier, S.P. and F. Schwarzentruber. DEL-based Epistemic Planning: Decidability and Complexity. Artificial Intelligence 2020.]

[G. Douéneau-Tabot, S.P. and F. Schwarzentruber. Chain-Monadic Second Order Logic over Regular Automatic

Trees and Epistemic Planning Synthesis. AiML 2018.]

[B. Maubert, S.P. and F. Schwarzentruber. Reachability Games in Dynamic Epistemic Logic. IJCAI 2019.]

• Epistemic Temporal Goals

[B. Maubert, A. Murano, S.P., F. Schwarzentruber, and S. Stranieri. Dynamic Epistemic Logic Games with Epistemic Temporal Goals. ECAI 2020.]

• A setting for Concurrent Games

[B. Maubert, S.P., F. Schwarzentruber, and S. Stranieri. Concurrent Games in Dynamic Epistemic Logic. IJCAI 2020.]

Strategic Reasoning in $G(\mathcal{S}, \mathcal{A})$

• Reachability Goals, subcase of Epistemic Planning

[T. Bolander, T. Charrier, S.P. and F. Schwarzentruber. DEL-based Epistemic Planning: Decidability and Complexity. Artificial Intelligence 2020.]

[G. Douéneau-Tabot, S.P. and F. Schwarzentruber. Chain-Monadic Second Order Logic over Regular Automatic

Trees and Epistemic Planning Synthesis. AiML 2018.]

[B. Maubert, S.P. and F. Schwarzentruber. Reachability Games in Dynamic Epistemic Logic. IJCAI 2019.]

• Epistemic Temporal Goals

[B. Maubert, A. Murano, S.P., F. Schwarzentruber, and S. Stranieri. Dynamic Epistemic Logic Games with Epistemic Temporal Goals. ECAI 2020.]

• A setting for Concurrent Games

[B. Maubert, S.P., F. Schwarzentruber, and S. Stranieri. Concurrent Games in Dynamic Epistemic Logic. IJCAI 2020.]

Input: $(\mathcal{S}, \mathcal{A})$, a position $v_0 \in \mathcal{S}$ and an epistemic formula γ

Input: $(\mathcal{S}, \mathcal{A})$, a position $v_0 \in \mathcal{S}$ and an epistemic formula γ

Input: $(\mathcal{S}, \mathcal{A})$, a position $v_0 \in \mathcal{S}$ and an epistemic formula γ

Input: $(\mathcal{S}, \mathcal{A})$, a position $v_0 \in \mathcal{S}$ and an epistemic formula γ

Input: $(\mathcal{S}, \mathcal{A})$, a position $v_0 \in \mathcal{S}$ and an epistemic formula γ

Input: $(\mathcal{S}, \mathcal{A})$, a position $v_0 \in \mathcal{S}$ and an epistemic formula γ

Input:

 $(\mathscr{S}, \mathscr{A})$, a position $v_0 \in \mathscr{S}$ and an epistemic formula γ

Question: Is there a sequence of actions $\alpha_1, \ldots, \alpha_n$ in \mathscr{A} s.t. $G(\mathscr{S}, \mathscr{A}), v_0 \alpha_1 \dots \alpha_n \models \gamma$?

Theorem

The Epistemic Planning Problem is undecidable.

Input: $(\mathscr{S}, \mathscr{A})$, a position $v_0 \in \mathscr{S}$ and an epistemic formula γ Question: Is there a sequence of actions $\alpha_1, \dots, \alpha_n$ in \mathscr{A} s.t. $G(\mathscr{S}, \mathscr{A}), v_0 \alpha_1 \dots \alpha_n \models \gamma$?

Theorem

The Epistemic Planning Problem is undecidable.

[T. Bolander and M.B. Andersen. Epistemic planning for single and multi-agent systems. J. Appl. Non-Class. Log., 2011.],

[Q. Yu, X. Wen, and Y. Liu. Multi-agent epistemic explanatory diagnosis via reasoning about actions. IJCAI 2013.]

Theorem

The Epistemic Planning Problem is decidable for propositional action models.

[T. Bolander, T. Charrier, S.P. and F. Schwarzentruber. DEL-based Epistemic Planning: Decidability and Complexity. Artificial Intelligence 2020.]

Input: $(\mathscr{S}, \mathscr{A})$, a position $v_0 \in \mathscr{S}$ and an epistemic formula γ

Question: Is there a sequence of actions $\alpha_1, ..., \alpha_n$ in \mathscr{A} s.t. $G(\mathscr{S}, \mathscr{A}), \nu_0 \alpha_1 ... \alpha_n \models \gamma$?

Theorem

The Epistemic Planning Problem is undecidable.

[T. Bolander and M.B. Andersen. Epistemic planning for single and multi-agent systems. J. Appl. Non-Class. Log., 2011.],

[Q. Yu, X. Wen, and Y. Liu. Multi-agent epistemic explanatory diagnosis via reasoning about actions. IJCAI 2013.]

Theorem

The Epistemic Planning Problem is decidable for propositional action models.

[T. Bolander, T. Charrier, S.P. and F. Schwarzentruber. DEL-based Epistemic Planning: Decidability and

Complexity. Artificial Intelligence 2020.]

Remarkable Properties of $G(\mathcal{S}, \mathcal{A})$ with propositional \mathcal{A}

\mathscr{A} with only

 $\frac{\alpha}{pre: \varphi \text{ propositional}}$ $post: \psi \text{ propositional}$

Theorem

For A propositional,

• $G(\mathcal{S}, \mathcal{A})$ is an automatic structure \Rightarrow its F0 theory is decidable

Remarkable Properties of $G(\mathcal{S}, \mathcal{A})$ with propositional \mathcal{A}

A with only

 $\frac{\alpha}{pre: \varphi \text{ propositional}}$ $post: \psi \text{ propositional}$

Theorem

For A propositional,

- $G(\mathcal{S}, \mathcal{A})$ is an automatic structure \Rightarrow its F0 theory is decidable
- $G(\mathcal{S}, \mathcal{A})$ is even a Regular Automatic Tree

⇒ *its* CHAINMSO *theory is decidable*

An example of automatic structure

Structure $\langle \mathbb{N}, \leq \rangle$.

• Encode each $n \in \mathbb{N}$ by $enc(n) = \overbrace{11...1}^{n} = 1^{n}$

• Use the *convolution* \otimes on words, that aligns words:

 $1^2 \otimes 1^3 := \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} \Box \\ 1 \end{pmatrix}$

• Encode $\leq \subseteq \mathbb{N} \times \mathbb{N}$ with automaton (as an SPR relation):

\mathcal{T}_2 is automatic

Complete binary tree $\mathcal{T}_2 = \langle \{1,2\}^*, \texttt{root}, \texttt{suc}_1, \texttt{suc}_2 \rangle$

- Encode nodes *h* as is: $h \in \{1, 2\}^*$ (regular)
- Unary predicate root: use an automaton A_{root} that accepts only empty word;
- $\operatorname{suc}_1(h, h')$ iff h' = h.1

$\mathcal{T}_2^{\texttt{el}}$ is automatic Binary predicate el means "equal level"

Complete binary tree $\mathcal{T}_2^{el} = \langle \{1,2\}^*, \text{root}, \text{suc}_1, \text{suc}_2, \text{el} \rangle$

- Encode nodes *h* as is: $h \in \{1, 2\}^*$ (regular)
- Unary predicate root: use an automaton A_{root} that accepts only empty word;
- $suc_1(h, h')$ iff h' = h.1 and $suc_2(h, h')$ iff h' = h.2
- el(h, h') iff |h| = |h'|

\mathcal{T}_2 is automatic

Complete binary tree $\mathcal{T}_2 = \langle \{1,2\}^*, \texttt{root}, \texttt{suc}_1, \texttt{suc}_2 \rangle$

- Encode nodes *h* as is: $h \in \{1, 2\}^*$ (regular)
- Unary predicate root: use an automaton A_{root} that accepts only empty word;
- $suc_1(h, h')$ iff h' = h.1 and $suc_2(h, h')$ iff h' = h.2

Automatic Structures

Proposition

For propositional $\mathscr{A} = (Act, ...)$ and SPR relations \sim_a ,

 $G(\mathscr{S}, \mathscr{A}) = \langle Hist, \{ \mathtt{suc}_{\alpha} \}_{\alpha \in Act}, \{ \sim_a \}_{a \in Agt}, \ldots \rangle$ is automatic.

• *Hist* \subseteq *Pos*_{*I*}*.Act*^{*} is a regular

Automatic Structures

Proposition

For propositional $\mathscr{A} = (Act, ...)$ and SPR relations \sim_a ,

 $G(\mathscr{S}, \mathscr{A}) = \langle Hist, \{ \mathtt{suc}_{\alpha} \}_{\alpha \in Act}, \{ \sim_a \}_{a \in Agt}, \ldots \rangle \text{ is automatic.}$

- *Hist* \subseteq *Pos*_{*I*}*.Act*^{*} is a regular
 - \land It is not the case for action models where preconditions have knowledge modalities of ≥ 1 -alternation-depth.

[T. Charrier, B. Maubert, F. Schwarzentruber: On the Impact of Modal Depth in Epistemic Planning. IJCAI 2016.]
Automatic Structures

Proposition

For propositional $\mathscr{A} = (Act, ...)$ and SPR relations \sim_a ,

 $G(\mathscr{S}, \mathscr{A}) = \langle Hist, \{ suc_{\alpha} \}_{\alpha \in Act}, \{ \sim_a \}_{a \in Agt}, \ldots \rangle$ is automatic.

- *Hist* \subseteq *Pos*_{*I*}*.Act*^{*} is a regular
 - ▲ It is not the case for action models where preconditions have knowledge modalities of ≥ 1 -alternation-depth.
 - \land Long standing open question for preconditions with alternation-depth = 1

Automatic Structures

Proposition

For propositional $\mathscr{A} = (Act, ...)$ and SPR relations \sim_a ,

 $G(\mathscr{S},\mathscr{A}) = \langle Hist, \{ \mathtt{suc}_{\alpha} \}_{\alpha \in Act}, \{ \sim_a \}_{a \in Agt}, \ldots \rangle \text{ is automatic.}$

- *Hist* \subseteq *Pos*_{*I*}*.Act*^{*} is a regular
 - \land It is not the case for action models where preconditions have knowledge modalities of ≥ 1 -alternation-depth.
 - \land Long standing open question for preconditions with alternation-depth = 1
- $\operatorname{suc}_{\alpha}$ is made of pairs (h, h') with $h' = h.\alpha$

Automatic Structures

Proposition

For propositional $\mathscr{A} = (Act, ...)$ and SPR relations \sim_a ,

 $G(\mathscr{S},\mathscr{A}) = \langle Hist, \{ \mathtt{suc}_{\alpha} \}_{\alpha \in Act}, \{ \sim_a \}_{a \in Agt}, \ldots \rangle \text{ is automatic.}$

- *Hist* \subseteq *Pos*_{*I*}*.Act*^{*} is a regular
 - ▲ It is not the case for action models where preconditions have knowledge modalities of ≥ 1-alternation-depth.
 - \land Long standing open question for preconditions with alternation-depth = 1
- $\operatorname{suc}_{\alpha}$ is made of pairs (h, h') with $h' = h.\alpha$
- Remind \sim_a when SPR is:

Automaton for relation $\Phi^{\mathcal{M}}$ \mathcal{M} automatic and $\Phi \in Fo$

 $\Phi^{\mathcal{M}} := \{ (d_1 \dots d_n) \in Dom^n \mid \mathcal{M}, [x_i \mapsto d_i] \models \Phi(x_1 \dots x_n) \}$

Proposition

Given \mathcal{M} automatic = $(\mathbf{A}_{Dom}, \mathbf{A}_1, \dots, \mathbf{A}_k)$ and $\Phi \in FO$, there is an effective construction \mathbf{A}_{Φ} that recognizes $\Phi^{\mathcal{M}}$.

Inductive construction over Φ :

Formula	Automaton		
$R_i(x_1\ldots x_{r_i})$	\mathbf{A}_i (given)		
$\neg \Phi$	complement \mathbf{A}_{Φ}		
$\Phi \wedge \Psi$	intersect \mathbf{A}_{Φ} and \mathbf{A}_{Ψ}		
$\exists x \Phi$	$\exists x \Phi$ ignore tape content for x in \mathbf{A}_{Φ}		

Automaton for relation $\Phi^{\mathcal{M}}$ \mathcal{M} automatic and $\Phi \in Fo$

 $\Phi^{\mathcal{M}} := \{ (d_1 \dots d_n) \in Dom^n | \mathcal{M}, [x_i \mapsto d_i] \models \Phi(x_1 \dots x_n) \}$

Proposition

Given \mathcal{M} automatic = $(\mathbf{A}_{Dom}, \mathbf{A}_1, \dots, \mathbf{A}_k)$ and $\Phi \in Fo$, there is an effective construction \mathbf{A}_{Φ} that recognizes $\Phi^{\mathcal{M}}$.

Theorem

Model-checking automatic structures against F0 is decidable.

[A. Blumensath, and E. Gradel. Automatic structures. LICS 2000.]

[B. Khoussainov and A. Nerode. Effective properties of finitely generated re algebras. In Feasible Mathematics II (1995).]

- Translate $K_a p$ into Fo: $tr(K_a p)(x) = \exists z (\sim_a (x, z) \land \neg p(z))$
- Construct automaton for $\exists z (\sim_a (x, z) \land \neg p(z))$ in $G(\mathcal{S}, \mathcal{A})$

Given \mathbf{A}_D , $\mathbf{A}_{\sim_a(x,z)}$ and $\mathbf{A}_{p(z)}$ from $G(\mathcal{S}, \mathcal{A})$:

- Translate $K_a p$ into Fo: $tr(K_a p)(x) = \exists z (\sim_a (x, z) \land \neg p(z))$
- Construct automaton for $\exists z (\sim_a (x, z) \land \neg p(z))$ in $G(\mathcal{S}, \mathcal{A})$

Given \mathbf{A}_D , $\mathbf{A}_{\sim_a(x,z)}$ and $\mathbf{A}_{p(z)}$ from $G(\mathscr{S}, \mathscr{A})$: • $\mathbf{A}_{\neg p(z)} := \mathbf{A}_{p(z)}^c$... $\cap \mathbf{A}_D$

- Translate $K_a p$ into Fo: $tr(K_a p)(x) = \exists z (\sim_a (x, z) \land \neg p(z))$
- Construct automaton for $\exists z (\sim_a (x, z) \land \neg p(z))$ in $G(\mathcal{S}, \mathcal{A})$

Given \mathbf{A}_D , $\mathbf{A}_{\sim_a(x,z)}$ and $\mathbf{A}_{p(z)}$ from $G(\mathscr{S}, \mathscr{A})$: **1** $\mathbf{A}_{\neg p(z)} := \mathbf{A}_{p(z)}^c$... $\cap \mathbf{A}_D$ **2** $\mathbf{A}_{\sim_a(x,z) \land \neg p(z)} := \mathbf{A}_{\sim_a(x,z)} \cap \mathbf{A}_{\neg p(x)}$

- Translate $K_a p$ into Fo: $tr(K_a p)(x) = \exists z (\sim_a (x, z) \land \neg p(z))$
- Construct automaton for $\exists z (\sim_a (x, z) \land \neg p(z))$ in $G(\mathcal{S}, \mathcal{A})$

Given \mathbf{A}_D , $\mathbf{A}_{\sim_a(x,z)}$ and $\mathbf{A}_{p(z)}$ from $G(\mathscr{S}, \mathscr{A})$: $\mathbf{A}_{\neg p(z)} := \mathbf{A}_{p(z)}^c$... $\cap \mathbf{A}_D$ $\mathbf{A}_{\sim_a(x,z) \land \neg p(z)} := \mathbf{A}_{\sim_a(x,z)} \cap \mathbf{A}_{\neg p(x)}$ $\mathbf{A}_{\exists z(\sim_a(x,z) \land \neg p(z))} :=$ remove *z*-tape of $\mathbf{A}_{\sim_a(x,z) \land \neg p(z))}$

- Translate $K_a p$ into Fo: $tr(K_a p)(x) = \exists z (\sim_a (x, z) \land \neg p(z))$
- Construct automaton for $\exists z (\sim_a (x, z) \land \neg p(z))$ in $G(\mathcal{S}, \mathcal{A})$

Given \mathbf{A}_D , $\mathbf{A}_{\sim_a(x,z)}$ and $\mathbf{A}_{p(z)}$ from $G(\mathscr{S}, \mathscr{A})$: $\mathbf{A}_{\neg p(z)} := \mathbf{A}_{p(z)}^c$... $\cap \mathbf{A}_D$ $\mathbf{A}_{\sim_a(x,z) \land \neg p(z)} := \mathbf{A}_{\sim_a(x,z)} \cap \mathbf{A}_{\neg p(x)}$ $\mathbf{A}_{\exists z(\sim_a(x,z) \land \neg p(z))} :=$ remove *z*-tape of $\mathbf{A}_{\sim_a(x,z) \land \neg p(z))}$

 $\mathcal{L}(\mathbf{A}_{\texttt{tr}(K_ap)}) = \Phi^{G(\mathcal{S}, \mathscr{A})}$

Application to Epistemic Planning

Input:	$(\mathcal{S}, \mathcal{A})$, a position $v_0 \in \mathcal{S}$ and an epistemic
	formula γ
Question:	Is there a sequence of actions $\alpha_1, \ldots, \alpha_n$ in \mathscr{A}
	s.t. $\nu_0 \alpha_1 \dots \alpha_n \models \gamma$?

amounts to verifying

 $G(\mathscr{S}, \mathscr{A}) \models_{\mathrm{FO}} \exists x, \operatorname{tr}(\gamma)(x)?$

with canonical translation from epistemic logic into Fo:

 $\varphi \mapsto \operatorname{tr}(\varphi)(x)$

Application to Epistemic Planning

Input:	$(\mathcal{S}, \mathcal{A})$, a position $v_0 \in \mathcal{S}$ and an epistemic
	formula γ
Question:	Is there a sequence of actions $\alpha_1, \ldots, \alpha_n$ in \mathscr{A}
	s.t. $\nu_0 \alpha_1 \dots \alpha_n \models \gamma$?

amounts to verifying

 $G(\mathscr{S}, \mathscr{A}) \models_{\mathrm{FO}} \exists x, \operatorname{tr}(\gamma)(x)?$

As we have (input-free) automaton for $A_{\exists x, tr(\gamma)(x)}$:

- just check non-emptiness of $A_{\exists x, tr(\gamma)(x)}$
- BUT ALSO use $\mathbf{A}_{tr(\gamma)(x)}$
 - get all plan solutions
 - and ask e.g. is the set of solutions infinite? is there some solution that satifies some extra conditions, e.g. that belongs to some language of interest? etc.

The Mso-theory of the full binary infinite tree

Theorem (Rabin 1969)

The MSO*-theory of* $\mathcal{T}_2 = \langle \{1,2\}^*, \operatorname{suc}_1, \operatorname{suc}_2 \rangle$ *is decidable.*

Proof based on tree automata construction.

Model checking Mso over automatic structures

Theorem (Thomas 1990)

The MSO-theory of $\mathcal{T}_2^{el} = \langle \{1,2\}^*, \epsilon, \mathtt{suc}_1, \mathtt{suc}_2, \mathtt{el} \rangle$ is undecidable.

Reduce the undecidable MSO-theory of the infinite grid, also see

[Calbrix, H. et al. La théorie monadique du second ordre du monoïde inversif libre est indécidable. Bulletin of the Belgian Mathematical Society-Simon Stevin (in French) (1997).]

Corollary

Model checking over the class of propositional $G(\mathcal{S}, \mathcal{A})$ against Mso is undecidable.

Can we do more that FO (but less than MSO) for $G(\mathcal{S}, \mathcal{A})$?

Can we do more that FO (but less than MSO) for $G(\mathcal{S}, \mathcal{A})$?

Propositional $G(\mathcal{S}, \mathcal{A})$ are not arbitrary Automatic Structures, but Regular Automatic Trees (RATS)

RAT \subsetneq AUT:

 $\{1^n 2^m | 0 \le m \le n\}$ $\in AUT$

$RAT \subsetneq AUT$

The domain with encoding *id* $\{1^i 2^j | 0 \le j \le i\}$ is not regular.

∉ RAT

$\mathrm{RAT} \subsetneq \mathrm{AUT}$

The domain with encoding *id* $\{1^i 2^j | 0 \le j \le i\}$ is not regular.

∉ RAT

€ AUT

Use bin(*n*) (least significant digit first)

 $enc(1^{i}2^{j}) := bin(i) \otimes bin(j)$

Properties of RATS

 $\mathcal{T} = \langle Dom, \texttt{root}, \texttt{suc}_1, \dots, \texttt{suc}_n, \texttt{R}_1, \dots, \texttt{R}_k \rangle \in \texttt{RAT}.$

Lemma

 $\mathcal{T} \in \text{RAT} \text{ implies} (\mathcal{T} + \{\text{suc}^*, \text{el}, \text{higher}, =\}) \in \text{RAT}.$

In particular, since $\mathcal{T}_2 \in RAT$, we have $\mathcal{T}_2^{el} \in RAT$.

Variants of MSO over trees: CHAINMSO

(a) MSO quantification over any subset

(b) PATHMSO quantification over any path in a tree

Decidability of CHAINMSO over RAT

[G. Douéneau-Tabot, S.P. and F. Schwarzentruber. Chain-Monadic Second Order Logic over Regular Automatic Trees and Epistemic Planning Synthesis. AiML 2018.]

Theorem *Model checking over* RAT *against* CHAINMSO *is decidable*.

Proof sketch: Inspired from [Thomas, W., Languages, automata, and logic. Handbook of formal

languages, Springer (1997).]

• Chains representation: infinite word over alphabet

Branches $\times \{0, 1\}^{\omega}$

• Infinite-word automata for CHAINMSO formulas (vs. Finite-word automata for FO formulas)

• Since over a unary alphabet every set is a chain:

Corollary (Barany 2007)

Mso theory of an automatic structure on a unary alphabet is decidable.

• Since over a unary alphabet every set is a chain:

Corollary (Barany 2007)

MSO theory of an automatic structure on a unary alphabet is decidable.

• Since in RATS, relations suc^{*}, el, higher, = are regular:

Corollary

CHAINMSO[root, $suc_1, ..., suc_n, R_1, ..., R_p, suc^*, higher, el, =$] theory of RATs is decidable.

• Since over a unary alphabet every set is a chain:

Corollary (Barany 2007)

MSO theory of an automatic structure on a unary alphabet is decidable.

• Since in RATS, relations suc^{*}, el, higher, = are regular:

Corollary

CHAINMSO[root, $suc_1, ..., suc_n, R_1, ..., R_p, suc^*, higher, el, =$] theory of RATs is decidable.

• Since one can express in CHAINMSO that a chain is a path:

Corollary

PATHMSO *theory of RATs is decidable*.

The big picture

Back to Strategic Reasoning in propositional $G(\mathcal{S}, \mathcal{A})$

• CHAINMSO captures logics of knowledge and time (Halpern-Vardi 1989):

Epistemic Temporal Logic models are propositional $G(\mathcal{S}, \mathcal{A})$.

Back to Strategic Reasoning in propositional $G(\mathcal{S}, \mathcal{A})$

- Examples of what can be verified:
 - 'invariantly, intruder *a* does not know the location of the piece of jewelry 2 more than 3 consecutive W steps'
 - 'all drones know that the region is safe every 20 step'
 - 'with the current plan, drone *a* never knows the region is safe but every 10 steps, there is a(nother) plan to let it know the region is safe'

Gamification of $G(\mathcal{S}, \mathcal{A})$ (1/2)

Controller Synthesis

Definition

Input:

- two players: Controller and Environment
- (agents *a*, *b*, *c*, ... are observers)
- two disjoint sets of (epistemic) actions Act_{Ctrl} and Act_{Env}
- an initial epistemic state \mathcal{S}_I with a distinguished position v_I
- an action model ${\mathscr A}$
- a goal formula γ

Question:

Does Controller have a winning strategy from v_I to reach γ ?

[B. Maubert, S.P. and F. Schwarzentruber. Reachability Games in Dynamic Epistemic Logic. IJCAI 2019.]

Gamification of $G(\mathcal{S}, \mathcal{A})$ (2/2)

Distributed Strategy Synthesis

Definition

Input:

- thee agents are the players: a partition $Agt = Agt_{\exists} \uplus Agt_{\forall}$
- a set of epistemic actions per agent Act₁,..., Act_n
- an initial epistemic state \mathcal{S}_I with a distinguished position v_I
- an action model \mathscr{A}
- a goal formula γ (in Epistemic Logic)

Question:

Does team Agt_{\exists} have a winning distributed uniform strategy from v_I to reach γ ?

[B. Maubert, S.P. and F. Schwarzentruber. Reachability Games in Dynamic Epistemic Logic. IJCAI 2019.]

Complexity results

	epistemic planning	controller synthesis	distributed strategy synthesis	
	one external player	two external players perfect info	agents = players imperfect info	
public	NP-c	PSI	PSPACE-c	
announcements	[Bolander et al. 2015]			
public	PSPACE-c	EXPTIME-c		
actions	folklore			
propositional	decidable	decidable	undecidable	
actions models	[Douénau-Tabot et al. 2018]	automata theory	[Reif, Peterson, 1979]	
	[Maubert et al. 2014]	[Bozelli et al. 2015]	[Coulombe, Lynch, 2018]	
any pre/post	undecidable [Anderson, Bolander, 2011]			

Gamification of $G(\mathscr{S}, \mathscr{A})$

More expressive winning conditions or game settings

• Epistemic Temporal Goals

[B. Maubert, A. Murano, S.P., F. Schwarzentruber, and S. Stranieri. Dynamic Epistemic Logic Games with Epistemic Temporal Goals. ECAI 2020.]

• $G(\mathcal{S}, \mathcal{A})$ as a concurrent game

[B. Maubert, S.P., F. Schwarzentruber, and S. Stranieri. Concurrent Games in Dynamic Epistemic Logic. IJCAI 2020.]

What I did not talk about

• Finer sub-classes of games

e.g. the case of **recognizable relations** decidable via jumping automata simulated by two-way tree automata.

[Laura Bozzelli, Bastien Maubert, **S.P.** Uniform strategies, rational relations and jumping automata. Inf. Comput. (2015)]

• Quantitative aspects

• ...

Thank you for listening!

$G(\mathscr{S}, \mathscr{A}) \models \exists t, \texttt{CoffeeBreak}(t)$?

Questions?