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Where is Imperfect Information?

Consider the coordinated attack problem

Famous problem in the distributed systems literature

[R. Fagin, J.Y. Halpern, Y. Moses, and M.Y. Vardi. Reasoning about Knowledge. MIT Press, 1995.]
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General a and Messenger are initially together

General a has decided to attack at dawn, but General b does
not have this information (yet)

⇒ General b has imperfect information about the initial
situation
General a sends Messenger to tell General b
⇒ General a has imperfect information about the event taking

place: “Messenger Arrived” or“Messenger caught”?
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Observing and making decision under II
Knowledge is around...

An agent can be uncertain about the actual situation
(e.g. General b about the intention of General a to attack at
dawn)

Uncertainty = indistinguishability of some situations

After some event, uncertainty may

shrink ↘ or grow ↗

Decision only depends on what is known

m

Same decisions in indistinguishable situations
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What is uncertain/known?

Observation of the game positions

Memory along plays/histories

Formal settings:

Observation in position = (some of) atomic facts

Remembering along histories = recall

Perfect Recall: remember all they observed and actions they
took.

Imperfect Recall: all the rest e.g. memoryless
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Game Arenas (1/2)

Definition
Game arena G = (Pos,PosI ,Act,δ, (∼ a)a∈Agt ,λ)

Pos positions, PosI ⊆ Pos

Act actions

δ : Pos×Act * Pos moves

Plays ⊆ (PosI .Act)ω

Histories h ∈ Hist ⊆ PosI .(Act.Pos)∗

indistinguishability relation of agent a ∈ Agt

∼a⊆ Pos×Pos∪ (Act ∪ {ε})× (Act ∪ {ε})

λ : Pos → 2AP valuation function for atomic facts in positions



G = (Pos,PosI ,Act,δ, t, (∼ a)a∈Agt ,λ)

Define h ∼a h′...

Knowledge

Agent a’s uncertainty in actual situation h is [h]∼a :

“Agent a knows property ϕ at history h

h |= Kaϕ whenever h′ |=ϕ for every h′ ∈ [h]∼a
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Indistinguishability relations between histories



Observations/Indistinguishability/Knowledge

Synchronous Perfect Recall

h = v0 α1 v1 · · · αn vn

∼ a ∼ a ∼ a ∼ a · · · ∼ a ∼ a

h′ = v′0 α′
1 v′1 · · · α′

n v′n

h ∼a h′ implies |h| = |h′| �Agents hear ticks



Observations/Indistinguishability/Knowledge

Synchronous Imperfect Recall

e.g. Memoryless: h∼ah′ when last(h)∼alast(h′) and |h| = |h′|.



Observations/Indistinguishability/Knowledge

Asynchronous Recall

e.g. Act = {α,β,γ} with α∼aε

ααβαγ∼aβγ



Tools for handling indistinguishability
Transducers/2-tape finite-state automata

Rational relations

Regular relations

Recognizable relations
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Transducers/2-tape finite-state automata

Rational relations = arbitrary finite-state transducers

Regular relations synchronous finite-state transducers

Recognizable relations = relations of the form
⋃

i<n Li ×L′
i

with Li,L′
i’s regular languages

Recognizable ( Regular ( Rational



Strategic Reasoning
� Here qualitative multi-player infinite-horizon games.

Two-player games of Perfect Information
Reachability condition: PTIME

parity condition: NP∩CO-NP
[R. McNaughton. Infinite games played on finite graphs. Annals of Pure and Applied Logic (1993).]

[W. Zielonka. Infinite games on finitely coloured graphs with applications to automata on infinite trees.

TCS 1998.]

LTL conditions: 2EXPTIME
[A. Pnueli & R. Rosner. On the Synthesis of an Asynchronous Reactive Module. ICALP 1989]

Multi-player games of Perfect Information

Decidable, and non-elementary...



Strategic Reasoning
� Here qualitative multi-player infinite-horizon games.

Logics for multi-player games

Basically, first-order quantifiers over agent strategies

Coalition Logic CL model-checking is PTIME-complete
[M. Pauly. A Modal Logic for Coalitional Power in Games. 12(1):149–166, 2002.]

Alternating-time Temporal Logics ATL∗ model-checking is
2EXPTIME-complete

Strategy Logic SL model-checking is non-elementary

. . .



Strategic Reasoning under II

Two-player games is EXPTIME-complete
[J.H. Reif. The complexity of two-player games of incomplete information. JCSC (1984)]

[D. Berwanger et al. Strategy construction for parity games with imperfect information. Information and

computation. (2010).]

Three-player games are undecidable
[G. Peterson, J.H. Reif, and S. Azhar. Lower bounds for multiplayer noncooperative games of incomplete

information. C&M with A.]

[D. Berwanger and Ł. Kaiser. Information tracking in games on graphs. Journal of Logic, Language and

Information. (2010).]



Strategic Reasoning under II

Two-player games is EXPTIME-complete
[J.H. Reif. The complexity of two-player games of incomplete information. JCSC (1984)]

[D. Berwanger et al. Strategy construction for parity games with imperfect information. Information and

computation. (2010).]

Three-player games are undecidable
[G. Peterson, J.H. Reif, and S. Azhar. Lower bounds for multiplayer noncooperative games of incomplete

information. C&M with A.]

[D. Berwanger and Ł. Kaiser. Information tracking in games on graphs. Journal of Logic, Language and

Information. (2010).]



Strategic Reasoning under II
Logical approaches

ATL∗ with Perfect Recall is undecidable
[C. Dima and F.L. Tiplea (2011). Model-checking ATL under imperfect information and perfect recall semantics is

undecidable. arXiv]

ATL∗ with Imperfect Recall is EXPTIME-complete
[P.Y. Schobbens, Alternating-time logic with imperfect recall. Electronic Notes in Theoretical Computer Science

(2004)]

ATL∗/SL with Perfect Recall and Hierarchical Information is
non-elementary [R. Berthon, B. Maubert, A. Murano, S. Rubin, and M.Y. Vardi. 2021. Strategy Logic

with Imperfect Information. ACM Trans. Comput. Log. 22(1) (2021)]

Loop µ-calculus (for asynchoronous setting) undecidable
[S.P. & S. Riedweg. A decidable class of problems for control under partial observation. IPL (2005)], [X. Briand. Sur

la décidabilité de certains problèmes de synthèse de contrôleurs. PhD Thesis, Uni. de Bordeaux (2006)], [A. Arnold

and I. Walukiewicz. Nondeterministic controllers of nondeterministic processes. Logic and automata (2008).]
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A Setting for Specifying Games of II
with Synchronous Perfect Recall

We consider the setting Dynamic Epistemic Logic (DEL)
[H. van Ditmarsch, W. van Der Hoek, and B. Kooi. Dynamic epistemic logic. Springer Science & Business Media, 2007.]

with II on the position in the arena
⇒ Epistemic States S

with II on taken action in the arena
⇒ Action Models A



Epistemic States and Action Models

S
A−→S ′

Coordinated attack problem

d =“attack at dawn” and ma =”Msger with General a”
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Epistemic States and Action Models

S
A−→S ′

Coordinated attack problem: General a announces “d”

S : v : {d,ma} u : {ma}
b

a,b a,b

A
d holds!
pre : d
post : ;

public announcement

that “d” holds
a,b

S ′: (v,α) : {d,mb}

a,b
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Epistemic States and Action Models

S
A−→S ′

Coordinated attack problem: send messager to tell “d”

S : v : {d,ma} u : {ma}
b

a,b a,b

A

S ′: (v,α) : {d,mb} (v,α′) : {d} (u,α′) : ;a b

a,b a,b a,b

Arrived Caught Caught



From (S ,A ) to an infinite tree G(S ,A )
The denoted game arena unfolding

...
...

...
...

...
...
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From (S ,A ) to an infinite tree G(S ,A )
The denoted game arena unfolding

...
...

...
...

...
...

History h = v0α1α2 · · ·αn with v0 ∈ PosI and αi’s ∈ Act
is a position in G(S ,A )

Hist ⊆ PosI .Act∗



Advantages of focusing on the DEL setting

The state space is implicit, and might be infinite
contrary e.g. ATL∗, SL

Provides a unifying framework for:
epistemic planning
strategic reasoning

It enables to exhibit action types



Remarkable cases
Action models that are announcements

Announcement of property ϕ:

ϕ!

pre :ϕ
post : −

a,b,c

Action models that are public actions

Putting the cube on the table:

PutCubeOnTable
pre : ¬ontable
post : ontable ←>

a,b,c

Action models that are propositional
α

pre :ϕ
post : p1 ←ϕ′ . . .

α′
pre :ψ
post : p2 ←ψ′ . . .

b
a,b,c a,b

with ϕ,ϕ′,ψ,ψ′ propositional

Hierarchical information

∼b⊆∼a⊆∼c
i.e.: nested indistinguishability relations among agents
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Strategic Reasoning in G(S ,A )

Reachability Goals, subcase of Epistemic Planning
[T. Bolander, T. Charrier, S.P. and F. Schwarzentruber. DEL-based Epistemic Planning: Decidability and Complexity.

Artificial Intelligence 2020.]

[G. Douéneau-Tabot, S.P. and F. Schwarzentruber. Chain-Monadic Second Order Logic over Regular Automatic

Trees and Epistemic Planning Synthesis. AiML 2018.]

F

[B. Maubert, S.P. and F. Schwarzentruber. Reachability Games in Dynamic Epistemic Logic. IJCAI 2019.]

Epistemic Temporal Goals
[B. Maubert, A. Murano, S.P., F. Schwarzentruber, and S. Stranieri. Dynamic Epistemic Logic Games with Epistemic

Temporal Goals. ECAI 2020.]

A setting for Concurrent Games
[B. Maubert, S.P., F. Schwarzentruber, and S. Stranieri. Concurrent Games in Dynamic Epistemic Logic. IJCAI 2020.]
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Epistemic Planning Problem

Input: (S ,A ), a position v0 ∈ S and an epistemic
formula γ

Question: Is there a sequence of actionsα1, . . . ,αn in A
s.t. G(S ,A ),v0α1 . . .αn |= γ?

v0 α1

α2

α3

|= γ
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Epistemic Planning Problem
Input: (S ,A ), a position v0 ∈ S and an epistemic

formula γ
Question: Is there a sequence of actionsα1, . . . ,αn in A

s.t. G(S ,A ),v0α1 . . .αn |= γ?
v0 α1

α2

α3

|= γ

Theorem
The Epistemic Planning Problem is undecidable.



Epistemic Planning Problem
Input: (S ,A ), a position v0 ∈ S and an epistemic

formula γ
Question: Is there a sequence of actionsα1, . . . ,αn in A

s.t. G(S ,A ),v0α1 . . .αn |= γ?

Theorem
The Epistemic Planning Problem is undecidable.

[T. Bolander and M.B. Andersen. Epistemic planning for single and multi-agent systems. J. Appl. Non-Class. Log., 2011.],
[Q. Yu, X. Wen, and Y. Liu. Multi-agent epistemic explanatory diagnosis via reasoning about actions. IJCAI 2013.]

Theorem
The Epistemic Planning Problem is decidable for propositional
action models.

[T. Bolander, T. Charrier, S.P. and F. Schwarzentruber. DEL-based Epistemic Planning: Decidability and Complexity.

Artificial Intelligence 2020.]
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Remarkable Properties of G(S ,A ) with propositional A

A with only

α

pre :ϕ propositional
post :ψ propositional

...
...

...
...

...

Theorem
For A propositional,

G(S ,A ) is an automatic structure ⇒ its FO theory is decidable

G(S ,A ) is even a Regular Automatic Tree
⇒ its CHAINMSO theory is decidable
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An example of automatic structure
Structure 〈N,≤〉.

0 1 3 · · ·2

Encode each n ∈N by enc(n) =
n︷ ︸︸ ︷

11. . .1 = 1n 1∗ is regular

Use the convolution ⊗ on words, that aligns words:

12 ⊗13 := (
1
1

)(
1
1

)(ä
1

)
Encode ≤⊆N×Nwith automaton (as an SPR relation):

q0 q1A≤:

(
1
1

)
,
(ä

1

)
(

1ä
)

1n ⊗1m ∈L (A≤) iff n ≤ m



T2 is automatic

Complete binary tree T2 = 〈{1,2}∗,root,suc1,suc2〉
Encode nodes h as is: h ∈ {1,2}∗ (regular)

Unary predicate root: use an automaton Aroot that accepts
only empty word;

suc1(h,h′) iff h′ = h.1

q0

q1

q2

Asuc1 :

(
1
1

)
,
(

2
2

)
(ä

1

)
( 1ä

)
,
( 2ä

)
,
(ä

2

)



T el
2 is automatic

Binary predicate el means “equal level”

Complete binary tree T el
2 = 〈{1,2}∗,root,suc1,suc2,el〉

Encode nodes h as is: h ∈ {1,2}∗ (regular)

Unary predicate root: use an automaton Aroot that accepts
only empty word;

suc1(h,h′) iff h′ = h.1 and suc2(h,h′) iff h′ = h.2

el(h,h′) iff |h| = |h′|
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Unary predicate root: use an automaton Aroot that accepts
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el(h,h′) iff |h| = |h′|

q0 q1Ael:
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Automatic Structures
Proposition

For propositional A = (Act, ...) and SPR relations ∼a,

G(S ,A ) = 〈Hist, {sucα}α∈Act , {∼a}a∈Agt , . . .〉 is automatic.

Hist ⊆ PosI .Act∗ is a regular

" It is not the case for action models where preconditions have
knowledge modalities of ≥ 1-alternation-depth.

" Long standing open question for preconditions with
alternation-depth = 1

sucα is made of pairs (h,h′) with h′ = h.α
Remind ∼a when SPR is:

h = v0 α1 v1 · · · αn vn

∼ a ∼ a ∼ a ∼ a · · · ∼ a ∼ a

h′ = v′0 α′
1 v′1 · · · α′

m v′m
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" It is not the case for action models where preconditions have
knowledge modalities of ≥ 1-alternation-depth.
[T. Charrier, B. Maubert, F. Schwarzentruber: On the Impact of Modal Depth in Epistemic Planning. IJCAI

2016.]
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Automaton for relation ΦM

M automatic and Φ ∈ FO

ΦM := {(d1 . . .dn) ∈ Domn |M , [xi 7→ di] |=Φ(x1 . . .xn)}

Proposition

Given M automatic = (ADom,A1, . . . ,Ak) and Φ ∈ FO, there is an
effective construction AΦ that recognizes ΦM .

Inductive construction over Φ:

Formula Automaton

Ri(x1 . . .xri ) Ai (given)
¬Φ complement AΦ
Φ∧Ψ intersect AΦ and AΨ
∃xΦ ignore tape content for x in AΦ



Automaton for relation ΦM

M automatic and Φ ∈ FO

ΦM := {(d1 . . .dn) ∈ Domn |M , [xi 7→ di] |=Φ(x1 . . .xn)}

Proposition

Given M automatic = (ADom,A1, . . . ,Ak) and Φ ∈ FO, there is an
effective construction AΦ that recognizes ΦM .

Theorem
Model-checking automatic structures against FO is decidable.

[A. Blumensath, and E. Gradel. Automatic structures. LICS 2000.]

[B. Khoussainov and A. Nerode. Effective properties of finitely generated re algebras. In Feasible Mathematics II (1995).]



Bottom-up construction of AΦ: intuitive example
Want to catch those h s.t. G(S ,A ),h |= ¬Kap?

Translate Kap into FO: tr(Kap)(x) =∃z(∼a(x,z)∧¬p(z))

Construct automaton for ∃z(∼a(x,z)∧¬p(z)) in G(S ,A )

∧

∃z

∼a (x,z)

¬

p(z)

Given AD, A∼a(x,z) and Ap(z) from
G(S ,A ):

1 A¬p(z) := Ac
p(z) ...∩AD

2 A∼a(x,z)∧¬p(z) := A∼a(x,z) ∩A¬p(x)

3 A∃z(∼a(x,z)∧¬p(z)) := remove z-tape of
A∼a(x,z)∧¬p(z))

L (Atr(Kap)) =ΦG(S ,A )
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Application to Epistemic Planning
Input: (S ,A ), a position v0 ∈ S and an epistemic

formula γ
Question: Is there a sequence of actionsα1, . . . ,αn in A

s.t. v0α1 . . .αn |= γ?

amounts to verifying

G(S ,A ) |=FO ∃x,tr(γ)(x)?

with canonical translation from epistemic logic into FO:

ϕ 7→ tr(ϕ)(x)



Application to Epistemic Planning
Input: (S ,A ), a position v0 ∈ S and an epistemic

formula γ
Question: Is there a sequence of actionsα1, . . . ,αn in A

s.t. v0α1 . . .αn |= γ?

amounts to verifying

G(S ,A ) |=FO ∃x,tr(γ)(x)?

As we have (input-free) automaton for A∃x,tr(γ)(x):

just check non-emptiness of A∃x,tr(γ)(x)

BUT ALSO use Atr(γ)(x)

get all plan solutions
and ask e.g. is the set of solutions infinite? is there some
solution that satifies some extra conditions, e.g. that belongs to
some language of interest? etc.



The MSO-theory of the full binary infinite tree

ε
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212
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221

...
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222

...
...

Theorem (Rabin 1969)
The MSO-theory of T2 = 〈{1,2}∗,suc1,suc2〉 is decidable.

Proof based on tree automata construction.



Model checking MSO over automatic structures

Theorem (Thomas 1990)

The MSO-theory of T el
2 = 〈{1,2}∗,ε,suc1,suc2,el〉 is undecidable.

Reduce the undecidable MSO-theory of the infinite grid, also see
[Calbrix, H. et al. La théorie monadique du second ordre du monoïde inversif libre est indécidable. Bulletin of the Belgian

Mathematical Society-Simon Stevin (in French) (1997).]

Corollary

Model checking over the class of propositional G(S ,A ) against MSO

is undecidable.



Can we do more that FO (but less than MSO) for G(S ,A )?

Propositional G(S ,A ) are not arbitrary Automatic Structures, but

Regular Automatic Trees (RATs)

Namely trees T stemming from the unfolding a finite structure +
extra relations R1, . . . ,Rk between nodes that are regular relations
over finite finite branches of the tree (i.e. histories).

T el
2 = 〈{1,2}∗,ε,suc1,suc2,el〉 ∈ RAT by unfolding the one point

structure in which suc1 and suc2 are total.
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Propositional G(S ,A ) are not arbitrary Automatic Structures, but

Regular Automatic Trees (RATs)

RAT ( AUT:
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12 {1n2m |0 ≤ m ≤ n}
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RAT ( AUT
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The domain with encoding id
{1i2j |0 ≤ j ≤ i} is not regular.

∉ RAT

∈ AUT

Use bin(n) (least
significant digit first)

enc(1i2j) := bin(i)⊗bin(j)
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Properties of RATs

T = 〈Dom,root,suc1, . . . ,sucn,R1, . . . ,Rk〉 ∈ RAT.

Lemma
T ∈ RAT implies (T + {suc∗,el,higher,=}) ∈ RAT.

In particular, since T2 ∈ RAT, we have T el
2 ∈ RAT.



Variants of MSO over trees: CHAINMSO

(a) MSO (b) PATHMSO

quantification over any subset quantification over any path in a tree

(c) CHAINMSO

quantification over any chain in a tree



Decidability of CHAINMSO over RAT

[G. Douéneau-Tabot, S.P. and F. Schwarzentruber. Chain-Monadic Second Order Logic over Regular Automatic Trees and

Epistemic Planning Synthesis. AiML 2018.]

Theorem
Model checking over RAT against CHAINMSO is decidable.

Proof sketch: Inspired from [Thomas, W., Languages, automata, and logic. Handbook of formal

languages, Springer (1997).]

Chains representation: infinite word over alphabet

Branches× {0,1}ω

Infinite-word automata for CHAINMSO formulas
(vs. Finite-word automata for FO formulas)



Corollaries of CHAINMSO-RAT decidability

Since over a unary alphabet every set is a chain:

Corollary (Barany 2007)

MSO theory of an automatic structure on a unary alphabet is
decidable.

Since in RATs, relations suc∗,el,higher,= are regular:

Corollary

CHAINMSO[root,suc1, . . . ,sucn,R1, . . . ,Rp,suc∗,higher,el,=]
theory of RATs is decidable.

Since one can express in CHAINMSO that a chain is a path:

Corollary

PATHMSO theory of RATs is decidable.
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The big picture

Fin.
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2
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3
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Trees +
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level

MSO

4

Reg.
Trees MSO

5
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CHAINMSO
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Back to Strategic Reasoning in propositional G(S ,A )

CHAINMSO captures logics of knowledge and time
(Halpern-Vardi 1989):

Epistemic Temporal Logic models are propositional G(S ,A ).

Logics of knowledge and time

CTLK CTL∗K BLlin
µ K CHAINMSOK

FO[root, (suca)a∈Act ,suc,suc∗, (p)p∈AP,K1, . . . ,Kn,higher,=]



Back to Strategic Reasoning in propositional G(S ,A )

Examples of what can be verified:

‘invariantly, intruder a does not know the location of the piece
of jewelry 2 more than 3 consecutive W steps’

’all drones know that the region is safe every 20 step’

’with the current plan, drone a never knows the region is safe
but every 10 steps, there is a(nother) plan to let it know the
region is safe’



Gamification of G(S ,A ) (1/2)
Controller Synthesis

Definition

Input:
- two players: Controller and Environment
(agents a,b,c, . . . are observers)
- two disjoint sets of (epistemic) actions ActCtrl and ActEnv

- an initial epistemic state SI with a distinguished position vI

- an action model A
- a goal formula γ

Question:
Does Controller have a winning strategy from vI to reach γ?

[B. Maubert, S.P. and F. Schwarzentruber. Reachability Games in Dynamic Epistemic Logic. IJCAI 2019.]



Gamification of G(S ,A ) (2/2)
Distributed Strategy Synthesis

Definition

Input:
- thee agents are the players: a partition Agt = Agt∃]Agt∀
- a set of epistemic actions per agent Act1, . . . ,Actn

- an initial epistemic state SI with a distinguished position vI

- an action model A
- a goal formula γ (in Epistemic Logic)

Question:
Does team Agt∃ have a winning distributed uniform strategy

from vI to reach γ?

[B. Maubert, S.P. and F. Schwarzentruber. Reachability Games in Dynamic Epistemic Logic. IJCAI 2019.]



Complexity results

epistemic controller distributed
planning synthesis strategy

synthesis
one external player two external players agents = players

perfect info imperfect info

public NP-c PSPACE-c
announcements [Bolander et al. 2015]

public PSPACE-c EXPTIME-c
actions folklore

propositional decidable decidable undecidable
actions models [Douénau-Tabot et al. 2018] automata theory [Reif, Peterson, 1979]

[Maubert et al. 2014] [Bozelli et al. 2015] [Coulombe, Lynch, 2018]

any pre/post undecidable [Anderson, Bolander, 2011]



Gamification of G(S ,A )
More expressive winning conditions or game settings

Epistemic Temporal Goals
[B. Maubert, A. Murano, S.P., F. Schwarzentruber, and S. Stranieri. Dynamic Epistemic Logic Games with Epistemic

Temporal Goals. ECAI 2020.]

G(S ,A ) as a concurrent game
[B. Maubert, S.P., F. Schwarzentruber, and S. Stranieri. Concurrent Games in Dynamic Epistemic Logic. IJCAI 2020.]



What I did not talk about

Finer sub-classes of games

e.g. the case of recognizable relations decidable via jumping
automata simulated by two-way tree automata.
[Laura Bozzelli, Bastien Maubert, S.P.. Uniform strategies, rational relations and jumping automata. Inf. Comput.

(2015)]

Quantitative aspects

. . .



Thank you for listening!

G(S ,A ) |= ∃t,CoffeeBreak(t)?

Questions?
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