



# What killed the cat? Towards a logical formalization of curiosity (and suspense and surprise) in narratives

Florence Dupin de Saint-Cyr Anne-Gwenn Bosser Benjamin Callac Eric Maisel

31st International Symposium on Temporal Representation and Reasoning (TIME) Montpellier, Oct. 28-30, 2024



• In a story, there's a very important thingy called <u>dramatic tension</u>.

 That means you don't let go of the action. You don't stop in the middle of your story to think.

<sup>1</sup>Heliotrope, tome 3 - "Le prix de mes larmes", Joann Sfar and Benjamin Chaud, 27 Septembre 2024, Dupuis, ISBN 9791034760404

1. Dramatic tension

2. Framework for analysing dramatic tension

3. Properties and graduality

# **Dramatic tension**

According to [Baroni, 2007] 3 main ingredients:

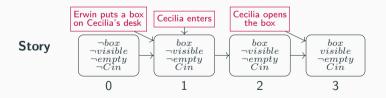
- Curiosity: a crucial knowledge is omitted in the past or in the present
- Suspense: an impacting event can happen in the future
- Surprise: rupture from previous expectations

Other emotional mechanisms can also have an impact:

- Compassion/identification with a character of the story
- Familiarity with the universe of the story

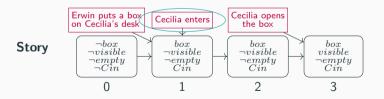
- Dramatic tension affects  $\Rightarrow$  narrative engagement [Baroni, 2007]
- Narrative engagement  $\Rightarrow$  persuasion [Green and Brock, 2000]

convince (rational)  $\neq$  persuade (emmotional)


- Discourse analysis: Identifying the emotions of dramatic tension
  - Make explicit persuasion mechanisms and communication objectives
  - Encourage critical thinking
- Discourse generation (under constraints)

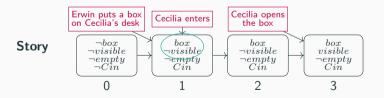
| (                                   | 1. | picking events/properties of the story choosing when and how to tell them |
|-------------------------------------|----|---------------------------------------------------------------------------|
| Telling a story = $\left\{ \right.$ | 2. | choosing when and how to tell them                                        |
| l                                   | 3. | with a communicative goal in mind                                         |

**Discourse** "Cecilia enters her office. She sees a closed box lying on her desk that was not there when she last left the room."


|                             | 1. | picking events/properties of the story |
|-----------------------------|----|----------------------------------------|
| Telling a story = $\langle$ | 2. | choosing when and how to tell them     |
|                             | 3. | with a communicative goal in mind      |

**Discourse** "Cecilia enters her office. She sees a closed box lying on her desk that was not there when she last left the room."

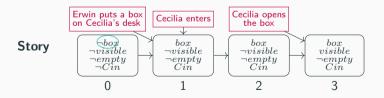



| ĺ                           | 1. | picking events/properties of the story |
|-----------------------------|----|----------------------------------------|
| Telling a story = $\langle$ | 2. | choosing when and how to tell them     |
|                             | 3. | with a communicative goal in mind      |

- **Discourse** "Cecilia enters her office. She sees a closed box lying on her desk that was not there when she last left the room."
- **Narrative** [Cecilia enters<sub>1</sub> ;  $box_1$  ;  $\neg visible_1$  ;  $\neg box_0$ ]

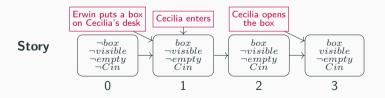


|                     | 1. | picking events/properties of the story choosing when and how to tell them |
|---------------------|----|---------------------------------------------------------------------------|
| Telling a story $=$ | 2. | choosing when and how to tell them                                        |
|                     | 3. | with a communicative goal in mind                                         |


- **Discourse** "Cecilia enters her office. She sees a closed box lying on her desk that was not there when she last left the room."
- **Narrative** [Cecilia enters<sub>1</sub> ;  $box_1$  ;  $\neg visible_1$  ;  $\neg box_0$ ]



| ĺ                           | 1. | picking events/properties of the story                                    |
|-----------------------------|----|---------------------------------------------------------------------------|
| Telling a story $= \langle$ | 2. | picking events/properties of the story choosing when and how to tell them |
| l                           | 3. | with a communicative goal in mind                                         |


**Discourse** "Cecilia enters her office. She sees a closed box lying on her desk that was not there when she last left the room."

**Narrative** [Cecilia enters<sub>1</sub> ;  $box_1$  ;  $\neg visible_1$  ;  $\neg box_0$ ]



| (                                   | 1. | <pre>picking events/properties of the story choosing when and how to tell them</pre> |
|-------------------------------------|----|--------------------------------------------------------------------------------------|
| Telling a story = $\left\{ \right.$ | 2. | choosing when and how to tell them                                                   |
| l                                   | 3. | with a communicative goal in mind                                                    |

- **Discourse** "Cecilia enters her office. She sees a closed box lying on her desk that was not there when she last left the room."
- **Narrative** [Cecilia enters<sub>1</sub> ;  $box_1$  ;  $\neg visible_1$  ;  $\neg box_0$ ]



# • Suspense:

- [Baroni, 2007] "primary" suspense = uncertainty about what happens next in the story

• [Cheong and Young, 2015] with Suspenser =  $\begin{cases} planning the various narrative elements \\ + maximize the suspense estimation \end{cases}$ 

# • Surprise:

- [Shackle, 1961] surprise degree = impossibility degree of the event
- [Dupin de Saint-Cyr and Prade, 2023] surprise in jokes: belief revision and defaults
- Curiosity ?

"Cecilia enters her office. She sees a closed box lying on her desk that was not there when she last left the room."

Assumption: this short story can create curiosity, suspense and surprise.



- 3 agents only: Albert, Erwin and Cecilia
- Reasoning from the point of view of Cecilia

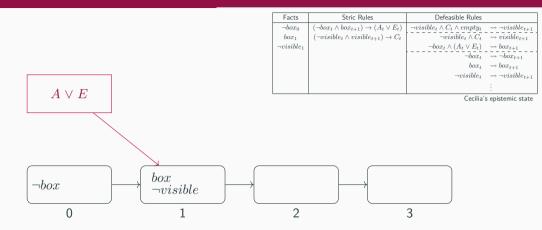
| Actions                                            | Fluents                                               |  |
|----------------------------------------------------|-------------------------------------------------------|--|
| • $A$ : Albert puts a closed box on Cecilia's desk | • box: there is a box on Cecilia's desk               |  |
| • E : Erwin } puts a closed box on Cecilia's desk  | • <i>empty</i> : the box is empty                     |  |
| • $C$ : Cecilia opens the box                      | $\bullet\ visible$ :Cecilia sees something in the box |  |

• Close world assumption: no change unless one of the three actions is done

# Framework for analysing dramatic tension

# **Epistemic state**

- Dramatic tension affects depends on the beliefs and reasoning of the agent
- Restriction: we consider only the story level
- Epistemic state  $S = (F, S_{\mathcal{L}}, S_{\Delta})$
- ► Example: Cecilia's epistemic state


| Facts            | Strict Rules                                           | Defeasible Rules                           |                                       |
|------------------|--------------------------------------------------------|--------------------------------------------|---------------------------------------|
| $\neg box_0$     | $(\neg box_t \land box_{t+1}) \to (A_t \lor E_t)$      | $\neg visible_t \wedge C_t \wedge empty_t$ | $\rightsquigarrow \neg visible_{t+1}$ |
| $box_1$          | $(\neg visible_t \land visible_{t+1}) \rightarrow C_t$ | $\neg visible_t \wedge C_t$                | $\sim visible_{t+1}$                  |
| $\neg visible_1$ |                                                        | $\neg box_t \land (A_t \lor E_t)$          | $\rightsquigarrow box_{t+1}$          |
|                  |                                                        | $\neg box_t$                               | $\rightsquigarrow \neg box_{t+1}$     |
|                  |                                                        | $box_t$                                    | $\rightsquigarrow box_{t+1}$          |
|                  |                                                        | $\neg visible_t$                           | $\rightsquigarrow \neg visible_{t+1}$ |
|                  |                                                        |                                            | :                                     |

### **Definition (awareness)**

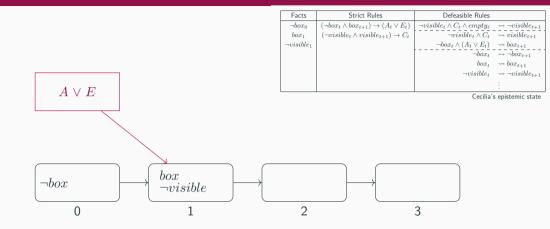
An agent, represented by its epistemic state  $S = (F, S_{\mathcal{L}}, S_{\Delta})$ , is aware of variable  $v \in \mathcal{V}$  if

- v appears inside a fact formula of F or
- v appears inside a rule of  $S_L \cup S_\Delta$  containing a variable the agent is already aware of.

# The box story (continued)



- Cecilia's is aware of box and visible hence given her beliefs she is aware of A, E, C, empty
- Cecilia can infer  $A_0 \vee E_0$  from her beliefs


# **Definition (curiosity)**

An agent with state S is curious about  $\varphi \in \mathcal{L}$  at  $t \in T$  if,

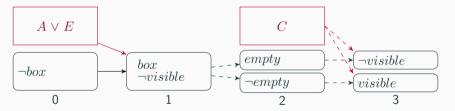
1. according to  $S_{\rightarrow t}$  (S until t) she is aware of (all variables of)  $\varphi$  and

2. at time t, she is unable to infer the value of  $\varphi$ :

 $arphi_S$  being the lexicographic non-monotonic inference operator based on the epistemic state S



- Cecilia is curious about who put the box there (A or  $\neg A$ ?)
- Cecilia is curious about the content of the box (*empty* or  $\neg empty$ ?)


### **Definition (suspense)**

An agent in state  $S = (F, S_{\mathcal{L}}, S_{\Delta})$  feels suspense about  $\varphi \in \mathcal{L}$  at time point t if

- according to S, the agent is curious about  $\varphi$  at time t and
- the agent is aware of a formula  $\psi$  consistent with S until t and
- $\psi$  enables the agent to infer either  $\varphi$  or  $\neg \varphi$  in t' > ti.e.,  $\succ_{S'} \varphi_{t'}$  or  $\succ_{S'} \neg \varphi_{t'}$  holds, with  $S' = (F \cup \{\psi\}, S_{\mathcal{L}}, S_{\Delta})$ .



Cecilia's epistemic state



Cecilia feels suspense at time 1 about whether she will know if the box is empty or not

### **Definition** (surprise)

An agent represented by  $S = (F, S_{\mathcal{L}}, S_{\Delta})$  is surprised at time t about a formula  $\varphi \in \mathcal{L}$  if

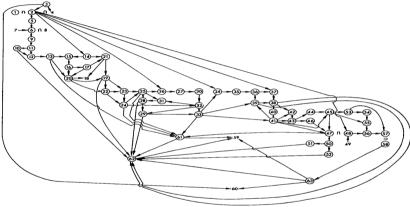
1.  $\varphi \in F_{\rightarrow t}$  and  $S_{\rightarrow t}$  is consistent ( $\varphi$  occurred and it was not impossible) but

2.  $S' = (F_{\rightarrow t-1}, S_{\mathcal{L} \rightarrow t}, S_{\Delta \rightarrow t})$  is such that:  $\succ_{S'} \neg \varphi$  (from t - 1,  $\neg \varphi$  was expected)

| Stric Rules                                               | Defeasible Rules                                  |                                                                                                                                                                                                                                                                                                    |
|-----------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $(\neg box_t \land box_{t+1}) \rightarrow (A_t \lor E_t)$ | $\neg visible_t \land C_t \land empty_t$          | $\rightsquigarrow \neg visible_{t+1}$                                                                                                                                                                                                                                                              |
| $(\neg visible_t \land visible_{t+1}) \rightarrow C_t$    | $\neg visible_t \land C_t$                        | $\rightsquigarrow visible_{t+1}$                                                                                                                                                                                                                                                                   |
|                                                           | $\neg box_t \land (A_t \lor E_t)$                 | $\rightsquigarrow box_{t+1}$                                                                                                                                                                                                                                                                       |
|                                                           | $\neg box_t$                                      | $\rightarrow \neg box_{t+1}$                                                                                                                                                                                                                                                                       |
|                                                           | $box_t$                                           | $\rightsquigarrow box_{t+1}$                                                                                                                                                                                                                                                                       |
|                                                           | $\neg visible_t$                                  | $\rightsquigarrow \neg visible_{t+1}$                                                                                                                                                                                                                                                              |
|                                                           |                                                   | :                                                                                                                                                                                                                                                                                                  |
|                                                           | $(\neg box_t \land box_{t+1}) \to (A_t \lor E_t)$ | $ \begin{array}{l} (\neg box_t \wedge box_{t+1}) \rightarrow (A_t \lor E_t) \\ (\neg visible_t \land visible_{t+1}) \rightarrow C_t \end{array} \begin{array}{l} \neg visible_t \land C_t \land empty_t \\ \neg visible_t \land C_t \\ \neg box_t \land (A_t \lor E_t) \\ \neg box_t \end{array} $ |



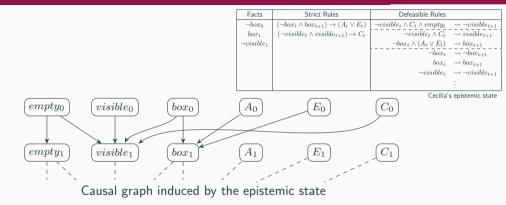



Cecilia is surprised at time 1

**Properties and graduality** 

# No fact known No curiosity nor suspense $\Rightarrow$ Only one most plausible interpretation Surprise about $\varphi$ at $t \Rightarrow$ No curiosity about $\varphi$ neither at t-1 nor at tDeciding whether • an agent is aware of a variable/formula is linear

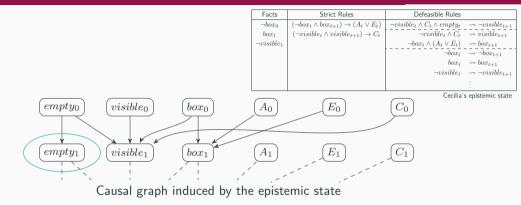
• an agent is curious, feels suspense or surprise about a formula is  $P^{NP}$ -complete


# Towards defining measures: importance of events



Causal graph for The Father, His Son and Their Donkey

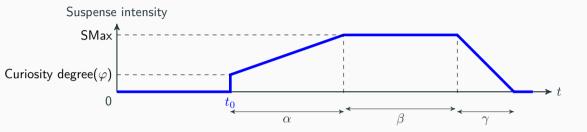
The perceived importance of events in a story is related to the degree of the associated vertex in the causal graph [Trabasso and Sperry, 1985].


# Towards defining measures: curiosity degree



### **Definition (Curiosity intensity)**

*Curiosity degree(formula) = sum of its variable degrees in the causal graph* 


# Towards defining measures: curiosity degree



### Definition (Curiosity intensity)

Curiosity degree(formula) = sum of its variable degrees in the causal graph Example: Curiosity degree( $empty_1$ ) =3

# Towards defining measures: Suspense intensity



### Definition

Given an epistemic state  $S = (F, S_{\mathcal{L}}, S_{\Delta})$  and a suspense profile  $p = (\alpha, \beta, \gamma, SMax)$ Without revival nor resolution, suspense degree( $\varphi$ ) follows the pattern where  $t_0$  = earliest time where the agent was curious about  $\varphi$ .  $[{\sf Shackle},\,1961] = {\sf degree} \text{ of impossibility of } \varphi$ 

# **Definition (surprise intensity)**

Given an epistemic state  $S = (F, S_{\mathcal{L}}, S_{\Delta} = \Delta_1 \dots \Delta_n)$  with a surprise about  $\varphi$ 

Surprise degree( $\varphi$ ) = n - i

where i is the most specific strata with a rule violated by  $\varphi$ 

# Conclusion

- Preliminary study
- Framework for formalizing the emotions at the heart of dramatic tension
- Unified framework for the 3 emotions: curiosity, suspense and surprise + their relationships
- Framework built on non-monotonic reasoning (NMR)
  - Compact language for simulating default reasoning of an agent under incomplete information
  - $\circ\,$  NMR (lexicographic inference) induces a cost in complexity: problems in  $P^{NP}$
  - Measures of intensity for the three affects

# **Future work**

- Discourse analysis
  - Implement this model in different frameworks:
    - PDDL [Ghallab et al., 1998] Ceptre [Martens, 2015] TouIST [Slimane et al., 2015]
  - Find benchmarks of stories annotated with emotions
  - Integrate the three levels (discourse, narrative sequence, story)
  - Extend to other emotions in OCC theory
     [Ortony et al., 1988, Lorini and Schwarzentruber, 2011, Adam et al., 2009]
  - Build causal graphs associated to stories (narrative closure)
  - DEMA<sup>2</sup>IN project: deconstructing affective and argumentative persuasion mechanisms in digital influence campaigns
- Discourse generation
  - Adaptation to the user
  - o Interactive storytelling: maintain both causal and affective coherence

# References



Adam, C., Herzig, A., and Longin, D. (2009). A logical formalization of the OCC theory of emotions. *Synthese*, 168(2):201–248.



Baroni, R. (2007).

La tension narrative: suspense, curiosité et surprise. Poétique. Éd. du Seuil, Paris.



Cheong, Y.-G. and Young, R. M. (2015).

Suspenser: A Story Generation System for Suspense. IEEE Transactions on Computational Intelligence and AI in Games, 7(1):39–52.



Dupin de Saint-Cyr, F. and Prade, H. (2023). Belief revision and incongruity: Is it a joke? Journal of Applied Non-Classical Logics. 33(3-4):467-494.



Ghallab, M., Howe, A., Knoblock, C., McDermott, D., Ram, A., Veloso, M., Weld, D., and Wilkins, D. (1998). PDDL - the planning domain definition language. AIPS-98 Planning Competition Committee CVC TR-98-003/DCS TR-1165, Yale Center for Computational Vision and Control.



Green, M. and Brock, T. (2000).

**The Role of Transportation in the Persuasiveness of Public Narrative.** Journal of personality and social psychology, 79:701–21.

Lorini, E. and Schwarzentruber, F. (2011). A logic for reasoning about counterfactual emotions. *Artificial Intelligence*, 175(3):814–847.

#### Martens, C. (2015).

**Ceptre:** A language for modeling generative interactive systems. In *Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment*, volume 11, pages 51–57.



Ortony, A., Clore, G. L., and Collins, A. (2022 (original work published 1988)). *The cognitive structure of emotions*. Cambridge university press.

#### Shackle, G. L. S. (1961).

**Decision, Order and Time in Human Affairs.** (2nd edition), Cambridge University Press, UK.



CoRR, abs/1507.03663.



Trabasso, T. and Sperry, L. L. (1985). Causal relatedness and importance of story events. Journal of Memory and Language, 24(5):595–611.

### Dupin de Saint-Cyr - Bosser - Callac - Maisel

#### WHAT KILLED THE CAT?