
Type Theories and Lexical Networks: Using

Serious Games as the Basis for Multi-Sorted

Typed Systems.

Stergios Chatzikyriakidis, Mathieu Lafourcade, Lionel Ramadier and Manel
Zarrouk?

LIRMM
University of Montpellier 2

stergios.chatzikyriakidis@lirmm.fr

mathieu.lafourcade@lirmm.fr

lionel.ramadier@lirmm.fr

manel.zarrouk@lirmm.fr

Abstract. In this paper, we show how a rich lexico-semantic network
which has been built using serious games, JeuxDeMots, can help us in
grounding our semantic ontologies as well as different sorts of informa-
tion in doing formal semantics using modern type theories (type theories
within the tradition of Martin Löf). We discuss the domain of base types,
adjectival and verbal types, hyperonymy/hyponymy relations as well as
more advanced issues like homophony and polysemy.

1 Introduction

Modern Type Theories, i.e. Type Theories within the tradition of Martin Löf
[13,14], have become a major alternative to Montague Semantics (MS) in the
last twenty years. A number of influential approaches using MTTs have been
proposed by the years [15,11,16,7] and have shown that the rich typing sys-
tem offered by these MTTs (type many-sortedness, dependent types, type uni-
verses) has considerable advantages over simple typed theories predominantly
used in mainstream formal semantics. One further important aspect for consid-
ering the use of MTTs over traditional Montagovian frameworks concerns the
proof-theoretic nature of the former but not of the latter.1 This fact makes MTTs
a suited formal semantics language to perform reasoning tasks, as these are ex-
emplified for example in work on inference using proof-assistant technology [5,4].
However, this expresiveness of typing comes with a cost. For example, how does
one decide on the base types to be represented? On the one hand, we do have
a way to get a more fine-grained type system unlike the monolithic domain of

? This work is partially supported by the ANR ContInt Polymnie project in France.
1 At least in the way it is employed in the Montagovian setting, simple type theory can
be viewed as model theoretic. There is however, interesting work on the proof theory
of simple type theory. The higher order theorem prover LEO-II [1] is an example of
such work. We are grateful to an anonymous reviewer for pointing this out to us.



entities found in MS, but on the other hand, constructing such a type ontology is
not at all straightforward and easy task. Different approaches and assumptions
have been put forward. For example [11,12] proposed to treat CNs as types, in
effect every CN is a different type. Approaches like [16] on the other hand, take
a more moderate view by building type ontologies according to classifier systems
(in effect type ontology is built using intuitions from classifier systems).

On the other hand, work with lexical-semantic networks have provided us
with structured lexicons that indicate lexical and semantic relations like for ex-
ample WordNet [8]. A very promising line of research in lexico-semantic network
construction concerns networks which are built collaboratively by using GWAPs,
games with a purpose i.e. serious games. This is the case of JeuxDeMots Lexical
Network (JDM, [9]), which is constructed through many GWAPs along with a
contributive tool (Diko) which allows players/users to contribute directly and to
browse the knowledge base.

In this paper, we propose to ground our semantic ontologies as well as any
other information needed in order to perform reasoning tasks using MTT se-
mantics in the JDM lexical network. In order to do this, we present some first
thoughts on how such an endeavour can be made by looking at the way a trans-
lation procedure from JDM to MTTs can be performed. Issues to be discussed
include the domain of base types, instances of these types, adjectival and ver-
bal types, hyponymy/hypernomy relations as well as more advanced issues like
homophony and polysemy.

2 From JDM to MTTs

2.1 Base Types and Instances of Base Types

MTTs, as already said are many-sorted systems in that they involve a multitude
of types rather than just one monolithic type e domain of entities. In the accounts
proposed by [11,12], every CN is associated with a base type. Note the first major
difference with MS: CNs are not predicates but rather Types.2 For base types,
an easy way to unify the two approaches is to assume that CNs are basically base
types. In JDM, POS tagging will provide this sort of information. We further
have to exclude instances of terms (for example John as an instance of Man) in
order to distinguish between instances of terms and terms themselves (CNs).3

This can be by excluding named entities:

(1) ∀A.POS(N,A) ∧ ¬SEM LABEL(NE,A) ⇒ A:cn.

2 See [12] for a number of arguments as regards the advantages of this move.
3 This does not mean that we are not interested in instances. To the contrary. What
we are saying here is that this rule distinguishes between CNs and instances of these
CNs (the difference between a type like Man and an instance of this type, e.g. John).
There will be a separate rule to derive instances which we do not show here. The
type cnis technically a universe, a collection of the names of types into a single type.
See [11,3] for more information on the use of the type theoretic notion of universe
as this is employed in MTT semantics.

2



Hyponym and hypernym relations are then defined as subtypes:

(2) ∀A,B.Hyp(A,B) ⇒ A < B:cn.

(3) ∀A,B.HyR(A,B) ⇒ B < A:cn.

Synonyms can be defined using equality:4

(4) ∀A,B.Syn(A,B) ⇒ A = B:cn.

Synonymicity is not only relevant for CNs but for other linguistic categories.
We can do that as well by changing to:

(5) ∀A,B.Syn(A,B) ⇒ A = B:C(C:LType)

LType is a universe of linguistic types, it includes the types instantiated in
linguistic semantics (CN, adjectival and verbal types, types for quantifiers etc.
See [2] for a discussion).

For instances of terms, like for example proper names, we define the following:

(6) ∀A,B.Ins(A,B) ⇒ A:B

This means that if A is an instance of B then A is of type B. For example,
if Einstein is an instance of Person, then Einstein:Person with Person:cn.

2.2 Predicates and world knowledge information

The next question is, how can one extract information on the type of predicates,
like for example verbs. JDM provides loads of information with every word,
for example characteristics, synonyms, antonyms, collocations. For verbs, agent,
patient and in general thematic relations are defined. These can guide us in
assigning types for predicates. In JDM, one can look for semantic relations like
action > agent, action > patient and various other such relations. For example
man appears as the agent of a number of verbs that express actions like question.
There is a further relation, the inverse agent relation, agent−1. This relation
returns a list of terms (and instances of terms) that can function as the agent
for the action denoted by the verb. For example, question will involve among
others teacher, mother, child, daugther, person, human. How can we make sense
in order to provide typings in MTTs? Well, there is a straightforward to do this.
What we need is to find the most general term, i.e. the term that all the other
terms are hyponyms of. Instances of terms are not needed in this process.5

4 Of course, this will treat A and B as perfect synonyms which as we know do not
really exist in natural languages. We do not discuss this issue here.

5 The formula reads as follows: forall A and B, where A is an agent of B (so B
is a predicate), if there exists a C such than all A are either hyponyms of C

3



(7) ∀A,B.Agent(A,B).∃C.(Hyp(A,C) ∨ (A = C)) ⇒ C → Prop

Similar processes can be defined for the patient arguments as well as for
adjectives. Adjectives like grande can be defined as regards typing by looking at
the terms that can have this characteristic. Again, JDM, gives us a list of terms
and instances of terms for this reason. For adjectives, we might (depending) on
the adjective, give either a typing in the same style as we have proposed above
or a polymorphic type extending over a universe which includes the most general
type found along with its subtypes:

(8) ∀A,B.Agent(A,B).∃C.Hyp(A,C) ⇒ C → Prop

(9) ∀A,B.Char(A,B).∃C.Hyp(A,C) ⇒ ΠC:cnC .C → Prop

Due to the abundance of information that JDM has to offer, one can further
encode different sorts of information in the form of axioms or definitions. For
example the has part relation, in effect a mereological relation, can be translated
as a part of relation with part of : [[Object]] → [[Object]] → Prop.

2.3 Polysemy

The next issue we want to look at is polysemy, most specifically what to do
with respect to the translation process in case of polysemous terms. First of all,
we have to note here that JDM does not distinguish between homophony and
polysemy in the sense they are usualy understood in the literature on formal
semantics (e.g. bank as homophonous and book as polysemous). For JDM, there
is only one term to refer to both homophony and polysemy, and this is polysemy.
This is what we are going to use here as well, a single notion for all cases where
different meanings associated with a given word are found. For JDM, there is
this first level where a word with more than one meaning (irrespective of whether
the meanings are related or not) are dubbed as polysemous, and then additional
levels of refinement where relations between the different meanings can arise (or
not). In MTTs, as in formal semantics in general, there are different treatments
with respect to cases of homophony and cases of polysemy. For example, in [11],
homophony is treated via using local coercions (local subtyping relations) while
logical polysemy (cases like book) via introducing dot-types, types that encode
two senses that do not share any components (see [10] for the formal details). It is
a difficult task to be able to translate from a polysemous term identified in JDM

or are equal to C, the predicate C → Prop is returned. In case there is no
supertype in the refinements, then there are two options: a) introduce a super-
type or b) split the refinements into different classes. For example in case we
have refinements human,man, pilot, vehicle, car, bike, we can split this into class
A = pilot,man < human and class B = bike, car < vehicle and propose an
overloaded polysemous type for the verb in question, with two different typings,
[[Human]] → Prop and [[V ehicle]] → Prop.

4



to the correct mapping in MTTs. However, there are some preliminary thoughts
on how this can be achieved. First of all, let us look at some cases of polysemy
identified in JDM that would not be considered such cases in mainstream formal
semantics. For example the term individual is marked as polysemous in JDM.
The reason for this is that JDM goes into more detail than what most formal
semantics theories do. JDM distinguishes different meanings of individual with
respect to its domain of appearance, i.e. the different notion of individual in
statistics, biology or administration. This level of fine-grainedness is not found
in formal semantics. However, there is no reason why we should not go into
this level of detail in MTTs. This can be captured in a translation procedure
by presenting the different types according to the different domains. In order to
encode domains, we use type theoretic contexts [15,6]. The following translation
can be defined for these cases:

(10) ∀A,B1, ..., Bn.POS(N,A) ∧ ¬(Instance(PN,A)) ∧ Domain(B1, ..., Bn) ∧
A(in B1, ..., Bn) ⇒ A:cn in ΓB1, A:cn in ΓB..., A:cn in ΓBn

What about other cases of polysemy like for example book or bank? One way
to look at the translation process in these cases is the following: In case a term is
dubbed polysemous in JDM, we look at the semantic refinements and introduce
all these refinements as subtypes of the initial term:

(11) ∀A,B1, ..., Bn.POS(N,A)∧¬(POS(PN,A))∧Ref(A, (B1 , ..., Bn)) ⇒ A <

B1, ..., Bn:cn

Now in order to decide whether we are going to use local coercions or dot-
types we proceed as follows: the types that participate in dot-types are limited
and enumerable: some of these include [[Phy]], [[Info]], [[Event]], [[Inst]] among
others. We can thus create such a set of refinements that can be senses of a dot-
type. Call this set dot refinements, DR. Now, in case the refinements happen
to be members of this set then we can form a dot-type out of the individual
refinements:

(12) ∀A,B1...Bn.POS(N,A) ∧ Ref(A(B1, ..., Bn))A,B ∈ DR ⇒ A:CN < B1 •

B... •Bn

More information on ways to approach the translation procedure with respect
to polysemy will be given in the full paper. There, other cases will be discussed:
a) cases where the two meanings are associated with different types (e.g. a case
where one meaning is verbal and the other adjectival), b) Cases where a com-
bination of approaches might be needed (e.g. a polysemous noun that further
has adjectival or verbal meanings). Further issues of how to use world-knowledge
information drawn from JDM and in which way will also be discussed. Last but
not least, we are going to discuss how can such an idea be implemented in a
system that will take as input information from JDM and will output MTT
representations (to be used for example in the proof-assistant Coq).

5



References

1. C. Benzmüller, Theiss F., and Fietzke A. The LEO-II project. In Automated
Reasoning Workshop, 2007.

2. S. Chatzikyriakidis and Z. Luo. An account of natural language coordination in
type theory with coercive subtyping. In Y. Parmentier and D. Duchier, editors,
Proc. of Constraint Solving and Language Processing (CSLP12). LNCS 8114, pages
31–51, Orleans, 2012.

3. S. Chatzikyriakidis and Z. Luo. Adjectives in a modern type-theoretical setting.
In G. Morrill and J.M Nederhof, editors, Proceedings of Formal Grammar 2013.
LNCS 8036, pages 159–174, 2013.

4. S. Chatzikyriakidis and Z. Luo. Natural language inference in Coq. J. of Logic,
Language and Information., 23(4):441–480, 2014.

5. S. Chatzikyriakidis and Z. Luo. Natural language reasoning using proof-assistant
technology: Rich typing and beyond. In Proceedings of EACL2014, 2014.

6. S. Chatzikyriakidis and Z. Luo. Using signatures in type theory to represent situ-
ations. Logic and Engineering of Natural Language Semantics 11. Tokyo, 2014.

7. Robin Cooper, Simon Dobnik, Shalom Lappin, and Staffan Larsson. A probabilis-
tic rich type theory for semantic interpretation. In Proceedings of the European
Associaton of Computational Linguistics, 2014.

8. C. Fellbaum. WordNet: An Electronic Lexical Database. MIT press, 1998.
9. M. Lafourcade. Making people play for lexical acquisition with the jeuxdemots pro-

totype. In SNLP’07: 7th international symposium on natural language processing,
page 7, 2007.

10. Z. Luo. Type-theoretical semantics with coercive subtyping. Semantics and Lin-
guistic Theory 20 (SALT20), Vancouver, 2010.

11. Z. Luo. Contextual analysis of word meanings in type-theoretical semantics. Logical
Aspects of Computational Linguistics (LACL’2011). LNAI 6736, 2011.

12. Z. Luo. Common nouns as types. In D. Bechet and A. Dikovsky, editors, Logical
Aspects of Computational Linguistics (LACL’2012). LNCS 7351, 2012.

13. P. Martin-Löf. An intuitionistic theory of types: predicative part. In H.Rose and
J.C.Shepherdson, editors, Logic Colloquium’73, 1975.

14. P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis, 1984.
15. A. Ranta. Type-Theoretical Grammar. Oxford University Press, 1994.
16. C. Retoré. The montagovian generative lexicon Tyn: a type theoretical framework

for natural language semantics. In R. Matthes and A. Schubert, editors, Proc of
TYPES2013, 2013.

6


	Type Theories and Lexical Networks: Using Serious Games as the Basis for Multi-Sorted Typed Systems.
	Stergios Chatzikyriakidis, Mathieu Lafourcade, Lionel Ramadier and Manel Zarrouk

