Active Tremor Compensation in Handheld Instrument for Microsurgery

School of Mechanical & Aerospace Engineering Nanyang Technological University Singapore wtang@ntu.edu.sg

Contributors

Cameron N. Riviere
 Associate Research Professor

Si Yi Khoo

Research Engineer

Medical Robotics Technology Center The Robotics Institute Carnegie Mellon University Pittsburgh, PA, USA Wei Tech Ang Assistant Professor

Mounir Krichane
 Exchange Student (EPFL)

Robotics Research Centre & Sch. of Mechanical & Aerospace Eng. Nanyang Technological University Singapore

Microsurgery with Active Handheld Instrument

Vitreoretinal Microsurgery

 Removal of membranes ≤ 20 µm thick from front or back of retina

Vitreoretinal Microsurgery

 Injection of anticoagulant using intraocular cannulation to treat retinal vein (~Ø100 µm) occlusion

Vitreoretinal Microsurgery

Tremor: under microscope

Involuntary Hand Movement and Microsurgery

Involuntary Hand Movement and Microsurgery

- Complicate microsurgical procedures and makes certain delicate interventions impossible
- Impact on microsurgeons
 - □ 2 of 10 surgeons become microsurgeons
- Factors affecting tremor
 - □ Fatigue strenuous exercise etc.
 - Caffeine/alcohol consumption
 - □ Lack of practice long vacation etc.
 - □ Age experience vs hand stability
- Microsurgeons' consensus:
 - 10 μm positioning accuracy

Involuntary Hand Movement of Healthy Human

- Physiological Tremor
 - Roughly sinusoidal motion, 8-12 Hz
 - □ \leq 50 µm rms in each principal axis
- Non-tremulous Errors
 - Myoclonic jerk, drift etc.
 - Aperiodic, may be in the same frequency band as voluntary motion
 - Larger amplitude: > 100 µm

Microsurgery with Active Handheld Instrument

Robotic Error Compensation Approaches

- Telerobotic systems: Zeus (Computer Motion) & Da Vinci (Intuitive Surgical)
 - Master-Slave manipulators
- Erroneous motion filtered by motion scaling

Computer Motion, Inc.

Robotic Error Compensation Approaches

- 'Steady-hand' robot: Russell Taylor et al., Johns Hopkins University
 - Surgeon and compliant robot hold tool simultaneously
 - Force feedback
 - 'Third hand' operation
- Erroneous motion damped by rigidity of robot

Robotic Error Compensation Approaches

 Active Handheld Instrument:
 Paolo Dario,
 Scuola Superiore
 Sant'Anna, Pisa,
 Italy

Same concept

Comparison of Robotic Solutions

Telerobotics

- Steady Hand' robot
- Active Handheld Instrument
 - ✓ Cheap
 - ✓ Unobtrusive
 - ✓ Safer
 - Limited workspace
 - No motion scaling
 - No 'third hand'

> US
$$1M$$

> US $150K$
 \leq US $15K$
Unobtrusive

Obtrusive

Micron Current Prototype

- Length: 180 mm long
- Diameter: Ø20(16) mm
- Weight <100 g</p>
- 9 DOF inertial and magnetic sensing system at the back end
- 3 DOF piezoelectric driven parallel manipulator at front end with disposable surgical needle

System Overview

Microsurgery with Active Handheld Instrument

Sensing System Design

- Magnetometer-aided allaccelerometer inertial measurement unit (IMU):
 - 3 dual-axis miniature MEMS accelerometers
 Analog Devices ADXL-203: 5mm x 5mm x 2mm, < 1g
 - Three-axis magnetometer Honeywell HMC-2003: 26mm x 19mm x 12mm, <10g
- Housed in 2 locations

Sensing Modality

Internally referenced sensors because:

- Less obtrusive
 - Externally referenced sensors require a line of sight
- Resolution:
 - Inertial sensor < 1 μ m
 - Externally referenced (e.g. Optotrak): ~ 0.1 mm
- All accelerometers because:
 - Low cost, miniature gyros too noisy
 - \rightarrow Poor sensing resolution
 - Navigation/tactical grade gyros too expensive and bulky

Differential Sensing Kinematics

Differential Sensing Kinematics

3 unknowns:

 $\Omega = [\omega_x \ \omega_y \ \omega_z]^T$ 3 differential acceleration measurements:

 $A_D = [a_{13x} \ a_{23y} \ a_{12z}]^T$

- Solve system of nonlinear equations by Gauss-Newton or Levenberg-Marquart method
- Numerical instability
 - □ Assume $\Omega^2 \approx 0$, solve for $\dot{\Omega}$ analytically

Sensing Kinematics

Updating quaternions:

$$\dot{q}(t) = \widetilde{\Omega}(t)q(t), \ \widetilde{\Omega} = \frac{1}{2} \left[\frac{\left[\Omega \times \right]_{3\times 3}}{-\Omega_{1\times 3}^{T}} \left| \frac{\Omega_{3\times 1}}{0} \right]$$

Directional Cosines matrix

$${}^{W}C_{B} = \begin{bmatrix} q_{0}^{2} + q_{1}^{2} - q_{2}^{2} - q_{3}^{2} & 2(q_{1}q_{2} - q_{0}q_{3}) & 2(q_{1}q_{3} + q_{0}q_{2}) \\ 2(q_{1}q_{2} + q_{0}q_{3}) & q_{0}^{2} - q_{1}^{2} + q_{2}^{2} - q_{3}^{2} & 2(q_{2}q_{3} - q_{0}q_{1}) \\ 2(q_{1}q_{3} - q_{0}q_{2}) & 2(q_{2}q_{3} + q_{0}q_{1}) & q_{0}^{2} - q_{1}^{2} - q_{2}^{2} + q_{3}^{2} \end{bmatrix}$$

- Gravity Removal: ${}^{W}A_{E} = {}^{W}C_{B}{}^{B}A {}^{W}g$
- Tip Displacement:

$${}^{W}P_{tip}(t) = {}^{W}P_{tip}(t-T) + \int_{t-T} \int_{t-T}^{t} {}^{W}A_{E}(\tau)d\tau d\tau + {}^{W}C_{B}(t)[{}^{B}\Omega \times]^{B}P_{tip}$$

Sensing Resolution (Error Variance) Analysis

- Sensing resolution dependent on sensor noise floor
- Angular Sensing
 - Sensing equation:

$$A_{ij} = f(\Omega) = ([\Omega \times] [\Omega \times] + [\dot{\Omega} \times])P_{ij}$$

Covariance:

$$C(A_{ij}) = C(\Omega) P_{ij}$$
$$P_{ij} \uparrow, C(\Omega) \downarrow$$

Proposed All-Accelerometer vs Conventional Inertial Measurement Unit

- All-accelerometer IMU
 - Maximized P_{ij} , with physical constraint of a slender handheld instrument
- Conventional IMU (3A-3G)
 - □ Tokin CG-L43D rate gyros x 3

	3G-3A Error std. dev. (deg/s)	6A Error std. dev. (deg/s)	Noise reduction / resolution improvement
$\omega_x \& \omega_y$	1.41	1.08 × 10 ⁻²	99.3% / 130x
ω_{z}	1.41	4.42 × 10 ⁻²	96.9% / 32x

Angular Sensing Resolution Comparison

Sensing Resolution (Error Variance) Analysis

- Translational Sensing
 - □ 2 accelerometers in each sensing direction:

$$\frac{1}{\sigma_A^2} = \frac{1}{\sigma_{Ai}^2} + \frac{1}{\sigma_{Aj}^2} \rightarrow \sigma_A = \frac{\sigma_{Ai}}{\sqrt{2}}$$

- $\hfill\square$ Sensing resolution improves by a factor of $2^{\frac{1}{2}}$
- Better orientation estimation → more complete removal of gravity → better translation estimation

Microsurgery with Active Handheld Instrument

Integration Drift of Inertial Sensors

- - Error accumulates and grows unbounded over time
- Poor sensing accuracy

Measurement Model

- Measurement model allows error analysis and compensation
- Measurement Model = Physical (Deterministic) Model + Stochastic Model

Accelerometer Model

Calibration

- Record accelerometer outputs at orientation inline (V_{+g}) and opposite (V_{-g}) to gravity
- Linear model
 - □ Acceleration,

$$A = (V_o - B)/SF \qquad g$$

□ Scale factor,

$$SF = \frac{1}{2}(V_{+g} - V_{-g}) V/g$$

Bias

$$B = \frac{1}{2} (V_{+g} + V_{-g}) \quad V$$

Experimental Observations

Phenomenological Modeling

• Bias,
$$B_x(V_y, V_z) = B_x + g_x(V_y) + h_x(V_z)$$

Scale Factor, $SF_x(V_z) = r_{x2}V_z^2 + r_{x1}V_z + r_{x0}$

Model

$$A_x = (V_x - B_x(V_y, V_z)) / SF_x(V_z)$$

Sensing Experiment - Translation

- Motion generator
 - \square 10 Hz, 50 μ m p-p sinusoid
- Displacement Sensor
 - Infrared interferometer
 (Philtec, Inc., Model D63)
 - Sub-micrometer accuracy

Sensing Results - Translation

	Rmse (mm/s ²)	Bias (mm/s ²)	Scale Factor (mm/s ²)
Linear Model	300	272	6
Proposed Physical Model	31*	<5	<1
Error Reduction (%)	89.7	-	-

* ADXL-203 rated rms noise = 22.1 mm/s^2

Stochastic Model

- Random noise analysis by Allan Variance method
- Dominant accelerometer noise types:
 - Velocity random walk
 - White noise in acceleration
 - Acceleration random walk
 - White noise in jerk
 - Trend / Bias Instability
 - Temperature drift

Temperature Drift

- Time varying zero bias
 - Heating up of internal circuitry
 - □ Steady state: 2-12 hours
- Solutions:
 - Modeling
 - Wait for steady state
 - Ovenization
 - Heat up sensor using power resistor
 - Changes sensor behavior

Sensor Fusion via Cascaded Two-Stage Kalman Filtering

Augmented State Kalman Filtering

- Time domain sensor fusion
- Augmented state dynamic equation:

Orientation Fusion

- Source 1: Differential sensing kinematics
 - $\square \quad \Omega_A[k] \text{ from differential acceleration}$
 - State transition matrix:

$$F[k] = \cos \frac{\left|\theta[k]\right|}{2} I_{(4\times4)} + \frac{1}{\left|\Omega[k]\right|} \sin \frac{\left|\theta[k]\right|}{2} \widetilde{\Theta}[k]_{(4\times4)}$$
$$\theta[k] = \Omega_A[k]T; \widetilde{\Theta}[k] = \frac{1}{2} \left[\frac{\left[\Omega_A \times \left]_{3\times3}\right]}{-\Omega_{A1\times3}} + \frac{\Omega_{A3\times1}}{0} \right] T$$

- Dynamic state equation: $q_A[k+1] = F[k]q_A[k] + \gamma[k]$
- Orientation defined by quaternion
- + : high resolution
 - : drift

Orientation Fusion

- Source 2: TRIAD
 - Gravity vector & Magnetic North vector are noncollinear
 - **TRIAD** algorithm:
 - $z_B = -g_B / ||g||;$
 - $y_B = z_B \times N_B / || z_B \times N_B ||;$
 - $x_B = y_B \times z_B$
 - $\square \qquad {}^{W}C_{B} = [x_{B} \ y_{B} \ z_{B}]$
- + : non-drifting
 - : poor resolution

Quaternion-based Kalman Filtering

 Ω_A

600

Time(ms)

800

400

- Gravity Tracking
- Source 1: Ω_A
 □ High resolution, drifting

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

0

200

Normalized Gravity

- Source 2: $N_B + g_B$ Noisy, non-drifting
- Quaternion-based KF: Q-KF
 - Reduced noise, non-drifting

Sensing Experiment - Orientation

Translational Sensing Accuracy

- No non-drifting reference
 - Poor translational sensing accuracy
- Not important if tremor is separable from drift and intended motion

Microsurgery with Active Handheld Instrument

Frequency Selective Filters Phase Characteristics

- Physiological tremor has a distinct frequency bands:8 – 12 Hz
 - □ Voluntary motion: \leq 1 Hz; Electrical noise: >> 12 Hz
- Classical frequency selective bandpass / band-stop (notch) filters
 - $\Box \quad Phase \ Iag \equiv Group \ (time) \ delay$
 - Filtered signal is a time delayed version of the actual sensed motion
 - Unacceptable condition for real-time error canceling application: compensating action might worsen the error

Zero Phase Filtering

- Separation of tremor from the intended motion without introducing phase lag
 - Prediction/projection capability
 - Adaptive
 - Non-linear phase response of IIR filter, i.e. phase characteristic changes with frequency
- Two proposed algorithms
 - Weighted-frequency Fourier Linear Combiner (WFLC)
 - Adaptive Phase Compensating Band-pass Filter

Fourier Linear Combiner (FLC)

• Truncated Fourier series to adaptively estimate amplitude and phase of periodic signal with *known frequency* (ω_0)

Weighted-frequency Fourier Linear Combiner (WFLC)

- Extends FLC to also adaptively estimate the frequency using another LMS algorithm
- Band-pass filter to select the band of interest
 - Assumption: rate of change of the dominant input signal frequency is slow
- Zero-phase notch (band-stop) filter effect

Weighted-frequency Fourier Linear Combiner (WFLC)

Weighted-frequency Fourier Linear Combiner (WFLC) Experiment

- 1 DOF motion canceling experiment
- Ave. rms tremor amplitude reduced 69%
- Stability problem
 - Double adaptive algorithm

Filter Phase Characteristics

- Low-pass filters create phase lag
- High-pass filters create phase lead

Adaptive Phase Compensating Band-pass Filter

- The idea:
 - To design a cascaded low-pass and high-pass filters such that phase lag of low-pass is compensated by phase lead of high-pass for a certain known input frequency
 - WFLC to estimate
 the instantaneous
 frequency
- Motivation
 - Most sensors come with built-in low pass filters

Implementation

- Design LP-HP filter pairs with equal and opposite phase characteristics
- Filter design frequency band: 3 – 7 Hz
- Filter type: Elliptical 2nd order
- Roots of transfer function can be modeled by a linear function

 \times - Poles

o - Zeros

Adaptive Phase Compensating Band-pass Filter

Motion Canceling Experiment

- Motion generator oscillating at 2.0 Hz
- Camcorder recording a rectangular target
 - 25 frames per second
- Image post processing to simulate real-time compensation

Adaptive Phase Compensating Band-pass Filter

 Rmse: Raw footage

 = 2.61 pixels
 Compensated
 = 0.66 pixels

 Error reduction: 75%

Microsurgery with Active Handheld Instrument

Piezoelectric Actuator Hysteresis

+:

- High bandwidth
- Fast response
- High output force
- :
 - Hysteresis
- ~15% of max. displacement

Commercial Piezo-System with Feedback

Controller

- Piezo-driven 3 axis micro-positioner
 - □ Polytec-PI, Germany, NanoCubeTM P-611
 - □ >\$ 10,000
 - Feedback sensors: strain gages
 - \square Tracking a 10 Hz, 100 μm p-p sinusiod
 - Hysteresis still present
 - Low-pass filtered behavior

Open-loop Feedforward Controller with Inverse Hysteresis Model

- Develop a mathematical model that closely describes the hysteretic behavior of a piezoelectric actuator
- Existence of an inverse hysteresis model

Prandtl-Ishlinskii (PI) Operator

Rate independent backlash operator:

$$H_r = \max\{x(t) - r, \min\{x(t) + r, y_0\}\}$$

Linearly weighted superposition of backlash operators:

Modified PI Operator

Backlash operators are symmetric but real hysteresis is not

Modeling saturation by linearly weighted superposition of dead-zone operators:

Modified PI Operator

$z(t) = \Gamma[x](t) = \vec{w}_s^T \cdot \vec{S}_d[\vec{w}_h^T \cdot \vec{H}_r[x, \vec{y}_0]](t)$

Inverse Modified PI Hysteresis Model

Inverse Modified PI Operator

Piezoelectric Hysteresis is Rate Dependent

- Basic assumption of Prandtl-Ishlinskii operator:
 - Hysteresis is rate independent
- Our observation:
 - Hysteresis is rate dependent
- Tremor frequency is time varying and person specific
 - □ 8-12 Hz

Rate-dependent PI Operator

- Assume saturation is rate independent
- Sum of the backlash weights up to r_i (slope of the hysteresis curve at interval i) is linearly dependent on actuation rate

$$W_{hi} = \Sigma w_{hi};$$

$$W_{hi}(\dot{x}(t)) = W_{hi}(\dot{x}_0) + c_i \dot{x}(t), \ i = 0...n$$

Rate Dependent PI Hysteresis Model

Rate dependent model:

 $z(t) = \Gamma[x, \dot{x}](t) = \vec{w}_s^T \cdot \vec{S}_d[\vec{w}_h(\dot{x}(t))^T \cdot \vec{H}_r[x, \vec{y}_0]](t)$

- Also a PI type \rightarrow Inverse exists
- Rate dependent inverse model

$$\Gamma^{-1}[\hat{z}](t) = \vec{w}_{h}(\dot{x}(t))^{T} \cdot \vec{H}_{r'(\dot{x}(t))}[\vec{w}_{s}^{T} \cdot \vec{S}_{d'}[\hat{z}], \vec{y}_{0}](t)$$

Open-Loop Feedforward Controller with Inverse Rate-Dependent PI Hysteresis Model

Open-Loop Feedforward Controller with Inverse Rate-Dependent PI Hysteresis Model

Tracking multiple frequency non-stationary sinusoids

2

0

-2 0 Error

0.05

0.1

0.15

0.2

Dynamic Motion Tracking Results

	Without model	Rate- independent	Rate- dependent
rmse $\pm \sigma(\mu m)$	1.02 ± 0.07	0.31 ± 0.03	0.15 ± 0.003
$\frac{\text{rmse}}{\text{p-p amplitude}}(\%)$	9.2	2.8	1.4
max error $\pm \sigma$ (µm)	1.91 ± 0.08	0.89 ± 0.04	0.59 ± 0.06
$\frac{\text{max error}}{\text{p - p amplitude}}(\%)$	17.3	8.0	5.3

rms noise of interferometer = 0.01 μ m

Tremor Tracking Results

Tracking recordings of real tremor using 1 piezoelectric stack
 Rmse = 0.64% of max ampl.; Max error = 2.4% of max ampl.

Microsurgery with Active Handheld Instrument

Design of Parallel Mechanism

Manipulator Design

- 3 DOF piezoelectric-driven parallel manipulator
 - \square 1 actuator per axis, max effective stroke = 12.5 μ m
 - Motion amplification = 9.4x, total stroke > 100 μ m
- Tool tip approximated as a point, hence only 3 DOF manipulation
- Parallel manipulator design because
 - Rigidity, compactness, and design simplicity
- Located at the front end to balance the weight of the instrument

Design of Parallel Mechanism - New

- IEEE EMBS 2005 (Shanghai) Best Student Design Competition winner
 - David Choi et al.
- Monolith design using Stereolithography
- Ø22 x 58 mm

Manipulator Kinematics

- Inverse kinematics
 - Modeled as Lee & Shah RS-type
 - Closed-form solution
- No internal singularity

Workspace Analysis

- X_{max} , $Y_{max} = 650 \ \mu m$
- $Z_{max} = 100 \ \mu m$
- Tremor Space = \emptyset 50 μ m

Manipulator 3D Tracking Result

- Tracking planar circle of Ø200 μm
- Mean tracking rmse ~ 12.1 μm

Microsurgery with Active Handheld Instrument

Motion Canceling Experiment

- Translation only
 - Generated motion: 9 Hz, 91 μm p-p
- Ave compensated tip motion over 10 runs = 60 μm p-p
- 34.3% reduction
- 3D optical sensing system
 - \Box < 1.0 µm rms accuracy

Motion Canceling Experiment

Micron Canceling Hand Tremor

Total range: **52%** reduction

RMS amplitude: **47%** reduction

Other Applications

Surgery and Diagnostics

Active compensation of periodic human physiological and pathological motion

- Beating heart, breathing, etc.
- Pathological tremor due to Parkinson's diseases, multiple sclerosis, etc.
- Military optical tracking devices
 Handheld, vehicle & ship mounted
- Consumer camera/camcorder

Other Applications: Cell Manipulation / Dissection

Questions & Comments

Wei Tech Ang School of Mechanical & Aerospace Engineering Nanyang Technological University Singapore wtang@ntu.edu.sg

