(Computer Assisted Medical Interventions)

$\square \square \square$
 to QIS

(Quality Inspired Surgery)
P. CINQUIN

TIMC-IMAG (UJF \& CNRS)
\& SIIM- CHU Grenoble Philippe.Cinquin@imag.fr

Quality Inspired Surgery (QIS)

- Multiple Challenges
- Initial Vision : CAMI
- Achievements of CAMI
- Present Vision of QIS
- Preliminary Research on " μ-QIS"

Medical Challenges: Enhanced and Quantified Quality

- Perform classical interventions with enhanced:
- Safety
- Efficiency
- Efficacy
- Reproducibility
- Enable performance of new interventions, especially minimally invasive procedures, by surpassing human limitations

Information Technology Challenges Introduce IT in the Operating Room

- cross-fertilisation of multi-modal information
- quantified surgical planning
- enhanced performance of the action

Industrial Challenges
 Create a new industrial domain

Heard in 1987 from a leading medical imaging company:
"it is so difficult and dangerous to contribute to diagnosis: nobody shall ever dare contributing to surgical intervention performing"

Quality Inspired Surgery (QIS)

- Multiple Challenges
- Initial Vision : CAMI
- Achievements of CAMI
- Present Vision of QIS
- Preliminary Research on " μ-QIS"

CAMI (Computer Assisted Medical Interventions)

 a multi-disciplinary challengeSciences, Medicine and Industry cooperation for mutual benefit

Medical Specifications Verification Clinical Validation

Applied Mathematics

- inverse problems - approximation - optimization - PDE

Computer Science

- segmentation
- registration
- simulators
- augmented reality
- system design

Medical
Robotics

- calibration
- safety issues
- synergystic devices
- redundant control

Sciences

CAMI: organizational vision

 multidisciplinary team and efforts, framework for mutual respect and benefit- Grenoble University Hospital: 12 departments, 25 Hospital Practitionners
- CAMI-TIMC-IMAG (UJF\&CNRS): 35 researchers
- PRAXIM SA: 50 employees
- International cooperation (4th FP CAMI, 5th FP IGOs 1\&2, VOEU, MI3)

CAMI: Medical Vision

Medical objectives driven project

- deep understanding of surgical requirements
- importance of clinical validation:
- multi-centric validation
- participation of independent international experts
- IT education of surgeons and physicians

CAMI: IT Vision

- Medical immersion of engineers
- Favour the "lightest" solutions:
- Simple intra-operative information acquisition,
- Surgical navigation,
- Light and synergistic robotics;
- Favour generic solutions
- Patent and publish

CAMI: Industrial Vision

- Partnerships with companies:
- Philips, Siemens, GE, Medtronic, Aesculap, France-Telecom, ...
- Creation of PRAXIM in 1995:
- > 100 SURGETICS®, >300 surgeons, > 2000 patients

PRODUCT : Multi-application Surgetics Station

Quality Inspired Surgery (QIS)

- Multiple Challenges
- Initial Vision : CAMI
- Achievements of CAMI
- Present Vision of QIS
- Preliminary Research on " μ-QIS"

Specificities of the Perception - Decision - Action loop in CAMI Applications

- TWO categories of human beings:
- The patient
- The surgical team
- Perception level:
- The most relevant information is often purely virtual!
- Highly multi-modal
- Decision level:
- Distributed over time, space, and medical specialists
- Action level:
- Man-Machine Co-operation

A Highly Multi-Modal Perception

- Position (3D), Orientation (3D)
- Shape (nD)
- Cinematics:
- Rigid movements (6D + time)
- Deformations (nD)
- Dynamics (6D + 3D forces +3D torques)
- Organs characteristics (X-ray, Ultrasound, Color, ...)
- Physiological signals (EMG, ECG, EEG, ...)
- ...

Acquisition of position, shape and cinematics with a 3D digitizer: the instance of Anterior Cruciate Ligament Replacement

Interfaces for Decision: the instance of Per-operative planning

PLANNING

MULTIMODAL INFORMATION REGISTRATION

$$
\begin{aligned}
& E(p)=\sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}} \operatorname{dist}^{2}\left(S, R(p) M_{i}+T(p)\right) \\
& \text { with }: p=\left(t_{x}, t_{y}, t_{z}, \varphi, \theta, \psi\right)
\end{aligned}
$$

3D Kinematic Study of the Spine

 (A. Hamadeh)- Aim :

Detect spinal instability by 3D measurement of the motion of vertebrae.

- Data :
Δ Functional Radiographies: different positions of the spine (flexion - extension, lateral inflexion ...)
- Methods:

Qualitative interpretation : easy, subjective, not accurate..
Δ The spinal motion is three-dimensional:
σ 3D techniques: accurate, simultaneous estimation of the 6 parameters of motion (3 rotations, 3 translations)

3D Motions of the Lumbar Spine

Flexion - Extension of the lumbar spine.
(source: Kapanji)

Lateral Inflexion of the lumbar spine
(source: Kapanji)

Principle of the method

3D/2D Registration The problem !

3D/2D Registration methodology

3D/2D Registration Results

3D/2D registration between 3D pre-operative model of the vertebra and intra-operative registration lines

Experimental Setup

-Plastic phantom:
$>$ Rigid body fixed on L2: Tracking by the 3D localizer
$>$ Flexion - Extension positions.
>Two functional radiographies / position

- Measurements of the 3D motion:
Δ Optotrak: $\quad M 2_{\text {opto }}=T_{\text {rb2 } 2}^{r b 2 e}=T_{\text {optotrak }}^{r b 2 e} \cdot T_{r b 2 f}^{\text {opto }}$
\diamond Registration: $M 2_{\text {reg }}=T_{2 F}^{2 E}=T_{\text {data }}^{2 E} \cdot T_{2 F}^{\text {data }}$
■ Validation:
\checkmark Compare $M_{2 \text { reg }}$ and $M_{2 o p t o}$

Experimental Setup

Functional Radiographies

Functional radiographies of the phantom of a lumbar spine in flexion (left) and extension (right) positions

Results (2D)

Superimposition of projective contours of the vertebrae L2 and L3 on the functional radiographies in flexion (left) and extension (right) positions

Results (3D)

3D representation of the lumbar vertebrae L2 and L3 in flexion and extension positions

Relative 3D motion of the vertebrae L2 and L3

Interfaces for Action

- Physician's natural senses versus artificial sensors
- Physician's intelligence versus artificial intelligence
- Physician's dexterity versus guiding devices

Physician and Machine Co-operation

Humans

Strengths

- Superb eyesight
- Superb dexterity
- Hand-eye coordination
- Judgement
- Comprehension
- Instructable
- Adaptable

Weaknesses

- Cannot see thru tissues
- Tremor, imprecision
- Geometric inaccuracy
- Bulky
- Inattention, fatigue
- Susceptible to radiation
- Hard to keep sterile

Robots

Strengths

- Multiple sensors
- Direct connection to data
- Very precise
- Geometric accuracy
- Untiring, stable
- Work in hostile environments
- Sterilizable

Weaknesses

- Poor judgement
- Often expensive
- Hard to instruct
- Limited ability to do complex tasks or to react to unexpected events
- Poor hand-eye coordination

A robot: what for?

- Tasks with a complex geometry
- Third hand
- Intra-body tasks
- Tasks on moving targets
- Carry or hold heavy tools
- Force controlled actions
- Remote action
- Motion and force augmentation or scaling

Robots in the OR: a classification

- Passive systems
- give information to the surgeon
- Active systems
- realize the intervention with human supervision
- Interactive systems: mechanical guides
- Semi-active devices
- Synergistic devices
- Teleoperated devices

Surgical Navigation: an instance with visual feedback

Action: semi-active tools

Action: Synergistic devices

Benefit from:

Surgeon's

- sensing
- know-how
- ability to react to unexpected
 events

PADyC
 (Passive Arm with Dynamic constraints)

6 DOFs prototype

Tele-operated tools: the instance of Da Vinci®

3D master console

3 more dofs

DaVinci in use

Computer Assisted Medical Interventions at Grenoble

Proven clinical benefits: Enhanced Quality

- Enhanced:
- Precision and Reproducibility
- Implant lifetime
- Reduction of:
- failure or complications rates
- "variance" around the objective
- invasiveness
- X-ray dose
- Post-operative pain
- Hospitalization length
- Quantified and accurate surgical reports

Potential economical benefits:

- Total Knee Arthroplasty (TKA): 10 years survival rate should raise from 90\% to 97\% [Computer Assisted Implanation of Total Knee Prossteses: A Case Control Comparative Study With Classical Instrumentation, Jenny J.Y., Computer Aided Surgery 6:217-220 (2001)]
- 187000 TKA/year in Europe
- 10000 € / TKA
- Potential saving $=187000 \times 10000 \times 0.07=131 \mathrm{M}$ €/year
- Total Hip Arthroplasty (THA): 10 years survival rate should raise from 93\% to 98\% [Comparison of a Mechanical Acetabular Alignement Guide with Computer Placement of the Socket, A.M. DiGioia III, B. Jaramaz et al. The Journal of Arthroplasty, Vol. $17 \mathrm{~N}^{\circ} 3$ 2002, pp 359-364]
- 450000 THA/year in Europe
- 11000 € / THA
- Potential saving $=450000 \times 11000 \times 0.05=245 \mathrm{M} € /$ year

Quality Inspired Surgery (QIS)

- Multiple Challenges
- Initial Vision : CAMI
- Achievements of CAMI
- Present Vision of QIS
- Preliminary Research on " μ-QIS"

Present Vision of Quality Inspired Surgery

- From Computer Assisted Medical Interventions (introduce IT in the OR) ...
- to Quality Inspired Surgery (Model Driven Medical and Surgical Interventions),
- thanks to a Virtual SURGETICA University

Quality Inspired Surgery

- Consensually defining Quality in Surgery,
- Thanks to massive use of IT-based Models,
- Thus enabling development of completely innovative solutions to renew Surgical Practice.

鱼 European University

February 2000-June2003

VOEU project overview

General Goal: compensate for the limits of the apprenticeship of specialist skills of Orthopaedics
Great variation in Orthopaedic Practice Throughout Europe, due to the limits of the present learning process

Project Objective: enhanced studentteacher interaction in Orthopaedics

© 1) Enhanced learning material,
© 2) Enhanced remote learning and interaction,
©3) Enhanced skill acquisition and evaluation.

브N

The VOEU "Visual Integrator"

 http://www.voeu.rwth-aachen.de/default.htm

VOEU Information Server

Visual Integrator:

- An internet entry point for VOEU users from the geographically distributed sites
- A common platform with homogenous interface for users to utilize the VOEU service

WP03: Virtual Observatory System Architecture

- a WWW based Client/Server DB System -

Quality Inspired Surgery

- Consensually defining Quality in Surgery,
- Thanks to massive use of IT-based Models,
- Thus enabling development of completely innovative solutions to renew Surgical Practice.

IT-based models for Quality Inspired Surgery

- Modelling the surgical protocol
- Modelling the biomechanical behaviour of relevant organs

IT-based models of Surgical Procedures:

Taking ergonomics into account...

The instance of CASPER (Computer ASsisted PERicardial puncture)

Ergonomics

- Visual continuity while performing the task

Ergonomics Modelling (E. Dubois, L. Nigay)

Components identification:
Oo : Patient

Ot : Puncture Needle
P: Surgeon
OA : Screen
IA: 3-D localizer
S : Computer
Relationships:

Ergonomics Modelling

- Physical level
- Perceptual environment
- For instance in CASPER: the screen and the operating field
- Cognitive level
- Distance between information pertinent for a single concept
- For instance in CASPER : 2D representation of a 3D needle

Ergonomics Modelling

perceptual level: a new adaptor

Cognitive level: a 3-D stereoscopic representation

3-D cone = the trajectory Simultaneous Representation of the real and planned trajectory

Shoulder Arhtroplasty

Optimal Position (Geometric

+ mechanical + bone characteristics)

Implant Navigation
RNTS

Quality Inspired Surgery

- Consensually defining Quality in Surgery,
- Thanks to massive use of IT-based Models,
- Thus enabling development of completely innovative solutions to renew Surgical Practice.

Innovative solutions for PERCEPTION

- Minimally Invasive Intra-operative Imaging (MI3)
- Articular Space Exploration

Model Driven Perception for Ligament Balance in Total Knee Arthroplasty

- HKA alignment of 180 degrees
- Ligament balance $=$ Equilibrium of Articular pressures

- Extension
- Flexion
\Rightarrow Bone cuts \& Ligament releases

Model Driven Perception for Ligament Balance in Total Knee Arthroplasty

- Classical method
\Rightarrow Position information

- CASurgery

Measures the laxities with a localizing system

Model Driven Perception for

 Ligament Balance in Total Knee ArthroplastyExamples of spacers

Freeman

Insall

Balansys

Ritschl Centerpulse

Model Driven Perception for

Ligament Balance in Total Knee Arthroplasty Robotized Spacer (c. Marmignon)

© «Closed » Envelope
© Real time measures
© Dynamic information
© Envelope modelling

Wes

Model Driven Perception for Ligament Balance in Total Knee Arthroplasty Results

(9) Allows the distraction of the knee
(©) Measures the forces of distraction
(e) Measures their lengths at every time
(©) Helps to choose the bone cuts
© Helps to release

Innovative solutions for DECISION

 The instance of CT-US automatic registration for sacro-iliac screw insertion
J. Tonnetti, P. Merloz, Automatic segmentation of bones from US CHU Grenoble
V. Daanen

3D set of US points for registration with CT data

Innovative solutions for ACTION

Tongue Display Unit (J. vazquez, y. Payan, J. Demongeot)

Tongue Display Unit

Innovative solutions for ACTION Light Endoscopic Robot (P. Berkelman, E. Booidard, J.A. Long)

Lightweight Tele-Endoscopy

Combining ACTION and Perception
 (S. Voros, E. Orvain)

Tele-Echographic System

Networks:
-ISDN
-LAN
-ADSL
-VTHD

Innovative solutions for ACTION Light Robotized Tele-Echography

Innovative solutions for ACTION Light Puncture Robot (E. Teillant, C. Allogini, D. Ammaud, I. Bricault)

Robot Architecture

- CT/MR compatible

人 Interdependent of patient's body

- Sterilizable

Robot Architecture

5 Degrees of Freedom

Compressed air powered

Embedded Localization Device

Localization

No active sensors (CT/MR compliance)

Passive localization devices using CT/MR image processing.

Fully determined attitude.

Localisation device for MR

Experiments \& Results

Open Loop Performance

Translation Accuracy : 5\% of distance Rotation Accuracy: less than 1°

Image Processing Performance
Entry Point Localization Accuracy : ~1 mm Angles Determination Accuracy : ~2ㅇ

Experiments \& Results

- Phantom Experiments - 2 attempts (1vertical, 1 inclined) - Targeting Accuracy : less than 1.5 mm

Praxiteles mini-robot (C. Plaskos)

> Sagittal Rotation AP Positioning
> PD Positioning

5 cutting planes

Hybrid
Passive / Motorized Architecture

Praxiteles (C. Plaskos)

- Multiple Challenges
- Initial Vision : CAMI
- Achievements of CAMI
- Present Vision of QIS
- Preliminary Research on " μ-QIS"

Quality Inspired Surgery (QIS)

- Multiple Challenges
- Initial Vision : CAMI
- Achievements of CAMI
- Present Vision of QIS
- Preliminary Research on " μ-QIS"

Sources of Energy for " μ-QIS" systems

- Objective: implantable micro-robots and micro-systems, capable of assisting weakening functions (cardio-vascular, kidney, breathing, bladder, ...)
- Common issue: need for a renewable and controllable source of energy

Osmotic " μ-muscle":

preventing revascularisation of grafts in endovascular surgery of Abdominal Aortic Aneurisms (AAA)

Osmotic " μ-muscle":

 preventing revascularisation of grafts in endovascular surgery of Abdominal Aortic Aneurisms (AAA)$$
\Pi=\rho \mathrm{gh}=\Delta \mathrm{W} \mathrm{R} \mathrm{~T}
$$

Osmotic " μ-muscle":

 preventing revascularisation of grafts in endovascular surgery of Abdominal Aortic Aneurisms (AAA)

Biochemical control of osmotic pressure

OSMOTOR: conversion of biochemichal energy into mechanical energy

Osmotor demonstrator

Osmotor demonstrator

Creation of energy

$\&$ Dextran

Glucose polymer
\rightarrow More than 50% of $\alpha(1 \rightarrow 6)$ links
bacterial origin
enzymatic synthesis and degradation
bio-compatible

Energy Creation: degradation

$\&$ Dextranase

Energy Creation: degradation

Energy Creation: synthesis

\& Dextransucrase

Osmotor: Status

\checkmark Demonstrator (Osmotor V1) ready for tests
\uparrow Consumes Dextran and produces glucose
Quantification of Power/Mass to be performed. First results lead to hope about 4 W/kg (human heart uses some Watts)
\neg Osmotor (V2) will use encapsulated mammal cells capable of transforming glucose into sucrose. A lot of research ahead!

- From CAMI to QIS ...
 - From QIS to μ-QIS ...

- Prosperous future for the marriage between Surgical Art and Information Technology!

