Visual servoing of a laparoscopic surgical robot

European Summer University Medical Robotics Montpellier, september 2005

A. Krupa, R. Ginhoux, J. Gangloff, C. Doignon, M. de Mathelin
G. Morel, L. Soler, J. Marescaux
http://eavr.u-strasbg.fr

Laboratoire des Sciences de l'Image, de l'Informatique et de la Télédétection

- Laparoscopic surgery :
 - Small incision points (trocart)
 - Endoscopic vision system

- Advantages :
 - Shorter recovery time
 - Lower infection risk
 - Smaller costs
- Difficulties :
 - Tiring gestures
 - Indirect visual feedback, lack of depth information
 - Inverted motions limited to 4 DOF
 - Poor haptic feedback

4/37

- Commercial systems to move the endoscope
- AESOP (Computer Motion/Intuitive Surgical)

Voice controlled

Controlled with head motions

- EndoAssist (Armstrong-Healthcare)

"The surgeon's third hand"

5/37

Commercial robots to move the instruments
– ZEUS (Computer Motion/Intuitive Surgical)

Da Vinci (Intuitive Surgical)

- Advantages :
 - Confort for the surgeon
 - Increased precision
 - Demultiplication ratio increased dexterity filtering
 - Remove the holder of the endoscopic camera
 - Long distance surgery
- Difficulties :
 - Keep track of the instruments
 - Risk of contacts with the organs
 - Longer duration of surgical procedures

2- Visual servoing applications2.1- Instrument guidance

Goal : surgical instrument guidance

Autonomous retrieval of the instruments

- Bring the instrument in the field of view
- Centering of the instrument in the image

Automatic positionning

- Put the instrument at a desired location
- Provide depth informations

Motivations : - increase safety

- improve ergonomy
- speed up surgical procedures

2- Visual servoing applications2.1- Instrument guidance

Problems to solve

Localization of the instruments

- Add structured information to the scene
- Robust detection of visual informations
- Depth estimation

Control of the robot using visual servoing

 Find the relationship between motions in the image and control of the robotic arm with an external view

Maximum safety

- No uncontrolled contacts with soft tissues
- Procedures in case of loss of visual features

2- Visual servoing applications2.2- Description of the experimental setup

10/37

Robotic system

2- Visual servoing applications2.2- Description of the experimental setup

11/37

Laser pointing device

- 4 laser spots (redundancy factor)
- To be used with standard instruments (4 mm)
- Using standard trocart (10 mm)
- 3 optical markers (detection of the instrument)

3- Visual features detection3.1- Difficulties

- Goal: to obtain the image coordinates
 Center of laser spots and optical markers
- Difficulties
 - Bright spots
 - Diffused laser spots
 - Breathing motions
 - Real-time processing

3- Visual features detection3.2- Robust detection

Blinking laser spots and optical markers

- Even frames : laser on markers off
- Odd frames : markers on laser off

3- Visual features detection3.2- Robust detection

• High-pass filtering

*

ligne N°:																														
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0
6	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0
8	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0
10	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

3- Visual features detection3.2- Robust detection

Laser spots detection

3- Visual features detection3.3- Coordinates

- Laser spot center of mass : $\mathbf{s}_p = \begin{pmatrix} u_p & v_p \end{pmatrix}^r$
- Optical markers : ellipse detection

3- Visual features detection3.4- Depth measurement

17/37

Depth measurement using a bi-ratio

Colinear points P, P_1, P_2, P_3 projections p, p_1, p_2, p_3

Bi-ratio:

$$\tau = \frac{\left(\frac{\overline{pp_2}}{\overline{p_1p_2}}\right)}{\left(\frac{\overline{pp_3}}{\overline{p_1p_3}}\right)} = \frac{\left(\frac{\overline{PP_2}}{\overline{P_1P_2}}\right)}{\left(\frac{\overline{PP_3}}{\overline{P_1P_3}}\right)}$$
$$d_3 = \overline{PP_1} = (\tau - 1)\frac{\overline{P_1P_2}.\overline{P_1P_3}}{\overline{P_1P_2}}$$

 I_1I_3

4- Instrument control by visual feedback4.1- Kinematics

• Kinematics in laparoscopic surgery -constraints: 4 DOF $\dot{W}_{op} = \begin{pmatrix} \omega_x & \omega_y & \omega_z & v_z \end{pmatrix}^T$ -AESOP: 6 DOF (2 passive joints)

 $\begin{array}{c} q_{2} \\ q_{3} \\ q_{4} \\ q_{4} \\ q_{4} \\ q_{5} \\ q_{5} \\ q_{6} \end{array}$

- kinematic model : $\dot{\mathbf{W}}_{op} = \mathbf{J}_{op}(\mathbf{q}, d_1) \dot{\mathbf{q}}_c$ $\dot{\mathbf{q}}_c^* = \mathbf{J}_{op}(\mathbf{q}, \hat{d}_1)^{-1} \dot{\mathbf{W}}_{op}^*$

4- Instrument control by visual feedback4.1- Kinematics

- Estimation of d_1 distance using measurements of O_E
 - slow variations of incision point
 - O_Q = intersection of successive instrument axis
 - $\Rightarrow \text{ Estimation : } \mathbf{O}_{\varrho}$ recursive least-squares
 - with: forgetting factor • dead zone

$$\hat{d}_1 = \overline{\hat{\mathbf{O}}_Q \mathbf{O}_E}$$

4- Instrument control by visual feedback4.1- Kinematics

20/37

• Estimation of d_1 distance

4- Instrument control by visual feedback4.2- 2D visual servoing

21/37

2D direct visual servoing scheme (Image-based)

 $\dot{\mathbf{S}}_{p} = k \left(\mathbf{S}_{p}^{*} - \mathbf{S}_{p} \right) = \mathbf{J}_{\omega} \mathbf{\omega}^{*}$

- controlled variable : $\mathbf{S}_p = \begin{pmatrix} u_p & v_p \end{pmatrix}^T$
- control input : $\boldsymbol{\omega}^* = \begin{pmatrix} \boldsymbol{\omega}_x^* & \boldsymbol{\omega}_y^* \end{pmatrix}^T$
- control law :

with :

- positive gain : k
 - exponentially decreasing

J

- interaction matrix

4- Instrument control by visual feedback4.3- Estimation of interaction matrix

• Open loop estimation of \mathbf{J}_{ω}

– Hypothesis : standstill camera

$$\hat{\mathbf{J}}_{\omega} = \begin{bmatrix} \hat{J}_{\omega 11} & \hat{J}_{\omega 12} \\ \hat{J}_{\omega 21} & \hat{J}_{\omega 22} \end{bmatrix}$$

$$\Delta T \quad \begin{cases} \omega_x^* = cst \\ \omega_y^* = 0 \end{cases} \quad \widehat{J}_{\omega 11} = \frac{\Delta u_p}{\omega_x^* \Delta T} \qquad \widehat{J}_{\omega 21} = \frac{\Delta v_p}{\omega_x^* \Delta T} \\ \Delta T \quad \begin{cases} \omega_x^* = 0 \\ \omega_y^* = cst \end{cases} \quad \widehat{J}_{\omega 12} = \frac{\Delta u_p}{\omega_y^* \Delta T} \qquad \widehat{J}_{\omega 22} = \frac{\Delta v_p}{\omega_y^* \Delta T} \end{cases}$$

- Stability if $\mathbf{J}_{\omega} \hat{\mathbf{J}}_{\omega}^{-1} > \mathbf{0}$

4- Instrument control by visual feedback4.3- Estimation of interaction matrix

23/37

Stability study

- robot = integrator 1/s

- poles S_1, S_2 = eigen values of $\mathbf{A} = -k\mathbf{J}_{\omega}\hat{\mathbf{J}}_{\omega}^{-1}$

damping factor ζ

4- Instrument control by visual feedback4.3- Estimation of interaction matrix

24/37

Experimental results (on laboratory equipment)

Trajectory in the image

5- Autonomous tasks 5.1- Instrument retrieval

- Steps : igodol
 - 1. Instrument out (safety) (EX) • Servoing of d_1 distance to a reference d_1^* $\mathcal{V}_{_{7}}$

control of

2. Scanning (BA)

- Open loop trajectory
 - of ω_x^*, ω_y^*

5- Autonomous tasks5.1- Instrument retrieval

3. Laser spot centering (CE)

- Interaction matrix identification J_{ω}
- 2D visual servoing
 - Control of ω_x^*, ω_y^*

4. Instrument in (IN)

• Open loop until optical markers are visible: $v_z^* = cst$

• 2D visual servoing maintained

5- Autonomous tasks5.1- Instrument retrieval

27/37

Autonomous retrieval and positioning of a surgical tool in robotized laparoscopic surgery using automatic visual servoing

A. Krupa C. Doignon J. Gangloff M. de Mathelin G. Morel

Strasbourg I University, Louis Pasteur - ENSPS LSIIT/GRAViR (UPRESA CNRS 7005) Bd. S. Brant, 67400 Illkirch, France e-mail: alexandre.krupa@ensps.u-strasbg.fr

5- Autonomous tasks

5.2-3D positioning of the instrument

28/37

• Hybrid visual servoing : $\mathbf{s} = \begin{bmatrix} u_p & v_p & d_3 \end{bmatrix}^T$

5- Autonomous tasks5.2- 3D positioning of the instrument

5- Autonomous tasks5.2- 3D positioning of the instrument

31/37

Experimental results (in vivo)

- Periodic disturbance induced by breathing
- Error reduction $\Rightarrow \uparrow$ gains k and k_d
- Problem : AESOP controller Too slow (time delay 160 ms)
- Solutions :
 - predictive model
 - faster robot

Predictive control law : take into account periodic disturbance

6- Organ motion compensation6.2- Breathing motion compensation

33/37

Predictive control law

6- Organ motion compensation6.3- Beating heart motion compensation

34/37

Fast camera (500hz)

Fast

robot

2 types of motion: - slow (~0.25 Hz) - fast (~1.5 Hz)

In vivo experiments

Predictive control law

6- Organ motion compensation6.2- Beating heart motion compensation

35/37

Adaptive filtering of 12 harmonics of the heart beat rate

6- Organ motion compensation6.2- Beating heart motion compensation

Perturbation originale sur la mesure de distance

36/37

In vivo results

7-Bibliographie

- A. Krupa. Visual servoing in laparoscopic surgery. Ph.D. thesis, University Louis Pasteur, Strasbourg I, june 2003
- R. Ginhoux. Compensation des mouvements physiologiques en chirurgie robotisée par commande prédictive. Ph.D. Thesis, Strasbourg University, december 2003
- A. Krupa, J. Gangloff, C. Doignon, M. de Mathelin, G. Morel, J. Leroy, L. Soler, J. Marescaux. Autonomous 3D positioning of surgical instruments in robotized laparoscopic surgery using visual servoing. *IEEE Transactions on Robotics*, vol 19, no 5, pages 842-853, 2003
- R. Ginhoux, J. Gangloff, M. de Mathelin, L. Soler, M. Arenas Sanchez and J. Marescaux. Active Filtering of Physiological Motion in Robotized Surgery Using Predictive Control. *IEEE Transactions on Robotics*, vol 21, no 1, pages 67-79, 2005