Models in medical image analysis and simulation

Hervé Delingette

Epidaure Project

INRIA Sophia-Antipolis

<u> NRIA</u>

*Virtual Human*Development of computational models of the human body driven by : Better Understanding of biology and physiology at different scales New *in vivo image modalities* of the human body Fast Growth of computer technology and computer science

ZINRIA

Combining Images and Models <u>1st Goal</u>: Validation Quantitative Models Reach a better understanding of human physiology and pathology by comparing measured and computed physical values <u>2nd Goal:</u> Assessment of physical parameters

(diagnosis)

Guess physical parameters (pressure, speed, stress) by assuming that the physical behavior and boundary conditions are known

- <u>3rd Goal</u> : Prediction of physical behavior
 - (therapy)

Predict anatomy based on the modeling of a physical phenomenon occurring during therapy (brain shift, cranofacial surgery)

NRIA

• 3 applicati	vervie ons of h	w of the	talk eling	
Application Type	Organ	Real/Time Constraint	Image Interaction	Physiologic al Modeling
Surgery Simulation	Liver	Yes	Reconstruction	No
Diagnosis	Heart	No	Image Segmentation	Yes
Prediction of outcome	Brain	No	Validation	No

Surgery Simulation

Acknowledgments: •Clément Forest, Guillaume Picinbono, Stéphane Cotin, Jean-Christophe Lombardo, Nicholas Ayache • INRIA projects member of the AISIM collaborative action (Imagis, Sharp, Macs) •IRCAD

<u> NRIA</u>

Training versus Rehearsal

- Training: Modelling a *standard* patient for teaching classical or rare situations
- Rehearsal: Modelling a *specific* patient to plan and rehearse a delicate intervention, and evaluate consequences beforehand

ZINRIA

S	urgery Training	
Level of Simulation	Required Technology	Example
Skill Level	Real Instrument Setup	Instrument Motion
Task Level	Visual Feedack	Suturing, Clipping, Cutting
Procedure Level	Force Feedback	Detach Gallbladder, Resect Liver
Intervention Level	Physiology Monitoring	Cholecystectomy, Hepactectomy
		NRI.

Specific Constraints

• Real-time constraints :

- 25 Hz for visual feedback
- 500 Hz for haptic feedback
- Boundary conditions posed in terms of specified displacements (essential BC)
 - Global Stiffness Matrix continuously updated
- Mesh Topology changes when simulating cutting

RINRIA

Soft Tissue Characterization

- The mechanical behavior of most soft tissues is very complex.
- A soft tissue is usually composed of different constituents :
 - Fluids : water and blood
 - · Fibrous materials : muscle fibers, neuron fibers
 - Membranes : Glisson capsule
 - Parenchyma : hepatic or cerebral parenchyma

RINRIA

	Se	oft Tiss	ue Mode	ls	
		Pre-computed	Tensor-Mass and	Non-Linear	
		Elastic Model	Relaxation-based	rensor-Mass	
			Model	Model	
	Computational Efficiency	+++	+	-	
	Cutting Simulation	-	++	++	
	Large Displacements	-	-	+	
NC.				<u>N</u>	NRI

Tensor-Mass Model

• Relies on a dynamic linear elastic model with an <u>explicit time</u> discretisation

• Newtonian law of motion:

$$M\ddot{U} + C\dot{U} + KU = F$$

M is the mass matrix *C* is the damping matrix

RINRIA

_				

	Euler Method	Euler with centered FD	Runge Kutta
Computation time	small	small	high
amping	Rayleigh	mass	mass
Time Step	small	medium	high

Incompressibility Constraints• Biological Tissues are Incompressible• Hooke law: incompressible $\Leftrightarrow \lambda \to \infty$

· Leads to instabilities

- Avoid flat tetrahedra at contact zones
- Add a penalty force linked to volume variation of each tetrahedron
 - · Force proportional to volume variation
 - Oriented along the normal of the opposite triangle (W, W)

 \mathbf{N}_p^{def} $\mathbf{F}_{p}^{incomp} = \boldsymbol{\alpha}$

RINRIA

20

Cardiac Modeling

Acknowledgments:

Maxime Sermesant, Valérie Moreau, Nicholas Ayache
 INRIA projects member of the ICEMA collaborative action (Sosso, Macs, Caiman, University of Nantes),
 NIH (Elliot Me Veigh), Guy's Hospital (D. Hill)
 Philips Research France

<u> NRIA</u>

Excitation-Contraction Coupling From Bestel-Clément-Sorine, MICCAI'01

> Control: Calcium ions

ionic currents

action potential

FHN-like models

FHN-like models

RINRIA

(ODE)

(ODE) action potential

still to be designed ...

Luo-Rudy-like models

System:

molecular motors

sarcomeres Huxley-like models

myocytes BCS model

myocardium dynamics equations

(PDE)

(ODE)

Langevin equations

(SDE) Ratchet or Power-stroke models

(PDE with BCS Constitutive Law) (PDE)

Scale

Nano

Meso

Macro

Micro.

Brain Soft Tissue Modeling

Acknowledgments: •Olivier Clatz, Nicholas Ayache •Hopital La Pitić Salpétrière (D. Dormont) •Centre Antoine Lacassagne (P.-Y. Bondiau) •Brigham and Women's Hospital (S. Warfield)

RINRIA