Computer-Integrated Surgical Systems

Surgical Robotics 2nd Summer European University Montpellier, France May 15-18, 2005

Mamoru MITSUISHI Department of Engineering Synthesis School of Engineering The University of Tokyo Research direction and map for computer-integrated surgery

- 1. Image processing and presentation
- 2. Modeling and segmentation
- 3. Registration and navigation
- 4. Mechanism
- 5. Tele-care/tele-surgery and macromicro tele-operation

Medical Robots M.Mitsuishi, The University of Tokyo

▲ Neurosurgery system in the deep surgical field

Bone cutting robot for total knee arthroplasty (TKA)

Robot to assist femur fracture reduction

▲ Hand surgery system

A Remote minimally invasive surgical system

▲ Tele-micro-surgical system

A Remote ultrasound diagnosis system

- 1. <u>Micro-neurosurgical system in the deep</u> <u>surgical field</u>
- 2. <u>Minimally invasive bone cutting system</u> for TKA/UKA
- 3. <u>Remote minimally invasive surgical</u> <u>system</u>
- 4. <u>Computer-Integrated Femoral Head</u> <u>Fracture Reduction System</u>

Professor R. Taylor

- Registration and surgical CAD/CAM system for minimally invasive orthopedic surgery are necessary.
- To reduce the radiation: CT, X-ray, or without them ?

Discussions in ICRA2003

- Collaboration: surgeons, engineers, industries
- Training of a surgeon
- Technologies: safety, light weight robot, advance control, sterilization/irrigation, etc.
 - Actuator(small, ex. hydraulic actuator), material of mechanical parts (ex. for MRI)
 - Manufacturing process for small mechanical parts
- Economics: cost effectiveness
- Standardization: user interface, software (ex. CORBA), hardware?(module), etc.

Snakelike Slave Manipulator R.Taylor, John Hopkins, US

Needle Guiding Robot T.Dohi, Univ.of Tokyo, Jpn

Sakuma, Univ. of Tokyo, Minimally invasive surgical system

Nagoya Univ., Prof. Ikuta,K.

Slave manipulator to hold forceps

Remote laparoscopic surgical system with force feedback

Hyper finger for laparoscopic surgery

Micro-active forceps for retina surgery

Active laparoscope

Hyper-endoscope

Virtual endoscopic system with force feedback

Prof. Nakamura, The Univ. of Tokyo Small slave robot

•4 d.o.f.: 3 translation d.o.f. + 1 rotational d.o.f.
•The robot can be attached to the fixture: Motion by breathing is canceled.

AC servo motor with encoder

In vivo experiment to compensate for the internal organs motion

Crawling Robot on Heart N.A.Paronik, Carnegie Mellon Univ., U.S.A.

Dario, Pisa, Italy, Micro endoscope

Dario P., Carrozza M.C., Pietrabissa A., "Development and in vitro testing of a miniature robotic system for computer assisted colonoscopy", *Computer Aided Surgery, Vol. 4, (1999)*Dario P., Carrozza M.C., Pietrabissa A., Magnani B., Lencioni L. "Endoscopic Robot", *United States Patent No. 5,906,591, May 25, 1999*

•L. Phee, D. Accoto, A. Menciassi, C. Stefanini, M.C. Carrozza, P. Dario

"Analysis and Development of Locomotion Devices for the Gastrointestinal Tract" *IEEE Trans. Biomed. Eng., June 2002*

Inchworm Locomotion

Central elongator

Proximal clamper

Retraction

Typical colonoscopy prototypeDiameter :24 mmRetracted Length : 115 mmElongated Length : 195 mmStroke:80 mm

Mechatronic Drill for Bone P.Dario, Pisa, Italy

control of peed/feed rate

DC servo

A mechatronic system for the control of the feed rate based on position, force and temperature sensing, has been embedded in the drill

Endoluminal Microrobotics P.Dario, Pisa, Italy

Aims to define theory and design methods, and to develop suitable fabrication technologies

Navigation of HIFU Applicator I.Sakuma, Univ. of Tokyo, Jpn

HIFU

SRI International Dr. Green,P.S. Mobile Telepresence Surgery

Remote Surgical Unit and a Surgeon

da Vinci: Intuitive Surgical System

Slave manipulators Master manipulators

Endoscope

7 d.o.f. hand

VR Cockpit N.Suzuki, Jikei Univ., Jpn

Tele-medicine

Tele-radiology Tele-pathology Tele-mentoring Tele-surgery Tele-education

Medical system of the 21st century

Intelligent operation room

High-level medical education

Patient load reduction

Doctor load reduction

Intelligent operation room

Technology trends to support the human life

for the security, safety, health and amenity

- Miniaturization: Bio-nano system using DNA, Real-time multipoint measurement of brain functions using ultra-precise electrodes
- Distribution: Remote medical system
- Mobilization: Home care
- Functionalization: Low-invasive laser coagulation treatment
- Process Intensification: Noninvasive medical therapy using ultrasound
- **Diversification:** Health care chip
- Individualization: Tailor-made medicine

The 21st Century COE Program Mechanical Systems Innovation The University of Tokyo

Workshop on Medical Robotics and Welfare Part 1: Medical Robotics in the Surgical Theater

IEEE 2005 International Conference on Robotics and Automation Barcelona, Spain, April 18, 2005

> Co-organizers: Mamoru MITSUISHI Werner KORB Stefan HASSFELD

Medical Robotics and Welfare Part 1: Medical Robotics in the Surgical Theater

- 1. Technical Asptects of Computer-Integrated Surgery: Surgical and Legal Requirements and Regulations
- 2. Advanced Apparatus and Systems for Laparoscopic and Endscopic Surgery
- 3. Advanced Apparatus and Systems for Head Surgery
- 4. Image-Guided Surgery and Advanced User Interfaces

Discussions

- Standardization: Risk management
- Training of a surgeon
- Social requirement
 - Cost-effectiveness
 - Socio-economic assessment
 - Global standard rules to assess technologies and to agree the devices as manufactures
 - Medical bill and insurance on the advanced medicine for not particular person

- Grand Unified System
 - Real-time patient-specific models
 - Surgical total information awareness
 - Active human-machine partnerships
 - Correlate performance to outcome
 - Micro-interventions on tiny structures: Miniature robot
- Better outcome and cost effectiveness
- Augmenting surgeon's capabilities by means of hand-held instruments
- Extending surgeon's capabilities and reducing invasiveness

- Advanced technologies:
 - Skilled human assistant
 - Motion compensation
 - Light weight robot
 - High dexterity
 - Haptic feedback
 - Modeling