Micro-neurosurgical system in the deep surgical field

M.Mitsuishi*, D.Asai*, S.Baba*, S.Warisawa*, A.Morita**, S.Sora**, T. Kirino** and R.Mochizuki*** * Department of Engineering Synthesis School of Engineering The University of Tokyo, Japan ** Department of Neurosurgery School of Medicine The University of Tokyo *** NHK Engineering Services, Inc.

Introduction

- System should be applicable in routine microsurgery.
- System should be maneuverable in the deep & narrow surgical field.
- Relatively wide range of motion at the depth should be equipped.
- Secure procedure need to be performed.

Introduction

In the neurosurgery,

- Surgeon has to perform a precise manipulation.
- In particular, the surgical operation is difficult in the deep surgical field.
- It is still a challenge to reduce the invasiveness.

Dohi, Univ. of Tokyo: Needle inserting system for neurosurgery

Neuromate: Integrated Surgical Systems

Mechanical safety is not insured.

Fujie, Hitachi: Small manipulator for neurosurgery

Inserting point

Master and slave system for neurosurgery

HivisCAS(High definition Visual Computer Aided Surgery)

Visual system using high-vision

NeuRobot

NeuroArm

RAMS system

- Fujie and Hitachi: NeuRobot
- D. Louw, et al.: NeuroArm
- P. Le Roux, et al.: RAMS system

JPL, NASA Robot Assisted MicroSurgery

Simulated eye microsurgery

Simulated eye microsurgery

Dual-arm telerobotic microsurgery workstation

Slave manipulators

Microsurgery suturing

In Touch with Robotics: Neurosurgery for the Future, Neurosurgery, March 2005. Narandra Nathoo, M.D., Ph D., et al. Cleveland Clinic Foundation. Ohio, U.S.A.,

Method 1: Hardware

- Robotic master-slave system
 - Microsurgery system: Type I was built
 - 2 micro manipulators : 12 motion freedom
 - Motorized bending mechanism of the manipulator tip
 - Hanging base with additional 6 freedoms
- Visual system
 - 3D (HD) viewer system(NHK Engineering Services, Inc.)
 - 3D video microscope/endoscope system(Olympus)

Total system design

From Newton, Sep. 2004

Slave manipulator (MM-2)

Slave manipulator (MM-2)

- Forceps part Motion inside of cranium
- Arm part Precise positioning outside of cranium
- Base part

Pre-operative positioning for arm and forceps parts

Slave manipulator (MM-2): Arm part

Basic specification

- Left and right arms
- Each arm has
- 3 rotational degrees of freedom (α , β , γ)
- 1 translational degree
 of freedom (Z)
- Fixed point on the axis in the insertion direction

Visual System

3D viewer (NHK engineering)

HD 3D video microscope

Master manipulator

- 7 d.o.f. for each hand: 3 translational d.o.f., 3 rotational d.o.f. and 1 open/close d.o.f.
- Left foot pedal is used as a clutch to control the information flow from the master manipulator to the slave manipulator.
- Right foot pedal is used to modify the motion magnification ratio between the master and the slave manipulators.

Master manipulator and the forceps

From Newton, Sep. 2004

Slave manipulator (MM-1): forceps part

An easily detachable mechanism between the insertion part and the motor of the forceps enables sterilization and irrigation of the insertion part.

Slave manipulator (MM-2): forceps part

- Sterility
- Various equipments
- Miniaturization
- Safety
- Force feedback
- Virtual simulation
- Automation

Slave manipulator (MM-2): forceps part

- The forceps consists of forceps part, middle part and actuator part.
- One bending d.o.f.
 One grasping d.o.f.
- Stainless wire driven

Slave manipulator (MM-2):

arm part Space configuration with a microscope

The allowed angle for the microscope is ± 12.5 [deg.] to obtain the visual information from the area with diameter 40 [mm] at the depth 100 [mm].

• Offset mechanism was adopted between the slider and the forceps axis

• Actuators were located inner side of the mechanism.

Operation is possible at the depth 125 [mm].

Required specification Stroke: 100[mm] **Fixed** point **Rotation around** the axis Less than ϕ 5[mm] Rotation around the fixed point: -10 Bending: -90 to +90[deg] to +10[deg]

For the deep surgical field:

- diameter of the forceps: less than 3.5[mm].
- motion range: (20[mm])^3
- mechanical fixed point, rotational motion range around the fixed position: -10 to +10[deg]
 stroke: 100[mm]
- The bending angle of the forceps: -90 to +90[deg]
 - Position accuracy: more than 0.05[mm] to suture a micro blood vessel with diameter 1[mm].
 - The forceps can be changed easily.
- Sterilized and irrigated easily.

System implementation (MM-2)

1kHz

Experimental setting (MM-2)

Master manipulatorPosition
informationSlave manipulatorVxWorksVxWorksVxWorks(1kHz)100Hz(1kHz)

Correspondence of d.o.f. between the master and the slave manipulator

- The bending motion at the head of the slave manipulator corresponds to a rotation around the surgeon's wrist.
- It enables the surgeon to operate the forceps as if he/she held its tip directly.

Coordinate system transformation between the master and the slave manipulator (MM-1)

Coordinate system transformation between the master and the slave manipulator (MM-2)

Evaluation of the coordinate system transformation

20

Condition A

Condition B

Anastomosis of rat common carotid artery (MM-1)

To verify deep surgical field maneuverability

- Rat carotid artery(\$\phi\$ 1mm) harf-arteriotomy suturing
- Under a glass tube 120[mm] in depth and 50[mm] in diameter
- 10 week old male Wister rat (220g~440g) * 10

Results Experiment 1:

- 8/10 successful suturing with patency
- The average required time for one stitch suturing was 9 min.
- Time required for initial three experiments were significantly longer than that of the last three experiments.
- Knotting required the longest and the most varied time.

Required time to suture one position

• Learning effect of operation: knotting, Goal: 1 min.

- Time required for initial three experiments were significantly longer than that of the last three experiments.
- Knotting required the longest and the most varied time.

Anastomosis of rat common carotid artery (MM-1)

To verify deep surgical field maneuverability

- Rat carotid artery(\$\phi\$ 1mm) complete arteriotomy suturing
- Under a glass tube 90[mm] in depth and 40[mm] in diameter
- 10 week old male Wister rat (270g~420g) * 10

Results Experiment 2:

- A carotid artery was sutured 10 to 13 times using a 10-0 needle and suture.
- All anastomoses were successfully executed with patency
- The average time to complete anastomosis was 42.4 min.(Min.: 32 min., Max.: 65 min.)
- The target time is 20 min.

The sum of the every operation time

- The average time to complete anastomosis was 42.4 min. (Min.: 32 min., Max.: 72 min.)
- The target time is 20 min.

- The authors have developed a microsurgical system for neurosurgery in the deep surgical field.
 - The diameter of the forceps is 3.5 [mm].
 - The surgical operation is feasible at the depth 125 [mm] at the area with diameter 40 [mm].
 - Coordinate system transformation between the master and the slave manipulator was executed considering the actual suturing motion.
- Cadaveric experiments were successfully executed using the developed system.

Brain Spatula Type Robot M.Fujie, Waseda Univ., Jpn

Φ2.4