)

Applications of force feedback in
medical and surgical robatics.

Guillaume Morel
Laboratoire de Robotique de Paris

Guillaume.Morel@upmc.fr
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&  Le Laboratoire de Robotique de Paris

 Institutions: Univ. Pierre et Marie Curie (Paris 6), CNRS.
» Location: Fontenay-aux-Roses, in the close suburb of Paris.
* 13 permanent researchers, 15-25 PhD students, 2-5 postdocs.
* 4 research groups:

— Micromanipulation

— Mobile Robotics for rough terrain exploration

— Assistive devices

— Interventional robotics for medicine and surgery
+ We are encouraging applications for:

— Short stays (1-3 months) of PhD students from other labs;

— PostDocs
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Main projects of the /inferventional
robotics for medicine and surgery group

1. Dexterous Instruments for Minimally Invasive Surgery [26, 27]

LEP.

Sept. 2005 - EURON SUMMER SCHOOL ON MEDICAL ROBOTICS 3/70

Main projects of the inferventional
robotics for medicine and surgery group

2. Active Catheterism

LEP.

Sclérose

First attempt : active SMA based catheter

s —
- 4
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&5 Main projects of the interventional
" robotics for medicine and surgery group

3. Automatic Instrument Guidance from Ultrasound Imaging [23]

Motion commanded by the computer
Computer

Intracardiac instrument _
anipulated by a robot _—

Beating
Heart

The - instrument jaws cross over the
ultrasound plane which allows for
Patient| instrument localization from US images.
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< Main projects of the interventional
" robotics for medicine and surgery group

3. Automatic Instrument Guidance from Ultrasound Imaging [23]

Experiences realized at the Hopital de la Pitié Salpétriére (in vitro) and
at the Surgical School of Paris - APHP (/n vivo).
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o

E Main projects of the interventional
" robotics for medicine and surgery group

4. Automatic Patient Positionning for Protontherapy from Xray Images [4]

Samuel Pinault, who started
his PhD about 1 year ago on
this topic, is an attendee of this
summer school. Ask him for
details.
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o

E Main projects of the inferventional
" robotics for medicine and surgery group

5. Force feedback control in Minimally Invasive Surgery [25]

(to be detailed later in the talk)
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I3 Back to today’s topic:

Three paradigms of force feedback

1.“Autonomous” force control of robots.

3. Comanipulated robots

A prototype from Optirhal
_Design Lab, Japan

The ACROBOT
system

:,"‘& & : 4
Sept. 2005 - EURON SUMMER SCHOOL ON MEDICAL ROBOTICS
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Organization of the talk

1. Force feedback closed-loop control for an “autonomous” robot.
1. A simplistic introduction to force feedback control in Robotics.
2. Applications to robotics for medicine.
3. Limitations and open problems.
2. Telemanipulation.
1. Master-slave position coupling.
2. Force feedback telemanipulation.
3. Position-force coupling in telemanipulation
4. Potential benefits
3. Comanipulation.
1. Principle
2. Comanipulation without force sensors
3. Active force feedback for comanipulation
4. Conclusions
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1.1 Basics of force feedback control

a) Position control

%

Desired c i Joint Joint
end-effector+ ;Tr?:'iilrﬁn | Joint position torque | Robot | position
position posit (Jarror compensator | NPUT"| dynamics | outgut ~
_End-effector Direct
~ position kinematics
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<€~ 1.1 Basics of force feedback control
b) Direct force control
' ﬁ
O, /i"\ Force sensor
. Joint Joint
Desw% Torque error N Torque torque | Robot |position
force | computation | | compensator | input " dynamics | output|

Force | Interaction +End-effector| Direct |
dynamics ? position | kinematics
Environment
position
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<~ 1.1 Basics of force feedback control

c) Indirect Force Control

7Y

Desired c p—r Joint Joint
end-effector+ ;Tﬁ: .(a)i'rﬁn Joint position |torque |  Robot | position

positipn ® 1 posit (Jerror compensator | INPUt™| dynamics | outgut —

Trajectory

correction End-effector position Direct P
Desired Ct Force | Interaction é* Environment kinematics

Force '+ - dynamics - "

position
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< 1.1 Basics of force feedback control

LEP.

d) Simultaneous control of position and forces: _,

Hybrid position/force control l
Principle = decompose the task into two ’,
subtasks : A

* Force control for some DoFs

* Position control for the remaining DoFs

A selection matrix to Its complement to multiply

multiply the force error the position error
00O0O0O O)@sF, 10000 O¥gg,
00000 0@ ceF 01000 0eg

S:001000<-an I_S:000000<-sz
00000 O zMm, 00010 O0mgeo,
000000<-g|v|y 0000101-3(-)y
00000 0@ g, 0000011-;,;9z
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LEP.

A

1.1 Basics of force feedback control

d) Simultaneous control of position and forces:
Hybrid position/force control

Desired _
end-effector O | Position
position + "| compensator .
posifjon
ROt?OH output
dynamics -
Desired . Force y ou pUt
Force compensator
15/70
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1.2 Medical applications.

a) Robotized skin harvesting [6]

(LIRMM, Montpellier, Sinters, Lapeyronie Hosp.)

Dermatome ﬂ I
‘_ .l

controller \
|
l|I

User T Pl

A Y= = )

interface . TP =
= o 4

Control/n/V ]\

cabinet

/

DMS foot |
pedal
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@ 1.2 Medical applications.

a) Robotized skin harvesting [6]

(LIRMM, Montpellier, Sinters, Lapeyronie Hosp.)

qC
44
0 th 0 Xd
Trajectory IGM with test of > Joint
generation 0 T+ singularity PID
AX
T Frame transfor. Ry : tool frame
Learning Ry —R, R, : base frame
Situations £ AXf R, : force sensor frame
OXvim' and 0vyfin Force
K J‘ sensor
! Gravity
E AHf Compensation
_ Epg
Selection E
matrix S
. Eprb Epye SHE
Desired A;é — Hy Y- £ | Frame transfor. )
Forces PHY < A R—>R;
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@ 1.2 Medical applications.

a) Robotized skin harvesting [6]

(LIRMM, Montpellier, Sinters, Lapeyronie Hosp.)
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; 1.2 Medical applications.

b) A similar application: ultrasound probe holder (Hippocrate) [15]

(LIRMM, Montpellier, et al.)
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; 1.2 Medical applications.

c) Hybrid Vision/Force Control for Laparoscopic Manipulation [11]

(LSIIT, Strasbourg)

Principle
» An approach to laparoscopic manipulation >
through a trocar: . d/F/T sensor
— A6 dof robot + a force/torque sensor 1

— a hybrid position/force controller :
* The 2 constrained dof are force

controlled Trocar SN
* The 4 remaining dof are position a

controlled
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1.2 Medical applications.

c) Hybrid Vision/Force Control for Laparoscopic Manipulation [11]

(LSIIT, Strasbourg)

v

estimation of the
penetration depth a

Control
scheme

Desired,
force
(=[0 0])

z

\"/
.
(O]

\

. "xJ
Vi

O Velocity
in the

Ke

Velocity_ Force

a)

4 dof

trocar
frame

3

inthe ” Robot

tool
frame

sensor

x

y

,

motion
inputs *

Two approaches for the depth estimation :
*Adaptive control (gradient method, spring model)

*Direct estimation from force/torque ratio (least square
identification + sliding window+ forgetting factor + threshold)
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1.2 Medical applications.

c) Hybrid Vision/Force Control for Laparoscopic Manipulation [11]

(LSIIT, Strasbourg.)

Fx(N), Fy(N), 20 a (m) vs time (s)

Exp.
results 4,=0.3m ; a=0.1m 4,=0.05m ; a=0.2m I
5
Noontine | o . i O O i O
estimation 5| | 5 W k\c@,j k;:J W u |
0 50 100 0 50 100
5 ; 5
Adaptive
control 0 0
S5 ] -5
0 50 100 0 50 100
5 ] 5
Direct FIT l ‘ :
estimation | 0 0
5 -5
0 50 100 0 50 100
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< 1.2 Medical applications.

LEF.

c) Hybrid Vision/Force Control for Laparoscopic Manipulation [11]

(LSIIT, Strasbourg.)
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< 1.2 Medical applications.

LEF.

d) An alternative approach of F/P control: impedance control

(Moscow State Industrial University & Principle : .
Russian Science Center of 1) Program a 6 DoF trajectory
Rehabilitation and Balneology.) 2) Program an impedance : V=2. F

Application to a .... massage robot
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< 1.3 Benefits, limitations and open
problems.

* Main benefits:
— Fine and precise gesture (skin harvesting, US probe holding, ...)
— Compensation of small patient motions.
— Safety issues: limitation of applied forces (manipulation through a
trocar)
* Main Limitations:

Lack of dexterity: can perform only very simple tasks (simple
enough to be specifiable in terms of forces / trajectories).

Safety issues: proof of stability either:
* requires a contact/environment model.
* is quite conservative (e.g. passivity analysis).
Cost / sterilization;
Technical problems inherent to force sensing (bias, etc...).
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Q Organization of the talk

LEP.

1. Force feedback closed-loop control for an “autonomous” robot.
1. A simplistic introduction to force feedback control in Robotics.
2. Applications to robotics for medicine.
3. Limitations and open problems.
2. Telemanipulation.
1. Master-slave position coupling.
2. Force feedback telemanipulation.
3. Position-force coupling in telemanipulation
4. Potential benefits
3. Comanipulation.
1. Principle
2. Comanipulation without force sensors
3. Active force feedback for comanipulation
4. Conclusions
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Q 2.1 Master-slave position coupling

a) Basic principle

2. An device, called Video Camera
MASTER, is manipulated by the

onerator. PeN \\/ ',l$
P v

Joint Joint
/ . torque iti
¥ Desired . - input p::t‘;;:tn
4! R Position Robot
v N _en-d_.effector O» controller dynamics
3. The master measures operator’s position

) End-effector Direct
movements and send it to the slave position kinematics

4. The loop is closed thanks to a visual 1. A position controlled robot,
feedback of the operation scene performing the gesture is called
provided to the operator. SLAVE
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<~ 2.1 Master-slave position coupling

b) Applications to medical robotics : tele-echography

(IMAG, Grenoble & partners) (LVR, Bourges & partners)

Station Maitre Communication Station Esclave
localisie dans un site ik

un centre hosphatier w‘m Rabct
Expert pertant b

[Msieal g g r ,sm

Lions:
Mobile/
e
(GPRSs) ecnographe [
& bemecties
(ESON, AD5L_} g:i
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< 2.1 Master-slave position coupling

LEP.

c) Applications to medical robotics : Minimally invasive surgery

Da

Zsus Vinci
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<~ 2.1 Master-slave position coupling

LEP.

* Main benefits:
— « Telepresence »
* Long distance between the patient and the doctor [14].
* Virtually getting « inside » a patient in a minimally invasive
way.
— Precision: a direct effect of the position scale factor.
— Surgeon’s comfort: direct access to a patient may be quite tiring,
specially for long procedures.
— Safety/Insurance issues: the whole operation can be recorded.

* Main Limitations:
— Lack of dexterity: restoring the dexterity of a direct acces with
hands seems to be out of range.
— Lack of force feedback => towards force feedback teleoperation.
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< 2.2 Force feedback teleoperation

LEP.

» In force feedback teleoperation, the master arm is actuated and can
apply forces on the operator. Ultimately, the operator can « feel » the
forces applied by the slave arm to its environment.

* Mainly two techniques can be used:

| Bilateral position coupling. | | Force-position coupling.

Xsq Position Controlled Xs Xsq Position Controlled ﬁ»

Slave Arm Slave Arm

Xm

Force Controlled

Position Controlled

Xm Master Arm Xm Frm, Master Arm L
Fm
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< 2.2 Force feedback teleoperation

Applications of bilateral P-P teleoperation to Tele-echography

Tele-echography

I
|
I Station Maitre Communication Station Esclave
ocallsée dans localisie dans un site ik
1 un centre hospratier SATELLITE nbot
Export postant ia
I m.g & \as\ P
| Liones
1 e :z;‘:l:? ecnographe [
I = o 25 ;;Ti
L= R
i - moresicn d Tmage
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Q 2.2 Force feedback teleoperation

Application of bilateral P-P teleoperation to MIS [16]

(Univ. Washington, Seattle) 35+

Mean Square Error

0.25
.  E=3
GRASPER FREG HAND
Taol Type

[} —

Mean square error of ranking the
stiffness of 6 different materials
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Q 2.2 Force feedback teleoperation

Application of bilateral P-P teleoperation to MIS [8]

(PRISM, Drexel Univ.)

e

s s Commtin Ve + Fosce I

Tissue characterization with e Govact i Vion Foctnch
the grasper : %

* 52% correct with visiononly § *

* 67% correct with FF only E 6

* 83% correct with vision + FF =
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< 2.2 Force feedback teleoperation

» Main advantage of bilateral position-position teleoperation
— Does not require any force sensor.
— Allows for a better perception.

* Main drawbacks:
— Requires a fine, transparent mechanical design.
— Reflects all the forces exerted on the slave robot (e.g. trocar).
=) Can not be applied to MIS.
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<€~ 2.3 Force-Position coupling for TMIS

The measurement problem

+ Usually, the force sensor is
placed between the robot
end-effector and the
« tool » (i.e. instrument)

* In laparoscopic surgery,
this solution leads to a
corruption of the measure
due toltrocar disturbances |

Trocar disturances also include a
significant amount of friction, see [7]

3 solutions:
a) Distal sensing.
b) Sensorless force feedback.

¢) Trocar mounted sensor.
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<€~/ 2.3 Force-Position coupling for TMIS

LEP.

J—
e

a) Distal sensing [1]

Integrating an accurate multi component force sensor into the tip of a
surgical instrument is still an open technical challenge.
Sterilization constraints don’t help.

Johns Hopkins Univ. Instrument tip <
AssEmbly
SIS

« 3 components of force
* Diam = 12.5mm & height = 15mm 20 MWWM

« Configuration of beams & gauges % ,,
/ — tip force
desired force

isotropy at the instrument tip

* Sub mN resolution o /

0 1 2 3 4 5

orce
e

o

Y i i Time{sec]l i
g |
-‘E":—fﬂi' \ ,«W ]
7 w 1
)_36 1 2 Time (see) 3 4 5
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<€~ 2.3 Force-Position coupling for TMIS
(DLR, Munich, Germany) a) Distal sensing [18]

* 6 DoFs “hexapod”

* Large central hallow

+ Diameter: 10 mm

« Strain gauges

* Forces: +/-30 N

* Torques: +/- 300 Nmm

Linearty and Hysteresis

FTS Response
%,
FTS Response
I
™,

N O |
] Exteenal Load

-1 o O
Extemal Load
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<€~ 2.3 Force-Position coupling for TMIS

LEP.

(DLR, Munich, Germany) a) Distal sensing [18]
Integration into a Scalpel Integration into actuated forceps

* Rigid instrument * Actuated instrument

+ Standardized serial interface « Standardized serial interface
(RS 485) (RS 485)

* Diameter: 10 mm * Full mobility (2 DoF + 4 DoF)

« Sample rate of forces / « Satisfactory Manipulability
torques: 800 Hz «  Prototype diameter: 10 mm

* Resolution: approx. 9 bits
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<€~ 2.3 Force-Position coupling for TMIS

(DLR, Munich, Germany) a) Distal sensing [18]
Video of a force feedback teleoperation experiment
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<~ 2.3 Force-Position coupling for TMIS
b) Sensorless Force Feedback [10]

Trick: Reproducing what the surgeon does, i.e. estimate the force from
the deformation observed by vision.

First attempts in a vision based haptic feedback

(PRISM, Drexel Univ.)

This aparatus involves :

¢ A deformable membrane

e A FEM model

e A vision algorithm that track
points

¢ An estimation algorithm that
compute forces from
displacement
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<~ 2.3 Force-Position coupling for TMIS

Related work : modelling of needle penetration in a tissue [5]

(Univ. British Columbia, Canada)
g l

g B =
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‘é’ 2.3 Force-Position coupling for TMIS

c) Force sensing at the trocar [25]

Trick : Mechatronic design of an instrument holder w/ integrated sensor.

Measurement of
T friction

AT Sensor
Friction

(LRP, France) Trocar

Organ
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‘é’ 2.3 Force-Position coupling for TMIS

c) Force sensing at the trocar [25]

Trick : Mechatronic design of an instrument holder w/ integrated sensor.

F F

measured — ' organ

Sensor

Friction

organ Organ
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<~ 2.3 Force-Position coupling for TMIS

c) Force sensing at the trocar [25]

Trick : Mechatro t holder w/ integrated sensor.

Measurement of
torsion moment

Sensor

Organ
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<~r 2.3 Force-Position coupling for TMIS

LEP.

c) Force sensing at the trocar [25]

Trick : Mechatronic design of awholder w/ integrated sensor.

F F

measured — ' organ

Sensor

-

Forgan
Organ
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<€~/ 2.3 Force-Position coupling for TMIS

LEP.

J—
e

c) Force sensing at the trocar [25]

Trick : Mechatronic design of an instrument holder w/ integrated sensor.
Video w/ in vitro and in vivo experiments
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o

<€~/ 2.3 Force-Position coupling for TMIS

LEP.

c) Force sensing at the trocar [25]

Trick : Mechatronic design of an instrument holder w/ integrated sensor.
Video w/ in vitro experiments of force-position coupling telemanipulation
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2.4 Potential benefits

LEP.

Read in [24] : ask a surgeon if force feedback is needed for robotic
surgery, and the answer is predictably « yes ».

* | would be less affirmative.

— A number of surgeons seem to think that force estimation from
tissue deformation is enough.

— For medical devices, benefits are evaluated in terms of direct
consequences on patient’s health and/or costs.

— As the technology is still under development, who knows how
better the system will be once equipped with force feedback.

— A great deal of work is to be done for the intuitive interfacing of
force feedback teleoperated systems.

* Only a few studies can be found in the literature.
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Force feedback teleoperation reduces
forces applied to the organs [24]

Endoscopic
Camera
Surgical Log(Time) °
Moﬁel [10* msec] i

Fixgd .=V

Incision -~ @ g s e

Surgical Robot  Paint  ForcafTorque
Sensor

Dissection Hook Force [N]

Figure 3. Histogram of forces applied during
visible artery trials

0150% FF
W75% FF
BroFF T

Log(Time) &
[10* msee] §

—
T~

S 9 - - o o o T o
Force [N]
Figure 4. Histogram of forces applied during
obscured artery trials
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E . Force feedback teleoperation has low
=~ influence on the operational speed [24]

Endoscopic
Camera
Surgical . . . .
Moia Blunt dissection trials, with a

Fixed ¥ = given time
Incision el
Surgical Robot  Paoint  Fores/T
Drg:n;rrque Dissection Hook 2 Visible Artery

n

Mormalized Length

* 1
5 or 8mm 0.5
o

10cm 0% 75% 150% 0% 75% 150%

Farce Feedback Amount
Fi 8, Normalized length di ted vs. trial
4mm diam. 'PI I" 2mm ure t,f,:ﬂ Ve
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<&~ The DLR Experimental Evaluation of Force
Feedback in MIRS

(DLR, Munich, Germany)

Experimental Setup

Position
Slave Master
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< Task and Results

o)
]
=
/ =
f c
o
B
4 / ]
K]
/ © 55.1% 9.4%
_ ~ MIS MRS MRS
] ;,- without force with force
{
/ §
it}
©
=
Task: ,g
* Dissect blood vessel §
Modes: g
* MIS z 6.6% 15.2%
* MIRS without force feedback MIS MRS MIRS
* MIRS out force feedback without force with force
(DLR, Munich, Germany)
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Q Organization of the talk

LEP.
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1. A simplistic introduction to force feedback control in Robotics.
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» The tool (medical instrument) is held by both an operator (doctor) and a
robot.
* A number cooperation paradigms can be implemented:

— Degrees of freedom sharing : the robot controls the motions of the tool along
some DoF only, while the operator controls the motion along the other DoF.

— Space sharing : in a “free space”, the robot does not constrain the tool motion,
while it blocks the tool motion in a “forbidden space”.

— Motion filtering : a kind of “frequency domain sharing”.

— Gravity compensation: the robot only compensates for the tool mass, which is
then felt as “free-floating” by the operator.

— Active guidance: the robot applies active (by opposition to resistive) forces to
indicate to the operator where he should go.

- Etc.
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+ Two main classes of comanipulation techniques:

— Without force sensing: resistive forces can be applied by the robot by
modulating its apparent stiffness.

« Binary stiffness (very hard or very soft): use of controllable brakes.
» Continuously variable stiffness (requires a transparent robot design
and a position controller with variable gains)
— With force sensing: one can directly control the interaction forces
between the robot and the tool.
» Example: a force controlled robot with a zero desired force is said to
be in a transparent mode. It can compensate for gravity.
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<€~ 3.2 Comanipulation without force sensor

a) Application to stereotactic neurosurgery [13]

(IMAG, Grenoble, France) Principle : DoF sharing.
1 dof only is left to the surgeon (needle insertion)
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<€~ 3.2 Comanipulation without force sensor
b) An evolution of the previous one: PADyC [17]

Principle: two freewheels connected and

mounted in opposite directions.

Two motors rotating at o;*, ;.

The « user velocity » is mechanically limited by:
(Di+ > Oyser > (Di_

Main advantage : safety,
dynamic constraints.

(IMAG, Grenoble, France)
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Q 3.2 Comanipulation without force sensor

c) An application to maxilofacial surgery [2]

Principle :
1) Thanks to a transparent design, the robot (a haptic device, in fact)
can be programmed with a desired apparent stiffness within a

quite wide range.
2) In the region to be removed, the stiffness is low, while it's very
large in the region to be left.

Main advantage : no force
sensor, dynamic
constraints. Less intrinsicly
safe than PADyC

(CEA, Fontenay aux Roses, France) . p - "
Somedation d'wn a1 At mackont
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<~ 3.3 comanipulation w/ active force feedback
a) Application to oethopeadic surgery : Acrobot [9]

Clinical application

(Imperial College of Science, Technology and to knee surgery
Medicine, London)
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@ 3.3 comanipulation w/ active force feedback

a) Acrobot [9]

The basic idea behind active constraint control is to gradually increase the
stiffness of the robot as it approaches the predefined boundary.

Low level control law:

= K@mwé}@me,é}w{e}

The higher level « boundary g, _g-1(x,)
controller » produces
desired joint trajectory and
an active torque by:

Boundary

Region Rl Region RII .
Xa=X Xa= AxFan + AFgr  Ax= D_IA'
.i',,[ =AFg Dy =i

Fo=- Fan.
Feo—0 c T, Fev

Region RIII

Xi=AFer
Fa == Faj\.h

(Imperial College of Science, Technology and
Medicine, London)

Sept. 2005 - EURON SUMMER SCHOOL ON MEDICAL ROBOTICS

61/70

@ 3.3 comanipulation w/ active force feedback

b) Dermarob [6]

In order to provide an easy and intuitive mean for the registration of points,

Dermarob can be programmed in a transparent mode for comanipulation.

(LIRMM, Montpellier)
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<€~ 3.3 comanipulation w/ active force feedback

c) MC2E [25]

When MC2E is force controlled with a zero desired force, the surgeon can feel
the forces exerted inside the patient without being corrupted by the trocar

forces. S—
(LRP, Paris)
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Q 3.3 comanipulation w/ active force feedback

c) MC2E [25]
A technical issue about force control:

Kinematically Constrained Manipulators (KCMs)
cannot be force-controlled like others.

In particular, force component selection is quite
dangerous (kinematic instability).

Passivity analysis showed that the only
possible solution for stable control of the
most general class of KCMs is to project
measured and desired wrenches in the
joint space without selecting force

b ™ Force Sensor

-

4 | DOF robm

components:
If er = J{qj"gw_ with &w = Wwg—W.
(LRP, Paris) Then er=0. L= Tla) (wy—w)=0.

Sept. 2005 - EURON SUMMER SCHOOL ON MEDICAL ROBOTICS 64/70




QW 3.3 comanipulation w/ active force feedback

d) Microsurgical Augmentation [19]

Goal = scaling of interaction forces, with tool tip forces ranging from 0.001 N to
0.01 N and human interaction forces ranging from 0.03N to 3N.

A main difference with previous examples is that
the system uses 2 force sensors:

* one for measuring the interaction with human

« one for measuring the interaction with patient

e
[ fulth vt .
+ rD Flobot &

r=Tyf = Wif-Fu G imode). f " =Liv) Control orce
Resolution) P FilierBias) TP amplify-ga Limitsy | wonpsey  Pensor

L |

& fith

(Johns Hopkins Univ.)
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< Conclusions

» Although Force Control has been studied for over 25 years, its
application to Minimally Invasive Surgery is still an open problem.

» Sensing solutions are not ready yet for the Operating Room in MIS.

* Interaction Modeling is probably the toughest issue; a significant help
in this field comes from the virtual reality / simulation community.

* Full scale, dexterous, in vivo experiments are still to be programmed
as they are required to evaluate clearly what force feedback can
effectively help the surgeon.

» Active compensation of physiological motion in a teleoperation
system is one of the great technical challenges of the future years.

« Comanipulation offers a wide variety of possible interactions that has
been only partially explored.
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* I’'m now ready for questions.

* | just want to add that:
— Tobias Ortmaier
— Nabil Zemiti
— Marie-Aude Vitrani
helped a lot to prepare that talk. Thanks.

» Thanks to Etienne and Philippe too for the
invitation(") and the great organization.
() September is a great time for staying at Montpellier, they said; “all the fourists are

gone the weather is so nice'.
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