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Considered surgical intervention:
Navigated drilling of holes in human vertebra for high 

precision placement of pedicle screws

Workflow

1. CT- scan

2. Intraoperative registration

3. Planning of screw placement

4. Verification

5. Drilling of hole

6. Manual screw placement
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Registration: finding a spatial mapping between two data - sets

Registration methods can be classified according to the
• feature space (landmarks, surfaces, lines, voxels, …)
• search space (transformation, rigid, non-rigid, …)
• search strategy (exhaustive, gradient based, EA, …)
• similarity measure (SSD, mutual information, correlation, …)

In the case considered here: 
• points on the vertebra are collected with a tracked pointer
• these points are then matched with the CT – data
• a rigid – transformation with 6 DoFs is used
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Registration

T = ?



slide 5Medical Application

Figures: courtesy of Prof. Beisse, BGU Murnau
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Transpedicular Fixation with Fixateur Interne
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Figures: courtesy of Prof. Beisse, BGU Murnau
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X-ray image of correctly placed pedicle screws
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Figures: courtesy of Prof. Beisse, BGU Murnau

Surgeon‘s view

Delicate structures are close to pedicles
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thoracic vertebra 5 thoracic vertebra 6 thoracic vertebra 8

Medical Application

Misplaced screws

Error rate between: 4.5% - 40%  - depending on reference
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• Calculation of 3D position by triangulation

• Visualization of surgical instrument in preoperative CT-scan 
(registration necessary)

Tracking of passive marker

y

z

Navigation

Slide: courtesy of  BrainLAB AG
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Problems
• Tremor at instrument tip

• Undesired motion of tip due to drilling 
forces

• Lack of ergonomics

– Difficult hand-eye-coordination

– Frequent changes of view direction

– Frequent new eye accomodation

– 2D representation of a 3D error

Transfer of planning data into the OR becomes possible 
by navigated instruments
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Considered surgical intervention:
Navigated drilling of holes in human vertebra for high 

precision placement of pedicle screws

Workflow

1. CT- scan

2. Intraoperative registration

3. Planning of screw placement

4. Verification

5. Drilling of hole

6. Manual screw placement
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RobotNavigation           

„best of skills“
• Know-how
• Overview
• Flexibility

• Manipulation
• Tracking data

Surgeon

KineMedic
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Surgeon

Instrument

Navigation

Situs

RobotPlanning
VectorVision

Robot
control

Robot
arm
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1. Integration in established clinical workflow

2. Closing of the digital gap in the OR
� Fewer changes of view direction 
� Fewer new eye accomodations
� Reduced 3D / 2D problems
� Easier hand-eye-coordination

3. Hands-on-robotics approach (no fully autonomous mode)
� Intuitive man-machine-interface
� Surgeon keeps full control of system

4. Easy handling of robot thanks to kinematic redundancy and 
light-weight construction

5. Gravity compensation
� Intelligent instrument holder
� Conversion to manual surgery possible at every time 
� Increased acceptance by surgeons (hopefully ☺)
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4. Summary

3. Components

Kinematic design

• Kinematic redundancy (7 DoFs)
• Analysis of fields of application with respect to 

workspace and accuracy
• Optimization goal:

compact design
• Constraints:

accuracy, manipulability, 
robustness of solution

• Minimization of segment lengths 
with Genetic Algorithms
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Development steps
• Simulation environment
• Identification of set-ups
• Modeling and 

construction of a prototype

Mounting of the robot

Requirements
• Fast installation of robot
• Easy positioning
• Security

2. Design
1. Application
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Measurement of external forces

Experiments
• Drilling experiments with testing 

machines
• Drilling experiments with robot

Results
• Cutting and drilling forces
• Selection of appropriate drills 

and milling cutters

In cooperation with Technical University of Munich

2. Design
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Design parameter for entire system
• Maximum forces: F = 30 N
• Guaranteed minimal Cartesian velocity: v = 25 cm/sec
• Work space for MIS: 200 mm x 200 mm x 100 mm
• Accuracy of entire system (robot + navigation): 

∆x = 1 mm
• Operation of robot via navigation system
• Semi-autonomous guidance of instrument

(robot + surgeon)

Results
Robot for many clinical applications, e.g.:
• Orthopedics
• Minimally invasive surgery (e.g. heart-

and visceral surgery)
• Robot for laparoscopy (i.e. camera holder)
• Robot for biopsy
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VectorVision Robot 
control

Robot
arm
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Goals

• Optimized power consumption
• Precise and sensitive control
• Easy to maintain

Robot Arm 4. Summary

3. Components

2. Design
1. Application
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Design demands

• Seven axes:
roll/pitch/pitch – pitch/roll – pitch/roll

• Optimized link lengths

• Slender design

• Asymmetric range of motion of the joints

• Low weight < 10kg
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• Optimized power consumption

• Specialized motors with
reduced power loss

• Programmable hardware

4. Summary

3. Components

2. Design
1. Application



slide 25

MOT1
MOT2

robot 
controlFPGA

FPGA

BR1
BR1

JTS1
JTS2

LPOS1
LPOS2 MMot1

MMot2

motor speed nMot

joint 2+3
MPOS1
MPOS2

joint control
Cartesian control

Robot Arm

Precise and sensitive control
• Broadband communication

bus between joint units
(1 GBit/s)

• Centralized joint control
• Powerful sensors

FPGA

FPGA

joint 1

joint 2+3

joint 4+5

joint 6+7

robot 
control

FPGA

FPGA

FPGA

fiber optics

copper

copper

copper
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Easy to maintain

• Similar/identical parts
• Modularity

Robot Arm

motor 2 types
break 2 types
motor position sensor 1 type
JTS – circuit board 1 type
gears 2 type
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VectorVision Robot
control

Robot
arm
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Demands

• Communication with 
robot arm

• Joint control
• Cartesian control
• Logic flow control
• Interface to navigation 

system
• „Black box“ character

for end-user
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Cartesian impedance control enables

• „soft robotics“

• programmable stiffness 

• sensitive and intuitive 
man-machine-interfaces

• implementation of virtual 
walls, virtual constraints 
(e.g. for peg-in-hole), etc.
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Experimental set-up with DLR leight-weight robot
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linear guide with 
marker-arrays
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Workflow –Logic Flow Control
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Workflow

• Registration of patient and robot

• Planning of screw placement

• Positioning of robotic arm

• Guidance of instrument to drill
hole (hands-on-robotics)

• Manual drilling of hole with
visualization of depth

• Secure removal of drill
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KineMedic

Colleague
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Video
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KineMedic, a new robot for surgical applications was presented:
• kinematic redundancy
• torque controlled
• light-weight

Advantages of the proposed system:
• Integration in established clinical workflow
• Closing of information gap in the OR
• „Hands-on-Robotics“ (no fully autonomous mode)
• Robot is gravity compensated
• Increased acceptance by surgeons

Goal:
• Further development of the robot together with BrainLAB and KUKA

towards a serial product
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Manual minimally invasive surgery

The surgeon works

• with long instruments and 

• cumbersome movements

• through small incisions

• and has only the laparoscope 
image as visual feedback

Zugang 4

Outlook - MIS 4. Summary

3. Components

2. Design
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Telepresece helps to overcome barriers

Outlook - MIS

Barrier “patient‘s skin” leads to:

• Reverse hand motion
(chop-stick effect)

• Scaling of velocities

• Loss of two degrees of freedom

• Reduced kinesthetic feedback

• Loss of tactile feedback

• Reduced sight

Manual: 4 DoF Robot: 6 DoF
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Early System: Computer Motion – Zeus
Outlook - MIS 4. Summary

3. Components

2. Design
1. Application



slide 40

Robotic Surgery – The DLR-Vision

Telepresence helps to overcome 
barrier “patient’s skin”

Outlook - MIS

1

2

1

2

4. Summary

3. Components

2. Design
1. Application



slide 41Outlook - MIS

KineMedic can also be used for telepresence MIS

• Full manipulability at distal end (inside patient) 
� 2 additional degrees of freedom at instrument tip

• Measurement of contact and grasping forces
� miniaturized force/torque sensor (Ø 10 mm, sterilizable)

4. Summary

3. Components

2. Design
1. Application
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Entire System

Surgical workflow

• CT – scan 
• Segmentation
• Patient specific, optimal, and 

automatic planning of
- robot and 
- port
pose

• Verification
• Registration of patient
• Transfer of planning data into OR
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If you are interested in

• an internship

• a diploma/bachelor/master thesis

• a stay/research period

please feel free to contact me:

Tobias.Ortmaier@dlr.de

+49 – 8153 – 28 35 00


