

Fna	ineering Sp	ecification	s - BlueD	RAGO	N				
9	incoming op	oomounom	2.402						
Device				DRAGON	UC Berkeley	UC Berkeley	UC Berkeley	DeVinchi	Zeus
Generation				R1 - E (95%)		1	2		
Referance					Measured	Traget	Obtained		
Base	Overall Geomtery	Shaft Diameter	[m]			0.01 - 0.015	0.01 - 0.015	0.01	0.005
		-							
	Paulting (Origetatolog	Delta Theta x	(De al	50.0047				+/-60	
	Position / Oriantataion	Delta Theta x	[Deg]	53.8047 36.3807				+/-80	
		Delta Theta z	[Deg]	148.0986	90	180-270	720	+/-180	
		R	[Deg]	0.1027	00	100 210	120	0.2	
		Grasping Jaw s	[Deg]	24.0819				200	
		Grasping Jaw s	[009]	*	0.006	0.002-0.003	0.008 min		
		Delta X	[m]	0.1026					
		Delta Y	[m]	0.0815					
		Delta Z	[m]	0.0877					
	Velocity (Angular Linear)	Wx	[Rad/sec]	0.432					
		Wy	[Rad/sec]	0.486					
		Wz	[Rad/sec]	1.053			9.4 min		
		VR	[m/sec]	0.072					
		Wg	[Rad/sec]	0.0468					
	Force	Fx	[N]	14.7299					
		Fy	[N]	13.1981					
		Fz	[N]	184.3919					
		Fg	[N]	41.6085	15	5 min	40 min		
	Torque	Тх	[Nm]	2.3941					
		Ту	[Nm]	1.6011					
		Tz	[Nm]	0.0464	0.088	0.022			

xperime	ent No. 1				
System	n:Mockup	C – Plas	tic Huma	an Torso	
Aim: D	etect self	collisions	s using d	different m	ockup
oonfigu	iration		-		-
coniigu	lation				
0	Left Robot		Right Robo)t	Base Angle
Config. No.		Link Angle	Right Robo	ot Link Angle	Base Angle
0	Left Robot	Link Angle 90	•		Base Angle
Config. No.	Left Robot Type	0	Туре	Link Angle	
Config. No.	Left Robot Type Parallel	90	Type Parallel	Link Angle 90	90
Config. No.	Left Robot Type Parallel Parallel	90 60	Type Parallel Parallel	Link Angle 90 60	90 60

Human Language	Surgical Language	Markov Model
Book	Operation	Multiple Models
Chapter	Step of the Operation	Single Model
Words	Tool/Tissue Interaction	State
Pronunciation	Force / Torque	Observation

		Tool/Tiss	suc-		JEC		CIA	CIIO	113 -	- I a	NOU	νm	y			
ype	No.	State Name	State	Tissue	Position / Orientation				Force / Torque							
			Acronym	Contact	<i>θ</i> ,	ė,	ė,	Ĺ _w	ė,	ε,	P,	P,	Τ,	τ,	τ,	P,
ţ.	1	Idle	10		± ε _{φ,}	± ε _{ė,}	± 5 _{6,}	±ε _ζ	$\pm \varepsilon_{i_*}$	± <i>c</i> _{F,}	±ε _{r,}	± 5 _{7.}	$\pm \varepsilon_{T_i}$	± ε _{τ,}	$\pm \varepsilon_{t_i}$	±ε _γ
	2	Closing Handle (Grasping / Cutting)	CL	•	$\pm \epsilon_{\theta_s}$	± ε _{φ,}	$\pm z_{\theta_i}$	±ε _ζ	$\dot{\theta}_{g} < z_{\dot{\theta}_{a}}$	± e _{F.}	±ε _{F,}	$\pm \varepsilon_{I_i}$	$\pm e_{T_i}$	±ε _{τ,}	$\pm \varepsilon_{T_{i}}$	F ₁ > 4
	3	Opening Handle (Spreading)	OP	•	$\pm \varepsilon_{g_s}$	± e _{ė,}	± 5 _{6.}	±ε _ζ	$\dot{\theta}_g > \varepsilon_{\dot{\theta}_e}$	± e _{F.}	$\pm \varepsilon_{F_j}$	± e _{Fe}	$\pm \varepsilon_{T_i}$	± ε _{Τ,}	$\pm \varepsilon_{l_{i}}$	F _g <
	4	Pushing	PS	•	± ε _{φ,}	± s _{ė,}	± ε _{ø,}	$\hat{L}_g < -x_{\hat{L}_q}$	$\pm \varepsilon_{\theta_{*}}$	± 6 _{Fe}	±ε _{F,}	$F_x > \mathcal{E}_{F_t}$	$\pm e_{T_i}$	± 87,	$\pm \varepsilon_{t_i}$	±ε,
	5	Rotating (Sweeping)	RT	•	$\dot{\theta}_{s} > \left \varepsilon_{\theta_{s}} \right $	ð, > 4,	± s _{é,}	±ε ₄	$\pm \varepsilon_{i_*}$	$F_s > \left \varepsilon_{F_s} \right $	$F_{y} > \left \mathcal{E}_{\overline{y}_{1}} \right $	± e ₁ ,	$T_{\chi} > \left e_{T_{\chi}} \right $	$T_p > \left e_{T_p} \right $	$\pm \varepsilon_{T_i}$	±ε _γ
н	6	Closing - Pulling	CL-PL		± 6 _{6.}	±ε _{φ,}	± 5 _{4.}	$\dot{L}_g > \mathcal{E}_{L_g}$	$\dot{\theta}_g < z_{\hat{\theta}_g}$	± ε _{r.}	±ε _{r,}	$F_{g} < - \varepsilon_{F_{e}}$	$\pm \epsilon_{T_i}$	±ε _{τ,}	$\pm \varepsilon_{T_i}$	$F_g > d$
	7	Closing - Pushing	CL-PS		± 6 _{6,}	±ε _{φ,}	± 5 _{6,}	$\hat{L}_g < -\varepsilon_{\hat{L}_g}$	$\dot{\theta}_g < z_{\hat{\theta}_g}$	$\pm \varepsilon_{P_i}$	±ε _{F,}	$F_g > \kappa_{F_i}$	$\pm \varepsilon_{T_i}$	± ε _{τ,}	$\pm \varepsilon_{l_i}$	$F_g > a$
	8	Closing - Rotating	CL-RT		$\dot{\theta}_{t} > \left \varepsilon_{\theta_{1}} \right $	$\theta_{j} > \mathbf{z}_{\theta_{j}} $	$\pm s_{\theta_i}$	±ε _ζ	$\dot{\theta}_g < z_{\hat{\theta}_g}$	$F_s > \left \varepsilon_{F_s} \right $	$F_{y} > \left \varepsilon_{F_{i}} \right $	$\pm \varepsilon_{I_i}$	$\pm \varepsilon_{T_i}$	±ε _{ī,}	$\pm \varepsilon_{I_i}$	F ₁ > 4
	9	Pushing - Opening	PS-OP	•	± £ _{6.}	± 8 _{0,}	± s _{é,}	$\hat{L}_g < -\varepsilon_{L_g}$	$\dot{\theta}_g > \varepsilon_{\dot{\theta}_i}$	$\pm e_{F_i}$	±ε _{F,}	$F_{g} < -g_{F_{g}}$	$\pm \varepsilon_{T_i}$	± ε _{Γ,}	$\pm \varepsilon_{t_i}$	F ₁ <
	10	Pushing - Rotating	PS-RT		$\dot{\theta}_{t} > \left \varepsilon_{\dot{\theta}_{t}} \right $	$\partial_{\mu} > e_{\theta_{\mu}}$	± 5 _{6.}	$\hat{L}_g < - \varepsilon_{\hat{L}_g}$	± e,	$F_x > \varepsilon_{F_x} $	$F_{y} > \left \mathcal{E}_{T_{y}} \right $	$F_g > \mathcal{E}_{F_i}$	$\pm \varepsilon_{T_i}$	±ε _{Γ,}	$\pm \varepsilon_{l_i}$	±ε _r
	11	Rotating - Opening	RT-OP		$\dot{\theta}_{x} > \left \sigma_{\theta_{x}} \right $	$\hat{\theta}_{s} > \sigma_{s_{s}} $	± 5 _{4.}	±ε ₄	$\dot{\theta}_g > \varepsilon_{\dot{\theta}_a}$	$F_s > \left \varepsilon_{F_s} \right $	$F_{y} > \left \mathcal{E}_{F_{t}} \right $	± ε _{Γ.}	$T_{g} > \left d_{T_{g}} \right $	$T_{p} > \left e_{T_{p}} \right $	$\pm \varepsilon_{\rm F_c}$	$F_g < -i$
10 1	12	Closing - Pulling - Rotating	CL-PL-RT		$\dot{\theta}_{i} > \left x_{i} \right $	$\hat{\theta}_{j} > \mathbf{z}_{\delta_{j}} $	± 5 _{4.}	$\dot{L}_{g}>x_{\tilde{L}_{g}}$	$\dot{\theta}_g < \varepsilon_{\hat{\theta}_g}$	$F_s > \varepsilon_{F_s} $	$F_{p} > \left \mathcal{E}_{F_{p}} \right $	$F_g < - \varepsilon_{F_e}$			$\pm \varepsilon_{I_i}$	$F_g > d$
	13	Closing -Pushing - Rotating	CL-PS-RT	•	$\dot{\theta}_{x} > \left x_{\dot{\theta}_{x}} \right $	$\hat{\theta}_{s} > \mathbf{z}_{s_{s}} $	$\pm s_{\theta_i}$	$\dot{L}_g < -\varepsilon_{L_g}$	$\dot{\theta}_g < \varepsilon_{\hat{g}_a}$	$F_s > \left \varepsilon_{F_s} \right $	$F_{y} > \left \mathcal{E}_{F_{t}} \right $	$F_g > \sigma_{F_i}$	$T_x > \left x_{T_r} \right $	$T_{p} > \left e_{T_{p}} \right $	$\pm\varepsilon_{\rm F_c}$	Fg > 4
	14	Pushing - Rotating - Opening	PS-RT-OP	•	$\dot{\theta}_{s} > \left \varepsilon_{\theta_{s}} \right $	$\hat{\theta}_{j} > \mathbf{z}_{\theta_{j}} $	$\pm s_{\theta_i}$	$\hat{L}_{g} < - \varepsilon_{\hat{L}_{i}}$	$\dot{\theta}_{I} > \varepsilon_{\dot{\theta}_{1}}$	$F_s > \left \varepsilon_{F_s} \right $	$F_{y} > \left \varepsilon_{F_{t}} \right $	$F_x > \varepsilon_{F_t}$	± 67.	± s _{T,}	$\pm \varepsilon_{l_i}$	Pg <
11	15	Closing Handle - Spinning	CL-SP	•	± ε _φ	± c,	$ \dot{L}_g > \varepsilon_{\phi_c}$	±s,	$\dot{\theta}_{i} < z_{i}$	±ε _p	± cr	±ε _k	±ε _z	$\pm \varepsilon_T$	$T_{g} > \varepsilon_{T_{c}} $	$F_{f} > \epsilon$

WASHINGTON

Jacob Rosen, SURGICAL ROBOTICS, 2nd Summer European University MONTPELLIER, FRANCE, September 7-14, 2005

Methodology Animal testing pig, female, avg. weight 39.5 kg standard laparoscopic setup (11 mmHg) in-vivo: 9 pigs; in-situ: 4 pigs; 2 pigs done both in-vivo and in-situ 7 organs tested gallbladder liver small bowel large bowel spleen stomach urinary bladder	
Jacob Rosen, SURGICAL ROBOTICS, 2nd Summer European University MONTPELLIER, FRANCE, September 7-14, 2005	WASHINGTON

References		
Cor	iference Papers	
Har	naford B., J. Trujillo, M. Sinanan, M. Moreyra, J. Rosen, J. Brown, R. Lueschke, M. MacFarlane, Computerized Endoscopic Surgical Grasper, Studies in Health Technology and Informatics - Medicine Meets Virtual Reality, Vol. 50, pp. 265-271, IOS Press, January 1998. [CP2 - BRL 111]	
Ros	ten J., M. MacFarlane, C. Richards, B. Hannaford, C. Pellegrini, M. Sinanan, Surgeon/Endoscopic Tool Force-Torque Signatures In The Evaluation of Surgical Skills During Minimally Invasive Surgery, Studies in Health Technology and Informatics - Medicine Meets Virtual Reality, Vol. 62, pp. 290-296, IOS Press, January 1999. [CP3 - BRL 124]	
Ros	ien J., C. Richards, B. Hannaford, M. Sinanan, Hidden Markov Models of Minimally Invasive Surgery, Studies in Health Technology and Informatics - Medicine Meets Virtual Reality, Vol. 70 pp. 279-285, IOS Press, January 2000. [CP4 - BRL 134]	
Ros	ten J., M. Solazzo, B. Hannaford, M. Sinanan, Objective Evaluation of Laparoscopic Surgical Skills Using Hidden Markov Models Based on Haptic Information and Tool/Tissue Interactions, American College of Surgeons Annual Meeting - Washington State Chapter, Lake Chelan, June 2000. [CP5 - BRL 135]	
Lon	gnion J., J. Rosen, M. Sinanan, B. Hannaford, Effects of Geared Motor Characteristics on Tactile Perception of Tissue Stiffness, Studies in Health Technology and Informatics - Medicine Meets Virtual Reality, Vol. 81, pp. 286-292, IOS Press, January 2001. [CP6 - BRL 144]	
Ros	ten J., M. Solazzo, B. Hannaford, M. Sinanan, Objective Laparoscopic Skills Assessments of Surgical Residents Using Hidden Markov Models Based on Haptic Information and Tool/Tissue Interactions, Studies in Health Technology and Informatics - Medicine Meets Virtual Reality, Vol. 81, pp.417-423, IOS Press, January 2001. [CP7 - BRL 145]	
Ros	ten J., J. D. Brown, M. Barreca, L. Chang, B. Hannaford, M. Sinanan, The Blue DRAGON - A System for Monitoring the Kinematics and the Dynamics of Endoscopic Tools in Minimally Invasive Surgery for Objective Laparoscopic Skill Assessment, Studies in Health Technology and Informatics - Medicine Meets Virtual Reality, Vol. 85, pp.412-418, IOS Press, January 2002. [CP8 - BRL 155]	

