

Eric STINDEL, M.D.

U université B de bretagne O occidentale

Ph.D.

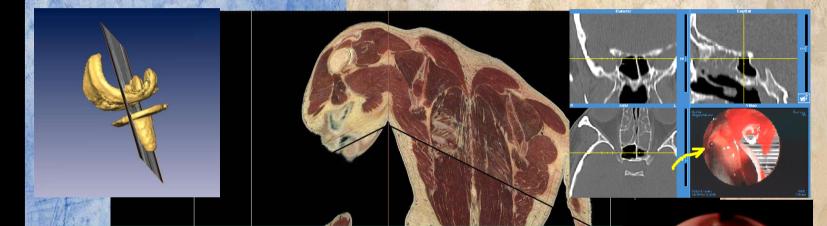
Introduction		
History		
Basics		
ТКА		
НТО		
ACL		
THA	Introduction	
Conclusion		

Introduction

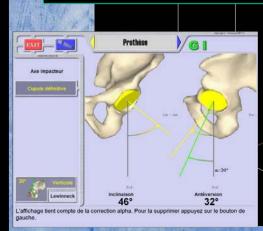
History

Basics

TKA

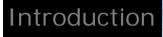

HTO

ACL


THA

Conclusion

« Perform 3D actions in a 3D space on a 3D Object: a human being »

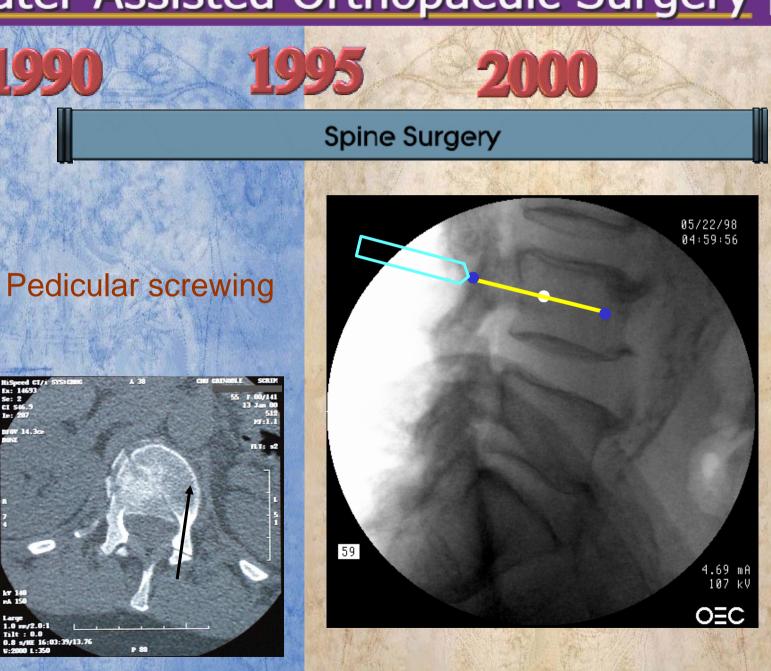

Therapeutic objects = Targets

Introduction		
History		
Basics		
ТКА		
НТО		
ACL		
THA	History	
Conclusion		

Neurosurgery Introduction History Frame based Stereotaxy : Clarke et Horsley - 1806 **Basics** TKA 82-HTO ACL THA Conclusion 103 Fig. 1-1, »Stereotactic apparatus« as presented by Clarke and Horsley in 1906

History

Basics


TKA

HTO

ACL

THA

Conclusion

1005

Introduction

History

Basics

TKA

HTO

ACL

THA

Conclusion

First generation : ROBODOC and CASPAR

Femoral drilling Out of business Cost

Invasiveness

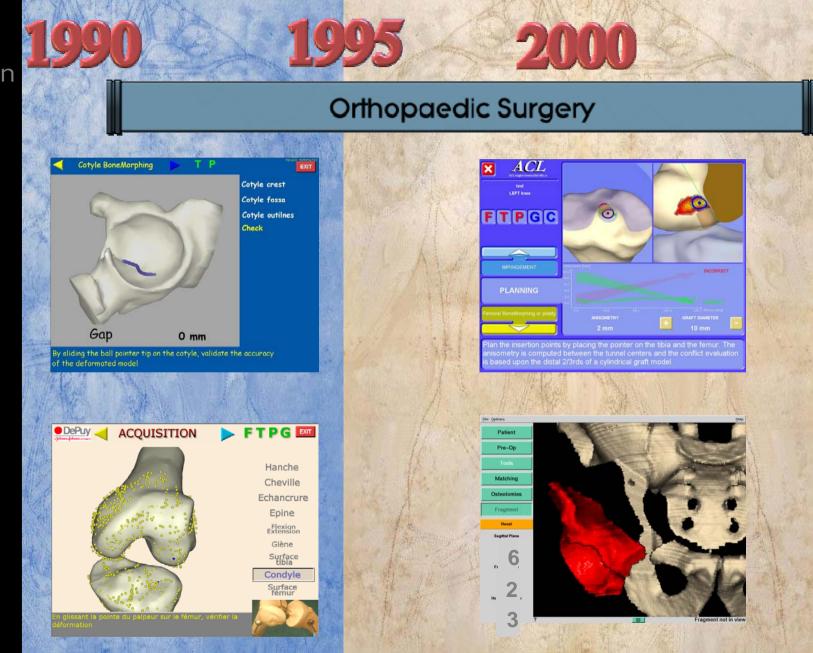
No added value

2000

Robots for Hip

Introduction

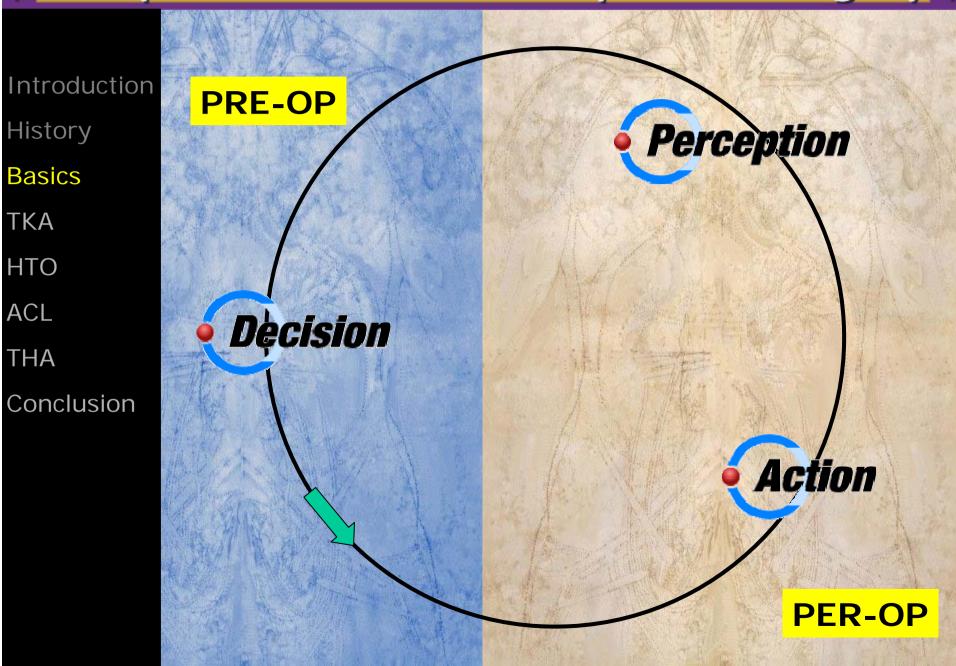
History

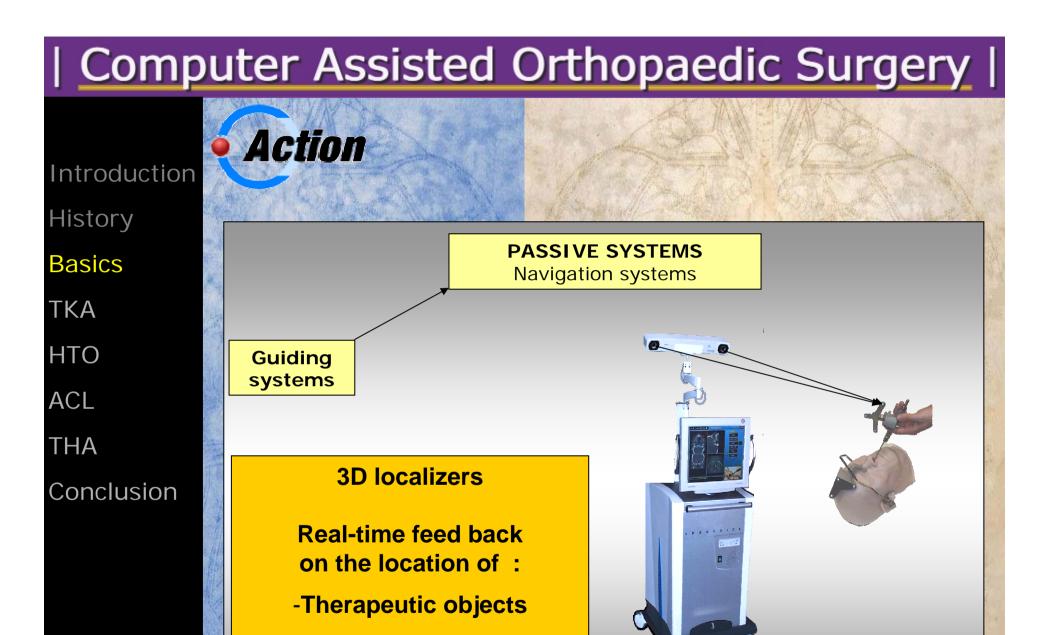

Basics

TKA

HTO

ACL


THA Conclusion



| Computer Assisted Orthopaedic Surgery | Introduction History **Basics** TKA HTO ACL Basics THA

Conclusion

THE PERCEPTION - DECISION - ACTION LOOP

- Surgical instruments

Action

Introduction

History

Basics

TKA

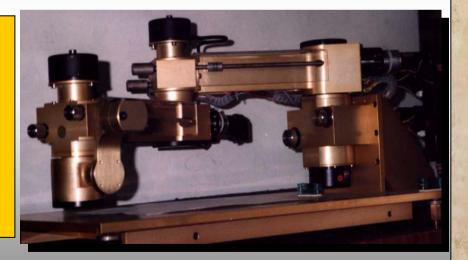
нто

ACL

THA

Conclusion

SEMI-ACTIVE SYSTEMS The surgeon is guided in a restricted volume


Padyc

Guiding systems

Synergistic robots

Collaborative robots

Impeachment robots

http://www-timc.imag.fr/

Action

Guiding systems

Introduction

History

Basics

ТКА

НТО

ACL

THA

Conclusion

ACTIVE SYSTEMS Active robots which performs Part of the surgical procedure

Active robots

Perform parts of the procedure

Based on per-op planning

| Computer Assisted Orthopaedic Surgery | Action Introduction History **Basics** ТКА HTO ACL THA Conclusion

Introduction	
History	
Basics	
ТКА	
НТО	
ACL	
THA	3D LOCALIZERS
THA Conclusion	3D LOCALIZERS
	3D LOCALIZERS

Introduction

History

Basics

ТКА

HTO

ACL

THA

Conclusion

Localization : non deformable Objects

Bones or surgical tools

LocationOrientation

Ref. abs

camera

3D rotation matrix and the translation matrix to compute the transformation from Ref_{abs} to Ref_{rb}

Ref_{rb}

Introduction

History

Basics

ТКА

HTO

ACL

THA

Conclusion

Non deformable Objects

•Bony structures : the rapeutic objects

•Surgical tools

Dynamic reference base (DRB)

Introduction

History

Basics

TKA

HTO

ACL

THA

Conclusion

Non deformable Objects

•DRB attached to :

•Bony structures : therapeutic objects

Surgical tools

Introduction

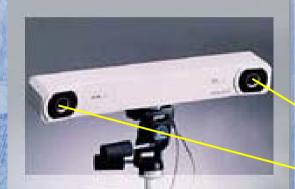
History

Basics

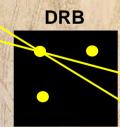
TKA

HTO

ACL


THA

Conclusion



Localizer = 1 Source + 1 Sensor

•Optical localizer with two 2 Dimensional sensors

Line of sight

Introduction

History

Basics

TKA

HTO

ACL

THA

Conclusion

Localizer = 1 Source + 1 Sensor

•Polaris :

POLARIS [®] - Technical	Specifications
Accuracy	
).35 mm 3D RMS ⁽¹⁾	

Workstation Interface	e
Interface	RS-232/422
Max. Data Rate	115 kBaud

Position Sensor Weight 2 kg

Mounting	1/4" thread tripod mount
Dimensions	590 mm x 80 mm x 120 mm

enhanced Tool Interface Unit

Weight	5 kg
Dimensions	320 mm x 130 mm x 300 mm

Power Requirements

hybrid	100/120/220/240 V, 50/60 Hz, 2.5 A
passive	100-250 V, 50/60 Hz, 0.8 A
*Above weights and din	nensions are approximate

Introduction

History

Basics

TKA

HTO

ACL

THA

Conclusion

3D Localizers

Optical systems

Infra-red sensors

Basics

Emitted by the DRB

Reflected by the DRB

Wave length 880 nm

In the OR one can find 70 000 Lux 400 et 500 nm

Introduction

History

Basics

TKA

HTO

ACL

THA

Conclusion

3D Localizers

Optical systems

Active systems

Active emission of light = source of energy Drawbacks Cables on the operating field

Batteries

Weight

Sterilization issues

Introduction

History

Basics

TKA

HTO

ACL

THA

Conclusion

Optical systems

Passive system

Passive = reflectors

Pros Cheap

Light

Can be set on any type of instrument

Drawbacks

surrounding light

Single use

Sensitive to

Introduction

History

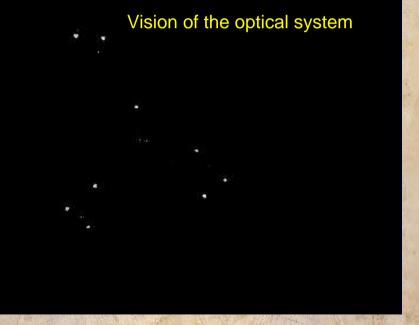
Basics

ТКА

HTO

ACL

THA


Conclusion

3D Localizers

Optical systems

Vision of the camera

Introduction

History

Basics

TKA

HTO

ACL

THA

Conclusion

Application : TKA

40 000 TKA / Year / France

8 000 Uni / Year / France

The challenges

Introduction

History

Basics

TKA HTO

ACL

THA

Conclusion

• The challenges : two faces

Geometric challenge
Align the implants with respect to mechanical axes
Functional challenge
Perform a good ligament balance

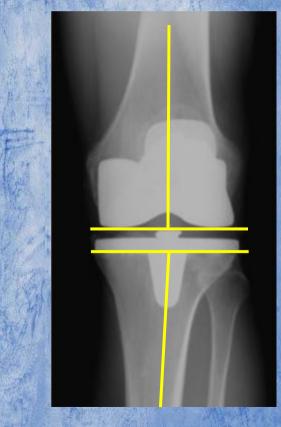
•Enough mobility

Enough stability

The challenges

Introduction

History


Basics

TKA HTO ACL THA

Conclusion

• The challenges : two faces

•Mechanical axes :

The challenges

Introduction

History

Basics

TKA HTO

ACL

THA

Conclusion

• The challenges : two faces

Geometric challenge
Align the implants with respect to mechanical axes

Functional challenge
 Perform a good ligament balance

Enough mobility

Enough stability

The challenges

Introduction

History

Basics

TKA HTO

ACL THA

Conclusion

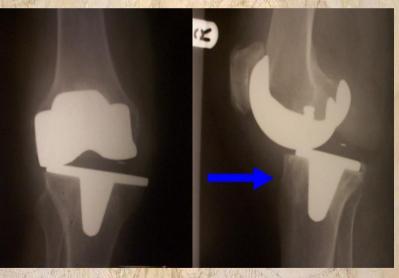
Functional challenge
Ligament balancing

The challenges

Introduction

History

Basics


TKA HTO

ACL THA

Conclusion

Functional challenge
Ligament balancing

Lift-off = wea

Instability