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Introduction

Examples in medical fields as soon as the system is active to provide
safety, tactile capabilities, contact constraints or man/machine 
interface (MMI) functions:

⌦ Safety monitoring, tactile search and MMI in total hip 
replacement with ROBODOC [Taylor 92] or in total knee arthroplasty
[Davies 95] [Denis 03] 

• Force feedback to implement « guarded move » strategies for 
finding the point of contact or the locator pins in a surgical setting
[Taylor 92]

• MMI which allows the surgeon to guide the robot by leading its 
tool to the desired position through zero force control [Taylor 92] 
e.g registration or digitizing of organ surfaces [Denis 03]
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Introduction

⌦ Echographic monitoring (Hippocrate, [Pierrot 
99])

• A robot manipulating ultrasonic probes used for 
cardio-vascular desease prevention 

Æ to apply a given and programmable force on the 
patient’s skin to guarantee good conduction of the US 
signal and reproducible deformation of the artery

⌦ Reconstructive surgery with skin harvesting
(SCALPP, [Dombre 03])

Introduction

⌦ Minimally invasive surgery [Krupa 02], [Ortmaïer 03]

• Non damaging tissue manipulation requires accuracy, 
safety and force control

⌦ Microsurgical manipulation [Kumar 00]

• Cooperative human/robot force control with hand-held tools 
for compliant tasks

⌦ Haptic devices [Hannaford 99], [Shimachi 03], [Duchemin
05] 

• Force sensing for contact rendering, palpation, feeling or 
estimating mechanical properties of tissue, …  
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Contents

⌦ Motion control 

• joint space control
• operational space control (task specification)

⌦ Interaction control

• indirect force control
• direct force control

Geometric modeling
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Equations of motion
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PID control in the joint space [Khalil 02]

⌦ The control law is given (for most industrial robots) by a local 
decentralized PID control with constant gain:
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⌦ More conventional : « cascade structure » including inner loop 
(velocity) and outer loop (position)

• easier tuning,
• « robustness »
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PID control in the joint space

⌦ Advantages: 

• simplicity of implementation

• low cost

⌦ Drawbacks:

• the dynamic performance of the robot varies according to its 
configuration

• when tracking high velocity trajectories or when using direct 
drive actuators Æ strong influence of the nonlinear coupling
termsÆ poor dynamic accuracy

PID control in the joint space

⌦ Computation of the gains by considering that each joint j is 
modeled by a linear second order differential equation:

j j j vj j ja q F qΓ = + + γ

ja :

:γ j

maximum magnitude of element of inertia matrix
disturbance torque

where:

Assuming j 0γ = , the closed loop transfer function is given by:

2
j dj pj Ij
d 3 2
j j dj vj pj Ij

q (s) K s K s K
q (s) a s (K F )s K s K

+ +
=

+ + + +
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PID control in the joint space

⌦ Characteristic equation:

⌦ Common solution in robotics: 

adjust the gains in order to obtain a negative real triple pole Ä
fastest possible response without overshoot

3 2
j dj vj pj Ij(s) a s (K F )s K s K∆ = + + + +

3
j j(s) a (s )∆ = +ω

⌦ Computed gains:
2

pj j j

dj vj j j

3
Ij j j

K 3a
K F 3a

K a

= ω

+ = ω

= ω

Bandwidth adapted through jω

Practical aspects 

⌦ High gains decrease the tracking error (but bring the system 
near the instability domain) Ä Trade-off for the chosen frequency 
with respect to the structural resonance frequency:

j rj / 2ω < ω

⌦ The predictive action             reduces significantly the tracking
errors

d
dK q

⌦ In the absence of integral action, a static error due to gravity
may affect the final position

⌦ Practically it can be deactivated when:

• The position error is very large, since the P action is sufficient

• The position error becomes to small in order to avoid 
oscillations that could be caused by Coulomb frictions
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Joint space vs task space

⌦ Joint space control scheme does not influence operational space 
variables (open loop)

Æ Backlash, elasticity, friction, coupling … cause a loss of accuracy

⌦ Task specification carried out in the operational space

⌦ Control action carried out in the joint space

PID control in the task space

⌦ Objective:

• the possibility of acting directly on operational space 
variables Æ compensating for any uncertainty of the structure: 
backlash, elasticity, friction, coupling, …

• very often only a potential advantage, since measurement of 
operational space variables is not performed directly 

⌦ Two possible schemes:

• specified trajectory in the task space Æ trajectory in the joint 
spaceÆ control in the joint space

• control law directly designed in the task space
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PID control in the task space

⌦ The control is given by:

0

tT d d d
P d I t

[ ( ) ( ) ( )dt]= − + − + −∫Γ J K X X K X X K X X

Transform the task space error into the joint space
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JT

X = f(q)

.
X

X

Equivalent 
to a force

Kinematic function

⌦ Extra cost for adding sensor in the operational space

Linearizing and decoupling control

Task requirements:

⌦ Fast motion

⌦ High dynamic accuracy

Need:

⌦ Improve performance of the control by taking into account the 
dynamic interaction effects between joints

Basic solution:

⌦ Linearizing and decoupling control based on canceling the 
nonlinearities in the robot dynamics Ä Inverse dynamics control
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Inverse dynamics control

( ) ( , )= +Γ A q q H q q

⌦ Dynamic model of an n-joint manipulator:

⌦ If we define the control law with w the new input control vector: 

ˆ ˆ( ) ( , )= +Γ A q w H q q

=q w

⌦ Assuming perfect modeling (             ,            ) and absence of 
disturbances: 

⌦ The problem is reduced to the linear control of n decoupled 
double-integrators  

ˆ =A A ˆ =H H

Inverse dynamics control in the joint space
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dq

d d d
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⌦ By defining w:
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Inverse dynamics control in the joint space

⌦ Robustness and stability [Samson 87] (in presence of 
modeling errors)

d p+ + =e K e K e 0

⌦ The closed loop system response is determined by the
decoupled linear error equation:

⌦ The gains are adjusted to provide the desired dynamics
with a given damping coefficient        and a given control 
bandwidth fixed by a frequency             :

jξ
jω

2
pj j

dj j j

K
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Generally j 1ξ = to obtain the fastest response without overshoot

Inverse dynamics control in the task space
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Conclusion

⌦ Predictive control ([Ginhoux 03], [Ortmaïer 03])

⌦ Adaptive control ([Krupa 02], [Ortmaïer 03])

⌦ Robust control (sliding mode,…)

In case of load variation, high velocity trajectory, low tracking 
error, imperfect knowledge for model uncertainty, these 
controllers are not sufficient Ä

Interaction control

⌦ Objective: 

Achieve a task requiring contact and control of interaction 
between the robot end-effector and the environment. 

⌦ First interaction controller based on motion control

⌦ Difficulties with purely position control systemsÄ requirements:

• precise model of the mechanism
• exact knowledge of the location and stiffness of the 
environment
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Compliant motion in medical robotics

⌦ Specificities in medical robotics:

• interaction with patient (see examples below)
• interaction with surgeon (e.g. manually guiding the robot by 
grabbing the tool or telemanipulating with haptic feedback)
• soft deformable tissue with variable stiffness

⌦ Skin harvesting

⌦ Minimally invasive surgery

 

z

x

Phase 2 : motion along 
x z

x

Phase 1 : contact force 
control xréf ∆x = xc – xréf

xc 

F/T sensor(s)

Interaction control

⌦ Design a control scheme able to:

• control the robot position along the direction of the task space, 
the environment imposes natural force constraints

• control the robot force along the direction of the task space, the 
environment imposes natural position constraints
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Interaction control strategies

Two categories:

⌦ Indirect force control Ä force control via motion control without 
explicit closure of a force feedback

• Compliance control, impedance control

⌦ Direct force control Ä explicit force control to a desired value

• Hybrid position/force control, external force control

Compliance control [Siciliano 00]

dy y∞ =

x∞ex dx x

y

x∞ end-effector equilibrium position
ex undeformed position
dx desired position

⌦ Two-link planar arm in contact with an elastically compliant plane 
(stiffness =       )ek
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Compliance control

⌦ Compliance control with operational space PD control 
and gravity compensation

Robot dynamic model:
T( ) ( , ) ( ) ( )+ + = −A q q C q q q Q q w J q h

Control law: [ ]T
P D( ) ( )= − +w J q K x K x Q q

d d( cte, )= =x x 0

PK T ( )J q

x
DK

dx

( )f q

h

( )J q

q

q

+
-

( )Q q
x

T ( )J q

Robot
+ +

+- -

Compliance control

{ }e xK diag k ,0= { }P Px PyK diag k , k=

Equilibrium equation for position:

Let [ ]T
d d dp x y= be the desired tip position

Px d x e

Px x

d

k x k x
k kp

y
∞

+⎡ ⎤
⎢ ⎥+= ⎢ ⎥
⎢ ⎥⎣ ⎦

The elastic plane imposes that the arm moves as far as it
reaches the coordinate

Assuming that: e eh K (x x )= −

At the equilibrium: Px 0    and    K x h= =

(frictionless)
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Compliance control

Equilibrium equation for force:

( )Px x
d e

Px x

k k x x
k kf

0
∞

⎡ ⎤−⎢ ⎥+= ⎢ ⎥
⎢ ⎥⎣ ⎦

⌦ Difference between xd and xe

⌦ Equivalent stiffness coefficient 
(parallel composition)

Ä Arm stiffness and environment stiffness influence the resulting 
equilibrium configuration

Compliance control

⌦

Ä The plane complies almost up to xd and the elastic force is mainly 
imposed by the environment (passive compliance)

Px xk k 1 ( )d x x d ex x f k x x∞ ∞≈ ≈ −

⌦ Px xk k 1 ( )e x Px d ex x f k x x∞ ∞≈ ≈ −

Ä The environment prevails over the arm. The elastic force is mainly 
generated by the arm (active compliance)

Ä

Ä



16

Impedance control [Hogan 85]

⌦ Basic idea: assigned a prescribed dynamic behaviour while its 
effector is interacting with environment

⌦ Performances specified by a generalized dynamic impedance 
representing a mass-spring-damper system

⌦ End-effector velocity or position and applied force are related 
by a mechanical impedance:

(s) (s) (s) or (s) s (s) (s)= =F Z X F Z X

where: 2s (s) s s
: the desired inertia matrix
: the desired damping matrix
: the desired stiffness matrix

= + +Z Λ B K
Λ
B
K

Impedance control

⌦ High values in the directions where a contact is expected in 
order to limit the dynamics

⌦ High values where it is necessary to dissipate the kinetic 
energy and damp the response

⌦ The stiffness affects the accuracy of the position control

Λ

B

K



17

Two families of impedance control

q
Λs2 + Bs + K

_+

Γ

X

Xd

X=f(q)

RobotJT

⌦ Impedance control scheme without force feedback

PCL
_+

Γ

X

Xd
Robot

1
Λs2 + Bs + K

⌦ Impedance control scheme with force feedback

Simulation [Siciliano 00]

⌦ Manipulator in contact with an elastic environment under 
impedance control

⌦ Inverse dynamics control in the operational space and 
contact force measurement

PK 1
dM−

dx
DK

dx
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AK
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Ah+

+

+ +
+ +

− −
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Simulation
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Remarks

⌦ Impossible to prescribe (and to control accurately) a desired 
wrench

⌦ Mechanical devices interposed between the end-effector and 
the environment Ä Low versatility 
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Damping control

Cartesian velocity control law
Joint position control law

⌦ In [Taylor 92], the reference velocity is derived from the force error

⌦ In [Davies 95], the reference velocity is derived from the guiding
surgeon force

RobotCVCL

dX

f

Γ

Q

∆X

JPCL

FK

dq

cq ++

Hybrid position / force control [Raibert 81]

⌦ Principle of the hybrid position / force control:

⌦ Direction constrained in position Ä force controlled

⌦ Direction constrained in force (null force) Ä position controlled

Xd +

_

++

+

S

I – S

q
Robot

ΓG

  d

G → Γ

_ X

X = f(q)

PCL

FCL

Position Control Law         Force Control Law

Selection matrix
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Notes

⌦ Incoherence with respect to the Mason description [Mason 81]

• force/position duality [Raibert 81]

• force/velocity duality [Mason 81] Ä the task can be better 
described in terms of velocity and force

⌦ No robust behaviour in free space along a direction which is 
controlled in force but not constrained

Force / velocity duality

0R

dR

X
Z Y

X
Y

Z

dR

Y

X Z

⌦ Open a door Ä two tasks 1) turn the handle and 2) pull the door

1) Velocity can be controlled along Y
2) Velocity can be controlled along Y and Z
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Force / velocity duality

⌦ The task is described in term of velocity setpoint expressed in the 
operational space frame

⌦ The motion direction depends on the current position of the task 
frame

⌦ In case of disturbances, the motion can always be executed without 
constraint Ä the trajectory is automatically adapted

Zero force setpoint

⌦ Assume that the robot is subject to a disturbance

• case 1: 

the disturbance is applied below the force sensor Ä the force 
control is active

• case 2:

the disturbance is applied before the force sensor Ä in free 
space, the robot is not controlled since the disturbance is not 
observed (and no position control)

⌦ Necessity to use additional sensors

To guide the robot by grabbing the end-effector, we may have to 
control the force along non constrained directions with a desired force 
of 0
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Some examples of hybrid control scheme 

⌦ Strategy with on-line stiffness estimation and controller 
parameters tuning [Ortmaïer 03]

• In beating heart surgery, they compensate the heart motion by 
exerting a constant force to the organ

⌦ Control « towards zero » the lateral forces applied to the 
constrained degrees of freedom (trocar) during laparoscopic
manipulation [Krupa 02]

Hybrid external force control [De Schutter 88] [Perdereau 91]

⌦ It is composed of two embedded control loops:

• Outer loop control force

The output of the outer loop is transformed into a desired position 
input for the inner loop

• Inner loop control position
 

+

_+ 

q
Robot

+ 
dXf 

Position control law 

X

+

–
Γ Xd 

X = f(q)

Force control law 

  d  
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Properties

⌦ Force control loop is hierarchically superior with respect to 
position

• Let’s consider a step on the desired position 

• Control theory: a disturbance is rejected if there is an integrator 
before the disturbance

• A static error due to the desired position is cancelled 

PCL
Robot
Environment

FCL

df ffdX

dX

f

+

+
+
−

Properties

⌦ Inner position loop control is always active:

• less stability problem when switching between position control 
and force control

• if a disturbance is applied to the robot before the force sensor 
and if the robot is not in contact with the environment:

Ä the disturbance is not detected by the force sensor
Ä but it is compensated by the position loop

• if the force is applied after the force sensor, this is equivalent to 
a contact with the environment

Ä the robot is moving along the direction of the applied force 
to compensate it
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Properties

⌦ Easily implementable with decentralized industrial controllers 
(PID) due to the cascade structure of the scheme [Dégoulange 93]

⌦ Except the IGM and DGM, few on line computations are 
required

⌦ Cascade structure easily tuned by starting with the inner 
position loop

Example : SCALPP Project (1999-2003)

⌦ Robotized skin harvesting in reconstructive surgery with 
external position / force control [Dombre 03]
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⌦ Grafting in reconstructive surgery: 
severely burnt, maxilla-facial, 
orthopaedic... 

⌦ Two steps:
– skin harvesting 
– grafting of the harvested skin strip

onto a burnt location

⌦ Constraints on the skin strip to 
reduce scars:
– thickness regularity
– width regularity
– no hole 

⌦ ... depends on:
– harvested location (thighs, head, 

back...)
– surgeon skill 
– stability of the force and moment 

applied

Micro-Motor

Cutting 
depth tuning

Skin Harvesting: Medical Task Analysis (1)

⌦ Skin harvesting is a difficult gesture which requires high accuracy and high 
efforts to the surgeon

⌦ It requires a long training process and a regular practice
⌦ The surgeon action may be divided into four steps:

1) free motion until contact is reached, 
2) orientation step to make that the blade penetrates the skin; 
3) harvesting process: the blade plane is kept against the skin with a 

roughly constant contact force 
4) quick rotation to free the dermatome

Î Robotization with position/force control to help especially untrained surgeons

Skin Harvesting: Robotic Approach

1

2
4

3
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Implemented external force/position control scheme
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Practical aspects and requirements

⌦ « Zero » of F/T sensor (Gamma 130N/10Nm from ATI)

⌦ Force measurement threshold but no filtering implemented

⌦ Selection matrix required to perfectly decouple the direction (for 
e.g. due to friction disturbance) and keep the orthogonality of the 
subspace
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Zero force control in free space

⌦ Video with a proportional controller

• limited motion setpoint proportional to the applied force
• end-effector comes back as soon as the disturbance stops

Zero force control in free space

⌦ Video with an integrator controller

• position ramp while the force is applied
• « memory of motion »: the current position is maintained if 
the force stops
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Implemented external force/position control scheme

⌦ I or PI for the force control loop ?

⌦ Experimental procedure:
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search 
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Experimental results
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⌦ Rigid surface

⌦ Robustness with respect to stiffness variation:  orthopeadic 
surgery, MIS
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Video: skin harvesting on PhD student thigh

Video: clinical experiments on pig
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Experimental Results

Experimental ResultsExperimental Results
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⌦ Objectives: design of a physical parameter 
based model of deformable tissue of the skin 
(and the soft tissues underneath) reflecting 
its mechanical properties in order to:

– improve tactile information
– tune the control law parameters according to 

the patient

⌦ Protocol: 3 phases

– Approach xith contact search
– Contact with desired force: direction Z
– Motion: direction X

⌦ Relationship between forces and positions

z

x

∆z Fx

Fz

∆x
∆z Fx

Skin Modeling / Soft tissue mechanical properties identification

( )

h
z
zkzf z

z

−
=

1

( ) ( )( )01, 0 xx
zzx effxf −−−= µλ

Skin Modeling
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In vivo experiments on human tissues

⌦ Example of estimated parameters during Force Control 
Compression (FCC) tests:

( ) ( )
0

1
z

z z
k zf z k z z z

h

= =
−

with z<h

Conclusion

Challenging issues:

⌦ Beating heart surgery (motion, friction compensation, …)

⌦ Palpation, tactile information for haptic feedback

⌦ Small force / torque sensor for sterilizable and reusable
instrument 

⌦ Robustness wrt stiffness variation, transition between free and 
constrained space

…

Thanks to G. DUCHEMIN and E. Dombre who contribute to these slides
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Towards robustness of force control

⌦ Compliant motion with force controlled robot, force active 
observer and on-line stiffness estimation [Cortesao 02]

Compliant motion control with the AOB in 
the loop
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