

	Introduction
Ø	Minimally invasive surgery [Krupa 02], [Ortmaïer 03] • Non damaging tissue manipulation requires accuracy, safety and force control Microsurgical manipulation [Kumar 00] • Cooperative human/robot force control with hand-held tools for compliant tasks
⊠ 05]	Haptic devices [Hannaford 99], [Shimachi 03], [Duchemin • Force sensing for contact rendering, palpation, feeling or estimating mechanical properties of tissue,

	Zero force setpoint	
LIRMM		
-	the robot by grabbing the end-effector, we may have to e force along non constrained directions with a desired force	
🗵 Assum	\boxtimes Assume that the robot is subject to a disturbance	
• case 1:		
	sturbance is applied below the force sensor $\boldsymbol{\Theta}$ the force of is active	
• case 2:		
space	isturbance is applied before the force sensor ${f 0}$ in free , the robot is not controlled since the disturbance is not ved (and no position control)	
🗵 Neces	sity to use additional sensors	

	Conclusion
LIRMM	
Cha	llenging issues:
\boxtimes	Beating heart surgery (motion, friction compensation,)
\boxtimes	Palpation, tactile information for haptic feedback
<mark>⊠</mark> instr	Small force / torque sensor for sterilizable and reusable ument
⊠ cons	Robustness wrt stiffness variation, transition between free and strained space
Thar	nks to G. DUCHEMIN and E. Dombre who contribute to these slides

	References
1	LIRMM
	[Ginhoux 03] Ginhoux R., « Application de la commande prédictive à la compensation de mouvements d'organes répétitifs en chirurgie laparoscopique robotisée », Ph.D. Thesis, University of Strasbourg, France, 2003.
	[Hannaford 99] Rosen J., Hannaford B. <i>et al.</i> , « Force Controlled and Teleoperated Endoscopic Grasper for Minimally Invasive Surgery – Experimental Performance Evaluation », <i>IEEE Trans. on Biomedical Engineering</i> , vol. 46(10), 1999, pp. 1212-1221
	[Hogan 85] Hogan N., « Impedance Control: An Approach to Manipulation, Part I – Theory and Part II - Implementation », ASME J. Dynamic Systems, Measurement and Control, vol. 107, pp. 1-16.
	[Khalil 02] Khalil W., Dombre E., « Modeling, Identification and Control of Robots », <i>Hermès Penton Science</i> , 2002.
	[Kumar 00] Kumar R., Bekelman, Gupta P., Barnes A., Jensen P., Whitcomb L.L., Taylor R.H., « Preliminary Experiments in Cooperative Human/Robot Force Control for Robot Assisted Microsurgical Manipulation », <i>Proc. of IEEE ICRA'00</i> , 2000.
	[Krupa 02] Krupa A., Morel G., De Mathelin M., « Achieving High Precision Laparoscopic Manipulation Through Adaptive Force Control », <i>Proc. of IEEE ICRA'02</i> , 2002.
	[Mason 81] Mason M.T., « Compliance and Force Control for Computer Controlled Manipulators », IEEE Trans. on Systems, Man and Cybernetics, vol. 11(6), 1981, pp. 418-432.
	[Ortmaïer 03] Ortmaïer T., Ph.D. Thesis, DLR. Munich, 2003.

	References
LIRMM	
	Perdereau V., « Contribution à la commande hybride force-position – Application à la leux robots », <i>Ph.D. Thesis</i> , University of Pierre and Marie Curie, Paris, France, 1991
• •	rot F. et al., « Hippocrate: a Safe Robot Arm for Medical Applications with Force dical Image Analysis, vol. 3(3), 1999, pp. 285-300.
	pert M.H., Craig J.J., « Hybrid Force-Position Control of Manipulators », <i>Trans. of the of Dynamic Systems, Measurement and Control</i> , vol. 103, June 1981, pp. 126-133.
	chimachi S. et al., « Measurement of Force Acting on Surgical Instrument for Force ster Robot Console », International Congres Series 1256, 2003, pp. 538-546.
[Siciliano 00] So <i>Verlag,</i> 2000.	iavicco L., Siciliano B., « Modelling and Control of Robot Manipulators », Springer-
	andides P., Zuhars ., Mittelstadt B., Taylor R.H., « Force Sensing and Control for a , <i>Proc. of IEEE ICRA 92,</i> 1992.