Computational
Models of Human
Organs

Olivier Clatz
Hervé Delingette

DE RECHERGHE

ET EN AUTOMATIOUE | JSEERY = SOPMHIA ANTIPOLIS



Virtual Human

Development of computational models of
the human body driven by :

 Better Understanding of biology and physiology
at different scales

* New in vivo image modalities of the human
body

 Fast Growth of computer technology and
computer science




Global modeling of the human body
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Combining Images and Models

e 1st Goal: Validation Quantitative Models

— Reach a better understanding of human physiology and pathology by
comparing measured and computed physical values

« 2nd Goal: Assessment of physical parameters
(diagnosis)

— Guess physical parameters (pressure, speed, stress) by assuming that the
physical behavior and boundary conditions are known

« 3rd Goal : Prediction of physical behavior
(therapy)

— Predict anatomy based on the modeling of a physical phenomenon occurring

during therapy (brain shift, cranofacial surgery)




Biomechanical Modeling
of the brain
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Problem position

Despite MRI precision, anatomical structures deform
during the operation. (Brain shift)

‘ Decrease of

precision
compared to the
pre-operative
planning

Pre-operative MRI (SPL)

Per-operative MRI (SPL)




Other applications

The Parkinson Disease Procedure

J—

«Stereotactic surgery
«Almost non invasive technique

*Deep implantation of electrodes
Post operative MRI (La
pitié Salpétriere
Hospital Paris)

6 to 10 hours long

Pre operative MRI (La
pitié Salpétriere
Hospital Paris)




Our approach

Characteristic features and
for ce boundary conditions

operative MRIs

- Mesh generation Biomechanical simulated
Pre processing : deformation
Cortex segmentation

&I INRIA



Image Processing

Cortex segmentation
Atlas deformation-based method

Rigid registration -> non-rigid registration

Measured deformation T(A->1)

Atlas (A) (Kikinis) MRI to segment (1)
Cortex mask (M) Deformed mask (M ) Segmented cortex

Automatic @ Precision




Displacement Estimation

Non-rigid reqistration algorithm “ Pasha’ (Cachier 2001)

Hypothesis 1: Points
with the same grey level
should matched

Hypothesis 2: Displacement
field should be smooth

Displacement Field U(X)




Deformation analysis

| ocal deformation rate .0’15

01

With F the transformation gradient
F=VD(X)=VU(X)+Id
The volumetric deformation rateis
given by :
dQ - dQ,

- det(F) -1

0

Global incompressible
I comportment: |det(F)-1|<0,05

Electrodes really disturb
deformation analysis



Displacement Field analysis

First results :

» Occipital lobe basis does not move
» Displacement direction aligned with gravity

* Observed asymmetry in the displacement
field for right and left hemispheres

» Electrodes induce very important artifacts




Biomechanical Model

o State of the art

Separation alomg
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The biomechanical model

With respect to the deformation analysis,
we

propose the following model :

« Almost incompressible material (u=0.45)

« Brain stiffness chosen according to Miller’s in vivo
experiments (E = 2000 Pa)

» Vertices at the occipital basis fixed
 Different liquid levels for each hemisphere

« CSF leak induces a gravity volumetric force applied
on the emerged part

* Rigid model of the falx cerebri on which vertices slide
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The biomechanical model

L eft
liquid Right
level liquid
level
Gravity

Fixed vertices _ _ _
Falx cerebri model: vertices dide

along the median sagital plane




The biomechanical model

Continuum mechanics and numerical
methods :

With defining the linearized Green Lagrange tensor:

8=%(VU +VUY

The displacement solution of the mechanical
problem is a minimization problem :

E:%j U)Ke(U)d2- [FU.d0

The discrete displacement solution of this minimization
problem is given by :

U=K™F




Comparison Model / Observation

Objectives -w
1) Find CY "+ RJhat best explain the observed
deformatio

luate if the
observed

Error Criterion allo
model can explai
deformation:

Error = j j _[
brain _volume

2

| dV

Jobserved ~V predicted

Blomechanlcal Model




Results

Research of two different liquid level in
the skull for each hemisphere :

Error plot as afunction of
right and left liquid levels
In the skull :

CSF liquid ™

level (left) * e ® 7 CSFliquid
level (right)




Results

Deformed mesh visualization for optimal left and right
liquid levels

8000 tetrahedron

=)

Computation
time~ 1min

Rest position Deformed position




Results

Image difference comparison :

Difference pre/post operative Difference pre-operative/prediction
for optimal L&R liquid levels




ReSU ItS (case with largest displacement)

1. Satisfying
displacement in X

2. Error on the
temporal lobe

3. Assymetry of
displacementin Y

4. Significant
electrode-
induced artifacts

5. Over-estimated
displacement in Z
(contact)



Conclusion

Comparison between predicted and measured
CSF levels

+ Ability to predict the global deformation
iInduced the loss of CSF

- Registration must be improved
- Accuracy Iin the Z direction

- Problems near the cortex surface

‘ Need for a more sophisticated model




Robust Non-rigid
Registration to Capture Brain
Shift from Intraoperative MRI
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Motivation

MR images (T1, T2, DTI, fMRI ...) can be
acquired before neurosurgery to localize
brain structures (white mater fibers,
functional areas, gray nuclei...) with respect
to the tumor.

Pre-operative MR T1
weighted image



Motivation

* But... brain deforms during neurosurgery,
iInducing a localization error with respect to
the pre-operative planning.

 However... intra-operative MR scanners
allow to image the deformation.

The 0.5 T open magnet system (Signa SP, GE Medical Systems) of the Intra-operative MR T1
Brigham and Women’ s Hospital weighted image







Motivation

« But... intra-operative image have a low magnetic field

mm) LOwer image resolution and higher acquisition time:
256x256x60 T1 MR scan in ~ 4 min.

‘ Not clinically realistic to acquire a full multi
sequence data-set during the procedure

Warping the pre-operative data-set to match intra-
operative deformation

‘ m=) NON RIGID REGISTRATION <=




Intraoperative non-rigid registration

* Fast: it should not take more than 1 min to
make the registration.

* Robust: the registration should work with poor
quality image, artifacts, tumor...

 Physics based: we are not only concerned in
the intensity matching, but also interested in
recovering the physical (mechanical)
deformation of the brain

 Accurate: neuro-surgery needs a precise
knowledge of the position of the structures




Block matching algorithm

Similarity measure: coefficient of correlation [0:1]

‘ Divide aglobal optimization problem in many simple local ones

@ Highly parallelizable




Block matching algorithm

But...
noisy matchings



Patient-specific biomechanical model

Pre-operative (Semi-) Automatic Brain finite element
Image brain segmentation model




Approximation formulation

Trade-off between the mesh mechanical energy
and the matching energy .

W =UTKU+ (HU[- D)T[S(HU- D
UTKU+ Ul BYTS{HU- 0)

Mechanical energy

U: Mesh displacement vector (3n) I
K: Mesh mechanical stiffness matrix (3n*3n)
H: Interpolation matrix, from the mesh vertices displacements to the block-matching measured

(HSEN AN ]
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Approximation formulation

W _
ouU

0 = [K+H'SH|U-HTSD=0

2atd] @ Realistic displacement
= fied

Based on strong
mechanical assumptions

wl
7 . Constant Error




Interpolation formulation

W= (HU- D)TS(HU - D)

g No error WRT
computed matches

@ Noeror WRT
computed matches
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Problem Formulation

* Approximation: robust but not accurate
* Interpolation: accurate but not robust

il

to the interpolation:

+ Use the mechanical knowledge
iIntroduced by the approximation to select
physically realistic matches.

+ Converge to the interpolation while
more and more trusting remaining
matches

% Iterative solving from the approximation




Gradual approach

Method: iterative method introducing an external
force F with balance the mesh internal mechanical

SHery K +HTSH]U =HTsD +[F|

W =UTKU+ (HU- D)TS(HU - D)

Algorithm:
F < KU,

U, <|K+HTSH[[HTsD+F]

At each iteration, reject % of outliers based on a
least trimmed squared algorithm.
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Matching stiffness ?

* Aperture problem:

* Use of the local structure tensor to weight the

matching stiffness
s
trace(G = VIVIT) m‘

Anisotropic ponderation

HU — D)|S|(HU — D)’




Results

Distance to the Tumor Margin (mm)

« Tested on 6 (extreme) o ® o 2w
cases .

« Parallel version runs in sl
35seconds ona 10 dual  |§,.| “"1
2GHz PC cluster O R R M SO oot

— 7X7X7 block size 05 | B

— 11x11x25 window I R . |

— 1x1x1 step e the Distanc to the Tumor

— 50 000 blocks

— 10000 tetrahedra Max displacement (mm) 13.18

Average displ + std. dev. (mm) | 3.77 £ 3.3

« 60 landmarks: Average errort std. dev. (mm) | 0.75+0.6

— Average error = 0.75mm Max. error. (mm) 2 50

— Maximum error = 2.5mm Average relative error (%) 20




Results

——

Pre-operative Intra-operative




Results

Pz =,

Pre-operative Registered pre-operative Intra-operative




Results

lmage guided therapy

« fMRI data
(activation
map)

« DT MRI




Brain Tumor Growth
Modeling




Problem position

* Understanding both the
mechanical influence and the
diffusion process of gliomas

« Using the model for

— Identify invaded area that are
not visible in the MRI

— Predict future evolution of the
tumor

— Characterize the tumor




Tumor biology

Necrotic center

Active tumor cells
+ angiogenesis |

?
Edema and \-{/f'
infiltrating tumor Nécrosis
cells o
Observability !

M ass effect




Geometric model

Skull.

Gray matter
White M atter
Ventricles
Falx cerebri

akrwnNPE

DTI (atlas)




Mecanical model

* Linear elasticity for the brain :

1 1\ o =Stress A, u = Lamé Coefficient
o =Atr(e)+2ue E—E(VU+VU ) & = Stress u = Displacement

e |Influence of tumor cells on the mechanics

: _ o = Coupling factor
div(c—acl,)+Fe=0 }
Fe = External forces

Summary:
o SIS Sty — — Linear relationship
o tace force | displacement
T T R YO — Tumor acts as a
\f? < ,,j : local pressure

falx cerebri
200,000 Pa



Diffusion model

Reaction diffusion equation % = v(DVe)+ pofi—c)

Cell diffusion

‘l’

i,
F o

= o
matter

A

e LoV

g
/3

GTV1, maximum
cell carrying

capacity: Cmax

G (] e Cell multiplication

Falx cerebri “ _,‘,_ ! matter

diffusivity = 0 e 5 :
Cell density

a

=+ Flux = 0

E Izotropic diffusivity

A 4

Anisotropic diffusivity based on the DTI .
Time
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Tumor Growth simulation

ﬁml s A
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Results

March 2002

March 2002 +
Initial contour

September 2002

September 2002 +
simulation contours




Analyzing Diffusion Model

ac
=V(DVc)+ pc(d1-c)
ot
D Dp
o,
» Tumor profile » Growth speed
* Infiltration extent « Parameter Estimation
 Extrapolation * Quantification
* Not observable from » Observable from time
images series of images




Model Based Growth Quantification

6 months

[Dolum [Dpl gy ?

« Observables:

* Tumor fronts (CTV extent) :
» Tumor infiltrated edema extent for high grade tumors

» Bulk tumor extent for low grade tumors

» White matter segmentation and DTI.
« Only Dp is observable from the images.

» \What are growth speeds in the white matter and in the grey matter?

Ad | NRIA




Front Motion Approximation

« Again using the asymptotic
traveling wave solution.

Q2 — e — —

0018

s T T T T =
oaft - . [ ]
f Vv =2,/D
o4y asymp I
0.7 —
0.6 — . [ B
/ — real velocity of point u=0.5
. — = — asymptotic velocity
L | 0.008 . . . . . . . 1 .
90 200 400 G000 800 1000 71200 1400 1600 71&00 2000
o2f . time (days)
01 b
o5
I | | | |
5 10 15 zo 25
cm

» Assuming visible tumor front is an iso-density surface.

o
o
[a)]

Sl

speed (cmidays)

Tumor cell

density

1
- Traveling time formulation for the motion of the tumor \/ VT'DVT =
front gives: 2\ p




Recursive Fast Marching

 Anisotropic Eikonal equation 1
. . JVT'DVT =——=
 Recursively correcting errors 2./p

due to anisotropy.

O W e

Normal Fast Recursive Fast
Marching Marching

e Fast and efficient even for
very high anisotropies.
Works on



ldentifying Parameters
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Extrapolating Tumor Invasion

« CT and MR have limited resolution for tumor cells.
 We do not see the whole tumor infiltration.

« Use of growth dynamics to understand the extents
of the tumor.




Tumor cell density

Tail Distribution

u(5)=uoexp[—\/» P ¢

% =V(DVc)+ pc(l-c)

Traveling wave solution in the

infinite cylinder with constant D:

c(x,t) = u(x-n—vt) = ¢(&)

tumor cell density

\

n-(Dn)

J

Y

tumor cell density

0.05

0.04

=
=
)

=
=
r-a

=
=
=

K days

t=63,90,125




Comparison with the Model

From 5% to 1% - Using same parameters

After 6 months

according to the model



Invasion Extent vs. Irradiation Margin

Il Invaded area targetted by

Simulated probability of radiotherapy

Visible tumor finding tumor cells [ Area targetted by radiotherapy
BUT NOT invaded

: : [ Area invaded BUT NOT
Radiotherapy margin targetted by radiotherapy

Ad | NRIA




Perspectives |

Validation of the model through

— Predicting growth for untreated cases.

— Recurrence after surgery/therapy.

Provide a confidence interval

— In the extent of the tumor

— In the tumor cell probability

Modeling the therapy response

— Response to drug.

— Response to irradiation.

Including more modalities and improving the model.

— Spectroscopy
- PET,...




Perspectives |

Build DTI atlases from healthy subjects
— Build Non Rigid registration algorithms for DT
— Statistical framework in agreement with the application

Account for mis-registration in the inverse problem
formulation

— Add some local flexibility in the estimation process
Build real time surgery simulators

Use the biomechanical model for intra-operative image
guided surgery




Focused ultrasound for
the treatment of brain
tumor

DE RECHERGHE

ET EN AUTOMATIOUE | JSEERY = SOPMHIA ANTIPOLIS



|dea

Use ultrasound to burn tumors

T+

Ogoodoooo

-
<=
-fF_

Already used for kidney and liver.

How about brain ?




Problem

» Ultrasound propagation speed is not
constant through the skull !

Map of the
ultrasound celerity

Wave propagation Wave propagation
In water through the skull




First solution

(e (2

. . . . s 2
* Neglect dispersion in the material ,o(r)dn{f’”d”("ﬁ)- L Oprn_
_ p(r) c=(r) Ot
mm) reverse time !

— 1 aZP(T—: t)
VP(T‘JL))] - CO('F)2 Ot2

p(7,t)solution = p (7, —t)solution

sjajsjsjsisjsis]s
HOEEEEEEE

[Pernot] Mathieu Pernot. Nouvelles techniques de thérapie ultrasonore et de monitoring. These de doctorat de
I’université Paris 7. 12 Octobre 2004.




Second solution

« Computational model:

Po(?")V-( ﬂ Vp(?,t)}: L_2»(W0  yitrasound wave propagation
- P, (7) c, () ot
oC, a1 ;;r, H_ kVAT (7, 1) — WoCo(T(F, 1) — T,)+ Q, (7, 1) Bio-heat equation

2
g = P”  coupling equation

pc
* Inverse problem:
Ju) = %ﬁf{ll'ﬂt} Ta(t)lI3
il du’t
+£Sk( d:ij

Ry NRA




Third solution

 MRI guided focused
ultrasound

Temperature sensitive
MR image

[McDannold] N. McDannold, M. Moss, R. Killiany, D. Rosene,
R. King, F. Jolesz, and K Hynynen. MRI Guided Focused
Ultrasound Surgery in the Brain:Tests in a Primate Model.
Magnetic Resonance in Medicine 49:1188-1191 (2003).

Temperature Rise (°C)
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Why is this interesting ?

« Scientific chalenges
— Medical imaging
— Numerical simulation

— Inverse problem
— Could be validated !

 Clinical outcomes
— Non invasive
— Cheaper

— NIH agreement for human experiments (2005) (MR
guided)




www-sop.inria.fr/asclepios/

www.clatz.com
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