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Development of computational models of 
the human body driven by :

• Better Understanding of biology and physiology 
at different scales

• New in vivo image modalities of the human 
body

• Fast Growth of computer technology and 
computer science

Virtual Human



3Global modeling of the human body 
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in vivo Data

coupling

in vitro
Experiments

Physiological

Medical
Imaging

Clinical
Measures

Physical

in silico Human
Modeling

Anatomical

Modeling and Imaging

Validation

Simulation

Estimation

Image processing for model validationSimulation for planning or prediction of therapiesPhysical parameters recovery from models and images

Geometry

Mesh construction from medical images



6Combining Images and Models

• 1st Goal:  Validation Quantitative Models
– Reach a better understanding of human physiology and pathology by 

comparing measured and computed physical values

• 2nd Goal: Assessment of physical parameters 
(diagnosis)
– Guess physical parameters (pressure, speed, stress) by assuming that the 

physical behavior and boundary conditions are known

• 3rd Goal : Prediction of physical behavior 
(therapy)
– Predict anatomy based on the modeling of a physical phenomenon occurring 

during therapy (brain shift, cranofacial surgery)
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Biomechanical Modeling
of the brain

March, 8th 2006



8Problem position

Pre-operative MRI (SPL) Per-operative MRI (SPL)

Despite MRI precision, anatomical structures deform 
during the operation. (Brain shift)

Decrease of 
precision 

compared to the 
pre-operative 

planning



9Other applications

The Parkinson Disease Procedure 
•Stereotactic surgery

•Almost non invasive technique

•Deep implantation of electrodes

•6 to 10 hours long

Pre operative MRI (La 
pitié Salpétriere
Hospital Paris )

Post operative MRI (La 
pitié Salpétriere
Hospital Paris )



10Our approach

7 patients pre and post 
operative MRIs

Pre processing : 
Cortex segmentation

Deformation analysis

Mesh generation

Characteristic features and 
force boundary conditions

Biomechanical simulated 
deformation



11Image Processing

Cortex segmentation
Atlas deformation-based method

Rigid registration -> non-rigid registration

Measured deformation T(A->I)

T(A->I)

Atlas (A) (Kikinis) MRI to segment (I)

Cortex mask (M)

M ’.*I

Deformed mask (M ’) Segmented cortex

Automatic Precision



12Displacement Estimation
Non-rigid registration algorithm “Pasha” (Cachier 2001)

Displacement Field U(X)

Hypothesis 1: Points
with the same grey level
should matched

Hypothesis 2: Displacement
field should be smooth



13Deformation analysis

Local deformation rate
With F the transformation gradient

The volumetric deformation rate is 
given by :

IdXUXF +∇=Φ∇= )()(

1)det(
0

0 −=
Ω
Ω−Ω F

d
dd

0

0,05

0,1

- 0,05

0,15

Global incompressible
comportment:  |det(F)-1|<0,05

Electrodes really disturb 
deformation analysis

det(F)-1



14Displacement Field analysis

First results :
• Occipital lobe basis does not move
• Displacement direction aligned with gravity
• Observed asymmetry in the displacement 

field for right and left hemispheres
• Electrodes induce very important artifacts



15Biomechanical Model
• State of the art

[Miga 2001]

•Study of boundary
conditions 
•Constitutive law
hyperelastic

[Miller 1997]

• Rheological
Experiments on pig
brains

• Constitutive law found
to be hyper-viscoelastic

Mesh Generation Biomechanical Model



16The biomechanical model

With respect to the deformation analysis, 
we

propose the following model :
• Almost incompressible material (υ=0.45)
• Brain stiffness chosen according to Miller’s in vivo 

experiments (E = 2000 Pa)
• Vertices at the occipital basis fixed
• Different liquid levels for each hemisphere
• CSF leak induces a gravity volumetric force applied 

on the emerged part
• Rigid model of the falx cerebri on which vertices slide



17The biomechanical model

Right 
liquid 
level

Left  
liquid 
level

Falx cerebri model: vertices slide 
along the median sagital plane

Gravity

Fixed vertices



18The biomechanical model

Continuum mechanics and numerical 
methods :
With defining the linearized Green Lagrange tensor:

The displacement solution of the mechanical
problem is a minimization problem :

The discrete displacement solution of this minimization
problem is given by :

Ω−Ω= ∫∫ dUFdUKUE ..)()(
2
1 εε

)(
2
1 tUU ∇+∇=ε

FKU 1−=



19Comparison Model / Observation

Error Criterion allowing to evaluate if the 
model can explain the global observed 
deformation:

dVError
volumebrain UU predictedobserved

2

_
||∫ ∫ ∫ ⎯⎯⎯⎯⎯ →⎯= −

Objectives : 
•1) Find CSF levels that best explain the observed
deformation by the model

•2) Evaluate the predictive nature of the modelDeformation Analysis

Biomechanical Model



20Results

Research of two different liquid level in 
the skull for each hemisphere :

Error plot as a function of 
right and left liquid levels 

in the skull :

CSF liquid
level (left) CSF liquid

level (right)
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8000 tetrahedron

Computation 
time ~ 1min

Results

Deformed mesh visualization for optimal left and right 
liquid levels

Rest position Deformed position
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Image difference comparison :

Difference pre/post operative Difference pre-operative/prediction 
(for optimal L&R liquid levels)
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Results (case with largest displacement)

1. Satisfying
displacement in X

2. Error on the 
temporal lobe

3. Assymetry of 
displacement in Y

4. Significant 
electrode-
induced artifacts

5. Over-estimated 
displacement in Z 
(contact)

X

Y

Z



24Conclusion

Comparison between predicted and measured 
CSF levels

+ Ability to predict the global deformation 
induced the loss of CSF

- Registration must be improved
- Accuracy in the Z direction 
- Problems near the cortex surface

Need for a more sophisticated model
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Robust Non-rigid 
Registration to Capture Brain 
Shift from Intraoperative MRI



26Motivation
MR images (T1, T2, DTI, fMRI ...)  can be 
acquired before neurosurgery to localize 
brain structures (white mater fibers, 
functional areas, gray nuclei...) with respect 
to the tumor.

Pre-operative MR T1 
weighted image



27Motivation

Intra-operative MR T1 
weighted image

The 0.5 T open magnet system (Signa SP, GE Medical Systems) of the 
Brigham and Women’s Hospital

• However… intra-operative MR scanners 
allow to image the deformation.

• But… brain deforms during neurosurgery, 
inducing a localization error with respect to 
the pre-operative planning.
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29Motivation
• But… intra-operative image have a low magnetic field

Warping the pre-operative data-set to match intra-
operative deformation 

NON RIGID REGISTRATION

Not clinically realistic to acquire a full multi 
sequence data-set during the procedure

Lower image resolution and higher acquisition time: 
256x256x60 T1 MR scan in ~ 4 min.



30Intraoperative non-rigid registration

• Fast: it should not take more than 1 min to 
make the registration.

• Robust: the registration should work with poor 
quality image, artifacts, tumor...

• Physics based: we are not only concerned in 
the intensity matching, but also interested in 
recovering the physical (mechanical) 
deformation of the brain

• Accurate: neuro-surgery needs a precise 
knowledge of the position of the structures



31Block matching algorithm

Divide a global optimization problem in many simple local ones

Highly parallelizable

Similarity measure: coefficient of correlation ]1:0[∈



32Block matching algorithm

But...
noisy matchings



33Patient-specific biomechanical model

Pre-operative
image

(Semi-) Automatic
brain segmentation

Brain finite element
model



34Approximation formulation
Trade-off between the mesh mechanical energy 
and the matching energy :

Mechanical energy Matching energy

U: Mesh displacement vector (3n)
K: Mesh mechanical stiffness matrix (3n*3n)
H: Interpolation matrix, from the mesh vertices displacements to the block-matching measured 
displacements (3p*3n)
S: Matching stiffness matrix, including the coefficient of correlation (3p*3p)
D: Measured displacements (3p)

W = UT K U + (H U ¡ D)T S(H U ¡ D)
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Constant Error

Realistic displacement 
field.

Based on strong 
mechanical assumptions

Approximation formulation
[ ] 00 =−+⇒=

∂
∂ SDHUSHHK

U
W TT
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No error WRT 
computed matches
No error WRT 
computed matches

Interpolation formulation
W = (H U ¡ D )T S(H U ¡ D )



37Problem Formulation

• Approximation: robust but not accurate
• Interpolation: accurate but not robust

Iterative solving from the approximation 
to the interpolation:
+ Use the mechanical knowledge 
introduced by the approximation to select 
physically realistic matches.
+ Converge to the interpolation while 
more and more trusting remaining 
matches



38Gradual approach
Method: iterative method introducing an external 
force F with balance the mesh internal mechanical 
energy:

Algorithm:

At each iteration, reject % of outliers based on a 
least trimmed squared algorithm.

[ ] [ ]iTT
i

ii

FSDHSHHKU

KUF

++⇐

⇐
−

+

1
1

[ ] FSDHUSHHK TT +=+

W = UT K U + (H U ¡ D)T S(H U ¡ D)



39Gradual approach

First step After 5 steps After 10 steps



40Matching stiffness ?
• Aperture problem:

? ??

• Use of the local structure tensor to weight the 
matching stiffness  

)( T

T

IIGtrace
IIGT
∇∇∗

∇∇∗
=

energy Matching

)()( TDHUSDHU −−

Anisotropic ponderation



41Results
• Tested on 6 (extreme) 

cases
• Parallel version runs in 

35 seconds on a 10 dual 
2GHz PC cluster 

– 7x7x7 block size
– 11x11x25 window
– 1x1x1 step
– 50 000 blocks
– 10 000 tetrahedra

• 60 landmarks:
– Average error = 0.75mm
– Maximum error = 2.5mm 20Average relative error (%)

2.50Max. error. (mm)
0.75 ± 0.6Average error± std. dev. (mm)
3.77 ± 3.3Average displ ± std. dev. (mm)

13.18Max displacement (mm)



42Results

Pre-operative Registered pre-operativeIntra-operative



43Results

Pre-operative Registered pre-operative Intra-operative



44Results

• fMRI data 
(activation 
map)

• DT MRI

Image guided therapy
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Brain Tumor Growth 
Modeling

March, 8th 2006
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Problem position
• Understanding both the 

mechanical influence and the 
diffusion process of gliomas

• Using the model for
– Identify invaded area that are 

not visible in the MRI 
– Predict future evolution of the 

tumor
– Characterize the tumor
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Tumor cell 
density

Tumor biology

T2 MRI T1 MRI + gad

Edema and 
infiltrating tumor 
cells

Active tumor cells 
+ angiogenesis

Necrotic center

Mass effect

T2 MRI 
signal

Nécrosis

Observability !
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Geometric model
1. Skull. 
2. Gray matter
3. White Matter 
4. Ventricles
5. Falx cerebri

DTI (atlas)
Initial position of the tumor
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Mecanical model

Summary: 
– Linear relationship 

force | displacement
– Tumor acts as a 

local pressure

εµελσ 2)( += tr σ = Stress
ε = Stress( )Tuu ∇+∇=

2
1ε

• Linear elasticity for the brain :

α = Coupling factor
Fe = External forces

0 )div( 3 =+− FeIcασ

• Influence of tumor cells on the mechanics

λ, µ = Lamé Coefficient
u = Displacement
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Diffusion model
( ) )1(. cccD

t
c

−+∇∇=
∂
∂ ρReaction diffusion equation

Time

Cell density

Cell multiplication

X
Y

X
Y

Cell diffusion



51Tumor Growth simulation
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March 2002

March 2002 + 
initial contour 

September 2002

September 2002 + 
simulation contours

Results
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Analyzing Diffusion Model

ρ
D

( ) )1(. cccD
t
c

−+∇∇=
∂
∂ ρ

ρD

• Tumor profile

• Infiltration extent

• Extrapolation

• Not observable from 
images

• Growth speed

• Parameter Estimation

• Quantification

• Observable from time 
series of images



54Model Based Growth Quantification

• Observables: 
• Tumor fronts (CTV extent) : 

• Tumor infiltrated edema extent for high grade tumors

• Bulk tumor extent for low grade tumors

• White matter segmentation and DTI. 

• Only Dρ is observable from the images.

• What are growth speeds in the white matter and in the grey matter?

6 months

?][,][ gmwm DD ρρ

t1 t2
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Front Motion Approximation
Tu

m
or

 c
el

l 
de

ns
ity

cm

• Again using the asymptotic 
traveling wave solution.

ρDvasymp 2=

• Assuming visible tumor front is an iso-density surface.

• Traveling time formulation for the motion of the tumor 
front gives: ρ2

1' =∇∇ TDT
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Recursive Fast Marching
• Anisotropic Eikonal equation
• Recursively correcting errors 

due to anisotropy.
ρ2

1' =∇∇ TDT

Normal Fast 
Marching

Recursive Fast 
Marching

• Fast and efficient even for 
very high anisotropies.

• Works on general meshes.
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Identifying Parameters
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Extrapolating Tumor Invasion
• CT and MR have limited resolution for tumor cells.
• We do not see the whole tumor infiltration.
• Use of growth dynamics to understand the extents 

of the tumor.
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Tail Distribution
Tu

m
or

 c
el

l d
en

si
ty

cm

time

Traveling wave solution in the 
infinite cylinder with constant D:

)()(),( ξcvtnxutxc =−⋅=

( ) )1(. cccD
t
c

−+∇∇=
∂
∂ ρ

t = 63,90,125 
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Comparison with the Model 

After 6 months 
according to the model

Approximated tails

From 5% to 1% - Using same parameters
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Invasion Extent vs. Irradiation Margin

Radiotherapy margin

Simulated probability of 
finding tumor cells

Invaded area targetted by 
radiotherapy

Area targetted by radiotherapy 
BUT NOT invaded

Area invaded BUT NOT
targetted by radiotherapy

Visible tumor
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Perspectives I
• Validation of the model through

– Predicting growth for untreated cases.
– Recurrence after surgery/therapy.

• Provide a confidence interval
– In the extent of the tumor
– In the tumor cell probability

• Modeling the therapy response
– Response to drug.
– Response to irradiation.

• Including more modalities and improving the model. 
– Spectroscopy
– PET,…
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Perspectives II
• Build DTI atlases from healthy subjects

– Build Non Rigid registration algorithms for DTI
– Statistical framework in agreement with the application 

• Account for mis-registration in the inverse problem 
formulation
– Add some local flexibility in the estimation process

• Build real time surgery simulators
• Use the biomechanical model for intra-operative image 

guided surgery
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Focused ultrasound for 
the treatment of brain

tumor



65Idea
Use ultrasound to burn tumors

Already used for kidney and liver.

How about brain ?



66Problem
• Ultrasound propagation speed is not 

constant through the skull !

Wave propagation 
in water

Wave propagation 
through the skull

Map of the 
ultrasound celerity



67First solution

• Neglect dispersion in the material 
reverse time !

[Pernot] Mathieu Pernot. Nouvelles techniques de thérapie ultrasonore et de monitoring. Thèse de doctorat de 
l’université Paris 7. 12 Octobre 2004.
[Aubry] Jean-François Aubry. Focalisation ultrasonore adaptative : application à l’imagerie et à la thérapie du 
cerveau . Thèse de doctorat de l’université Paris 7. 18 mars 2002

Tumor



68Second solution
• Computational model:

• Inverse problem:

[Malinen] M. Malinen, T. Huttunen, and J. Kaipio. An optimal control approach for ultrasound induced heating. 
International Journal of Control, 76(13):1323-1336, Sept 2003.

[Hynynen] X. Yin, K. Hynynen. A numerical study of transcranial focused ultrasound beam propagation at low 
frequency. Phys Med Biol. 2005 Apr 21;50(8):1821-36. 

Ultrasound wave propagation

Bio-heat equation

Coupling equation



69Third solution
• MRI guided focused 

ultrasound

Temperature sensitive 
MR image

[McDannold] N. McDannold, M. Moss, R. Killiany, D. Rosene, 
R. King, F. Jolesz, and K Hynynen. MRI Guided Focused
Ultrasound Surgery in the Brain:Tests in a Primate Model. 
Magnetic Resonance in Medicine 49:1188–1191 (2003).



70Why is this interesting ?

• Scientific chalenges
– Medical imaging 
– Numerical simulation
– Inverse problem
– Could be validated !

• Clinical outcomes
– Non invasive
– Cheaper
– NIH agreement for human experiments (2005) (MR 

guided)
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www-sop.inria.fr/asclepios/

www.clatz.com

Thank 
you


