

Surgery Simulation

Olivier Clatz Hervé Delingette

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE T EN AUTOMATIQUE

Motivations of surgery simulation

 Increasing complexity of therapy and especially surgery

Increasing need for training surgeons and residents

Medical malpractice has become socially

and economically unacceptable

Increasing need for objective evaluation of surgeons (see Cordis Nitanol endovascular carotid stent)

Natural extension of surgery planning

Need for Training

Hand-eye Synchronisation

Camera being manipulated by an assistant

Long instruments going through a fixed point in the abdomen

Current Training Techniques

Mechanical Simulators

Training versus Rehearsal

- Training: Modelling a *standard* patient for teaching classical or rare situations
- Rehearsal: Modelling a *specific* patient to plan and rehearse a delicate intervention, and evaluate consequences beforehand

Towards Realistic Interactive Simulation

- Surgery Simulation must cope with several difficult technical issues :
 - Soft Tissue Deformation
 - Collision Detection
 - Collision Response
 - Haptics Rendering
- Real-time Constraints :
 - 25Hz for visual rendering
 - 300-1000 Hz for haptic rendering

Different Technical Issues

- Mesh Reconstruction from Images
- Soft Tissue Modeling
- Tissue Cutting
- Collision Detection
- Contact Modeling
- Surface Rendering
- Haptic Feedback

Different Technical Issues

- Mesh Reconstruction from Images
- Soft Tissue Modeling
- Tissue Cutting
- Collision Detection
- Contact Modeling
- Surface Rendering
- Haptic Feedback

Liver Reconstruction

Deformation from a reference model reconstructed from the « Visible Human Project »

Different Technical Issues

- Mesh Reconstruction from Images
- Soft Tissue Modeling
- Tissue Cutting
- Collision Detection
- Contact Modeling
- Surface Rendering
- Haptic Feedback

- Biomechanical behavior of biological tissue is very complex
- Most biological tissue is composed of several components :
 - Fluids : water or blood
 - Fibrous materials : muscle fiber, neuronal fibers, ...
 - Membranes : interstitial tissue, Glisson capsule
 - Parenchyma : liver or brain

Estimating material parameters

- Complex for biological tissue :
 - Heterogeneous and anisotropic materials
 - Tissue behavior changes between in-vivo and in-vitro
 - Ethics clearance for performing experimental studies
 - Effect of preconditioning
 - Potential large variability across population

- Different possible methods
 - In vitro rheology
 - In vivo rheology
 - Elastometry
 - Solving Inverse problems

- In vitro rheology
 - can be performed in a laboratory. Technique is mature
 - Not realistic for soft tissue (perfusion, ...)

In vivo rheology

- can provide stress/strain relationships at several locations
- Influence of boundary conditions not well understood

- Elastometry (MR, Ultrasound)
 - mesure property inside any organ non invasively
 - validation ? Only for linear elastic materials

Source Echosens, Paris

Inverse Problems

11

- well-suited for surgery simulation (computational approach)
- require the geometry before and after deformation

Linear Elastic Material

- Simplest Material behaviour
- Only valid for small deformations (less than 5%)

Biological Tissue Far more complex phenomena arises

Basics of Continuum Mechanics

- Deformation Function
 - $X \in \Omega \mapsto \phi(X) \in \Re^3$
- Displacement Function

$$U(X) = \phi(X) - X$$

Basics of Continuum Mechanics

Basics of Continuum Mechanics Distance between point may not be preserved **Deformed** Position Rest Position Ω $\phi(X+dX)$ X+dX**(X)** Distance between deformed points $(ds)^{2} = \left\| \phi(X + dX) - \phi(X) \right\|^{2} \approx dX^{T} \left(\nabla \phi^{T} \nabla \phi \right) dX$ Right Cauchy-Green Deformation tensor $C = \nabla \phi^T \nabla \phi$ Measures the change of metric in the

Basics of Continuum Mechanics

- Example : Rigid Body motion entails no deformation $F(X) = \nabla \phi(X) = R$ $\phi(X) = RX + T$ $C = R^T R = Id$
- Strain tensor captures the amount of deformation
 - It is defined as the "distance between C and the Identity matrix"

$$E = \frac{1}{2} \left(\nabla \phi^T \nabla \phi - Id \right) = \frac{1}{2} \left(C - Id \right)$$

Strain Tensor

- Diagonal Terms : ε_i
 - Capture the length variation along the 3 axis

- Off-Diagonal Terms : γ_i
 - Capture the shear effect along the 3 axis

Linearized Strain Tensor

- Use displacement rather than deformation $\nabla \phi(X) = Id + \nabla U(X)$ $E = \frac{1}{2} \left(\nabla U + \nabla U^T + \nabla U^T \nabla U \right)$
- Assume small displacements

$$E_{Lin} = \frac{1}{2} \left(\nabla U + \nabla U^T \right)$$

Hyperelastic Energy

- The energy required to deform a body is a function of the invariants of strain tensor E :
 - -Trace E = = I₁
 - Trace E*E= I_2
 - Determinant of $E = I_3$

$$W(\phi) = \int_{\Omega} w(I_1, I_2, I_3) dX$$
 Total Elastic Energy

Linear Elasticity

Isotropic Energy

 (λ, μ) : Lamé coefficients

$$w(X) = \frac{\lambda}{2} (tr E_{Lin})^2 + \mu tr E_{Lin}^2$$

Hooke's Law

w(X) : density of elastic energy

- Advantage :
 - Quadratic function of displacement

$$w = \frac{\lambda}{2} (div U)^2 + \mu \left\| \nabla U \right\|^2 - \frac{\mu}{2} \left\| rot U \right\|^2$$

- Drawback :
 - Not invariant with respect to global rotation
- Extension for anisotropic materials

Shortcomings of linear elasticity

 Non valid for « large rotations and displacements »

St-Venant Kirchoff Elasticity

Isotropic Energy

$$w(X) = \frac{\lambda}{2} (tr E)^2 + \mu tr E^2$$

 (λ, μ) : Lamé coefficients

- Advantage :
 - Generalize linear elasticity
 - Invariant to global rotations
- Drawback :
 - Poor behavior in compression
 - Quartic function of displacement
- Extension for anisotropic materials

Other Hyperelastic Material

Neo-Hookean Model

$$w(X) = \frac{\mu}{2}trE + f(I_3)$$

• Fung Isotropic Model

$$w(X) = \frac{\mu}{2}e^{trE} + f(I_3)$$

- Fung Anisotropic Model $w(X) = \frac{\mu}{2}e^{trE} + \frac{k_1}{k_2}\left(e^{k_2(I_4-1)} - 1\right) + f(I_3)$
- Veronda-Westman $w(X) = c_1 \left(e^{\gamma trE} \right) + c_2 trE^2 + f(I_3)$
- Mooney-Rivlin : $w(X) = c_{10}trE + c_{01}trE^2 + f(I_3)$

Discretisation techniques

- Four main approaches :
 - Volumetric Mesh Based
 - Surface Mesh Based
 - Meshless
 - Particles

Structured vs Unstructured meshes

• Example 1 : Liver meshed with hexahedra

3 months work (courtesy of ESI)

Automatically generated (10s)

Volumetric Mesh Discretization

- Classical Approaches :
 - Finite Element Method (weak form)
 - Rayleigh Ritz Method (variational form)
 - Finite Volume Method (conservation eq.)
 - Finite Differences Method (strong form)
- FEM, RRM, FVM are equivalent when using linear elements

- Step1 : Choose
 - Finite Element (e.g. linear tetrahedron)
 - Mesh discrediting the domain of computation
 - Hyperelastic Material with its parameters
 - Boundary Conditions

- Step2
 - Write the elastic energy required to deform a single element

• Step3

Energy

Forces

- Sum to get the total elastic energy

$$W(U) = \int w(I_1, I_2, I_3) dX = \sum_{T_i} W_{T_i} = U^T K U$$

- Write the conservation of energy

$$W(U) = F^{T}U + \int_{\Omega} \rho(X)(X \cdot g) dX$$

Internal Nodal

Gravity Potential Energy

- Step3
 - Write first variation of the energy :
 - Linear Elasticity

KU = R Static case

$$M\ddot{U} + C\dot{U} + KU = R(t)$$

Dynamic case

HyperElasticity=NonLinear Elasticity

K(U) = R Static case

 $M\ddot{U} + C\dot{U} + K(U) = R(t)$

Dynamic case

Surface-Based Methods

- Only consider the mesh surface under some hypothesis :
 - Linear Elastic Material (sometimes homogeneous)
 - Only interact with organ surface
- Pros :
 - No need to produce volumetric meshes
 - Much faster than volumetric computation
- Cons :
 - Only linear material
 - No cutting

Evolution

- Dynamic evolution
 - Discrete models = lumped mass particles submitted to forces
 - Newtonian evolution (1st order differential system):
 - $\delta P = V.dt$ $\delta V = M^{-1}F(P,V).dt$
 - Explicit schemes:
 - Euler: $\begin{cases} \delta P = V_t dt \\ \delta V = M^{-1} F(P_t, V_t) dt \end{cases}$
 - Runge-Kutta: several evaluations to better extrapolate the new state [press92]
 - \rightarrow Unstable for large time-step !!
 - Semi-Implicit schemes:

• Euler:
$$\begin{cases} \delta P = V_{t+dt} \cdot dt \\ \delta V = M^{-1}F(P_t, V_t) \cdot dt \end{cases} \xrightarrow{P_{t+dt}} = 2P_t - P_{t-dt} + M^{-1}F(P_t, V_t) \cdot dt^2 \\ V_{t+dt} = (P_{t+dt} - P_t) dt^1 \end{cases}$$

Evolution

- Implicit schemes [terzopoulos87], [baraff98], [desbrun99], [volino01], [hauth01]
 - First-order expansion of the force:

 $F(P_{t+dt}, V_{t+dt}) \approx F(P_t, V_t) + \partial F/\partial P \,\delta P + \partial F/\partial V \,\delta V$

• Euler implicit

$$\begin{cases} \delta P = V_{t+dt} \cdot dt \\ \delta V = H^{-1}Y \end{cases} \qquad H = I - M^{-1} \partial F / \partial V dt - M^{-1} \partial F / \partial P dt^{2} \\ Y = M^{-1} F(P_{t}, V_{t}) + M^{-1} \partial F / \partial P V_{t} dt^{2} \end{cases}$$

• Backward differential formulas (BDF) : Use of previous states

 \rightarrow Unconditionally stable for any time-step

... But requires the inversion of a large sparse system

- Choleski decomposition + relaxation
- Conjugate gradient
- Speed and accuracy can be improve through preconditioning (alteration of H)

Example of Soft Tissue Models

	Pre-computed	Tensor-Mass and	Non-Linear
	Elastic Model	Relaxation-based	Tensor-Mass
		Model	Model
Computational	+ + +	+	-
Efficiency			
Cutting Simulation	-	++	++
Large Displacements	-	-	+

Different Technical Issues

- Mesh Reconstruction from Images
- Soft Tissue Modeling
- Tissue Cutting
- Collision Detection
- Contact Modeling
- Surface Rendering
- Haptic Feedback

Different algorithms for cutting tetrahedral meshes

- Split of tetrahedra [Bielser, 2000] [Mohr, 2000] [Nienhuys, 2001]
 - + Accurate, realistic
 - Decrease of Mesh Quality
- Removing Tetrahedra [Forest, 2002]
 - + Keeps a good mesh quality
 - Gross cut

Proposed Technique

- Remove Tetrahedra
- Refine Mesh before removing material

Dynamic Refinement Example of refine-before-cutting NRIA

Refinement by Edge Split

Topological Singularities

 Removing a tetrahedron may create a singularity (zero thickness at edge and vertices) (see [forest])

Non-linear Tensor-Mass Models

Different Technical Issues

- Mesh Reconstruction from Images
- Soft Tissue Modeling
- Tissue Cutting
- Collision Detection
- Contact Modeling
- Surface Rendering
- Haptic Feedback

Previous Work

- A lot of research on Collision Detection
- Hierarchy of oriented bounding boxes: Gottshalk & al. - Obb-tree: A hierarchical structure for rapid interference detection - SIGGRAPH'96
- public domain package RAPID
- Very efficient, but needs pre-computation

The Rendering Process

• Camera = viewing volume + projection

Two steps: geometry & rasterization

Collision Detection and Rendering analogy

a tool collides the organ

\Leftrightarrow

a part of the organ is inside the tool

\Leftrightarrow

if we define a camera with a viewing volume that matches the tool geometry, the organ will be in the picture.

Different Technical Issues

- Mesh Reconstruction from Images
- Soft Tissue Modeling
- Tissue Cutting
- Collision Detection
- Contact Modeling
- Surface Rendering
- Haptic Feedback

Tool-Soft Tissue Interaction

- Prevent penetration of tool inside the soft tissue
 - Detect intersections
 - Push explicitly mesh vertices outside the tool

First Approach [Picinbono, 2001]

- 2 different tools : tip and handle
- Compute average normal in the neighborhood of the contact
- Projection of vertices in this plane

Collision Processing

Contact with the tip of the instrument

Projection on the plane defined by the tip of the instrument and the average normal of intersected triangles

Collision Processing

Perform 2 detections simultaneously

Possible interactions

• Slip on the surface

Limitations of this approach

- Same normal vector for all triangles in the same neighborhood
- Leads to instabilities when handling a complex geometry

New approach

- Three steps
 - Prevent vertices to collide with the tool axis
 - Move vertices near the tip of the tool
 - Move vertices outside the volume of the tool

Different Technical Issues

- Mesh Reconstruction from Images
- Soft Tissue Modeling
- Tissue Cutting
- Collision Detection
- Contact Modeling
- Surface Rendering
- Haptic Feedback

Haptic Feedback

- Principle
 - Give a realistic sense of contact with the soft tissue
- Motivation
 - Increase realism
 - Naturally limit the amplitude on hand motion
- Pitfalls

Mouvement non contraint par le retour d'effort

- Frequency update of haptics > 500 Hz
- Frequency update of deformable models $\approx 30~Hz$

First approach [Picinbono, 2001]

Local Model [Mendoza, 2001] [Balaniuk, 1999] [Mark, 1996]

• Smooth Transition from one local model to the next

Computing the local model

- Described as a set of planes
- One model for the tip
- One model for the handle

Force Computation

 Proportional to the penetration of the tool tip in the planes described by the local model

$$F = k.(EndP - O_P).\vec{n}_P$$

Tensor-Mass Models (low resolution)

N = 1394 (6342 Tétraèdres)

Simulation of surgical gestures Gliding Gripping Cutting (pliers) <u>Cutting (US)</u> NRIA

Hepatic Surgery Simulation

