

Motion Control and Interaction Control in Medical Robotics

Ph. POIGNET

LIRMM UMR CNRS-UMII 5506 161 rue Ada 34392 Montpellier Cédex 5

poignet@lirmm.fr

Examples in medical fields as soon as the system is active to provide safety, tactile capabilities, contact constraints or man/machine interface (MMI) functions:

Safety monitoring, tactile search and MMI in total hip replacement with ROBODOC [Taylor 92] or in total knee arthroplasty [Davies 95] [Denis 03]

• Force feedback to implement « guarded move » strategies for finding the point of contact or the locator pins in a surgical setting [Taylor 92]

• MMI which allows the surgeon to guide the robot by leading its tool to the desired position through zero force control [Taylor 92] e.g registration or digitizing of organ surfaces [Denis 03]

Introduction

Echographic monitoring (Hippocrate, [Pierrot 99])

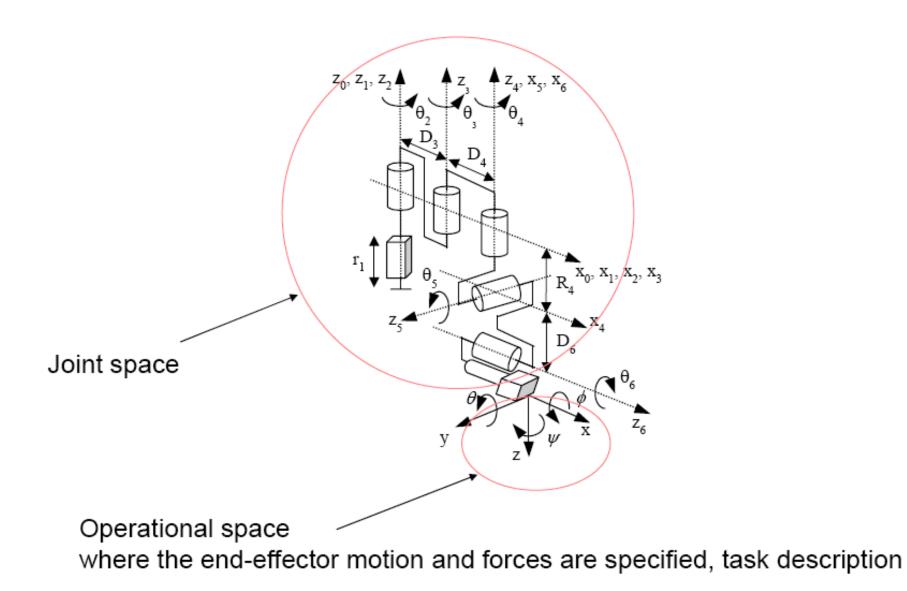
• A robot manipulating ultrasonic probes used for cardio-vascular desease prevention

 \rightarrow to apply a given and programmable force on the patient's skin to guarantee good conduction of the US signal and reproducible deformation of the artery

Reconstructive surgery with skin harvesting (SCALPP, [Dombre 03])

Introduction

- Minimally invasive surgery [Krupa 02], [Ortmaïer 03]
 - Non damaging tissue manipulation requires accuracy, safety and force control
- Microsurgical manipulation [Kumar 00]
 - Cooperative human/robot force control with hand-held tools for compliant tasks
- Needle insertion [Barbé 06], [Zarrad 07a]
- Haptic devices [Hannaford 99], [Shimachi 03], [Duchemin 05]
 - Force sensing for contact rendering, palpation, feeling or estimating mechanical properties of tissue, ...


Contents

Motion control

- joint space control
- operational space control
- Interaction control
 - indirect force control
 - direct force control
- Examples
 - Autonomous mode / comanipulation --> SCALPP
 - Telemanipulation with force feedback --> MIS

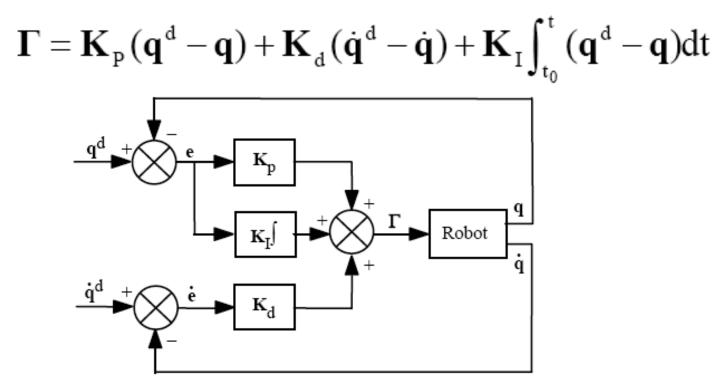
Geometric modeling

$\Gamma = A(q)\ddot{q} + C(q,\dot{q})\dot{q} + Q(q) + diag(\dot{q})F_v + diag(sign(\dot{q}))F_c$

 $\Gamma \in \mathbb{R}^n$: Vector of joint torques

 $q, \dot{q}, \ddot{q} \in \mathbb{R}^{\mathrm{n}}$: Joint position, velocity and acceleration

 $\mathbf{A}(q) \in \mathbb{R}^{^{n^{*n}}}$: Inertia matrix


 $C(q,\dot{q})\dot{q} \in \mathbb{R}^{\mathrm{n}}$: Vector of Coriolis and centrifugal torques

 $Q(q) \in \mathbb{R}^{n}$: Vector of gravity torques

 $\mathbf{F}_{v} \in \mathbb{R}^{n}$: Vector of viscous friction $\mathbf{F}_{s} \in \mathbb{R}^{n}$: Coulomb friction parameters

The control law is given (for most industrial robots) by a local decentralized PID control with constant gain:

More conventional : « cascade structure » including inner loop (velocity) and outer loop (position)

• easier tuning,

LIRMM

• « robustness »

PID control in the joint space

- Advantages:
 - simplicity of implementation
 - low cost
- Drawbacks:
 - the dynamic performance of the robot varies according to its configuration
 - when tracking high velocity trajectories or when using direct drive actuators → strong influence of the nonlinear coupling terms → poor dynamic accuracy

 \boxtimes Computation of the gains by considering that each joint *j* is modeled by a linear second order differential equation:

$$\Gamma_{j}=a_{j}\ddot{q}_{j}+F_{vj}\dot{q}_{j}+\gamma_{j}$$

where:

 a_j : maximum magnitude of element of inertia matrix γ_i : disturbance torque

Assuming $\gamma_j = 0$, the closed loop transfer function is given by:

$$\frac{q_{j}(s)}{q_{j}^{d}(s)} = \frac{K_{dj}s^{2} + K_{pj}s + K_{Ij}}{a_{j}s^{3} + (K_{dj} + F_{vj})s^{2} + K_{pj}s + K_{Ij}}$$

Characteristic equation:

$$\Delta(s) = a_{j}s^{3} + (K_{dj} + F_{vj})s^{2} + K_{pj}s + K_{Ij}$$

Solution in robotics:

adjust the gains in order to obtain a negative real triple pole \Rightarrow fastest possible response without overshoot

$$\Delta(s) = a_j(s + \omega_j)^3$$

Bandwidth adapted through ω_i

$$K_{pj} = 3a_j\omega_j^2$$

Somputed gains:

$$K_{dj} + F_{vj} = 3a_j\omega_j$$
$$K_{Ij} = a_j\omega_j^3$$

 \bowtie High gains decrease the tracking error (but bring the system near the instability domain) \Rightarrow Trade-off for the chosen frequency with respect to the structural resonance frequency:

$$\omega_{\rm j} < \omega_{\rm rj}/2$$

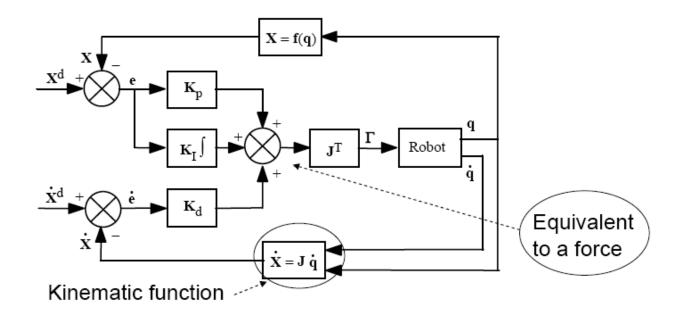
 \boxtimes In the absence of integral action, a static error due to gravity may affect the final position

- Practically it can be deactivated when:
 - The position error is very large, since the P action is sufficient
 - The position error becomes to small in order to avoid oscillations that could be caused by Coulomb frictions
- \boxtimes The predictive action $K_{\rm d} \dot{q}^{\rm d}$ reduces significantly the tracking errors

Solution Space control scheme does not influence operational space variables (open loop)

- \rightarrow Backlash, elasticity, friction, coupling ... cause a loss of accuracy
- > Task specification carried out in the operational space
- Solution Control action carried out in the joint space

PID control in the task space


- > Objective:
 - the possibility of acting directly on operational space variables \rightarrow compensating for any uncertainty of the structure: backlash, elasticity, friction, coupling, ...
 - very often only a potential advantage, since measurement of operational space variables is not performed directly
- > Two possible schemes:
 - specified trajectory in the task space \rightarrow trajectory in the joint space \rightarrow control in the joint space
 - control law directly designed in the task space

The control is given by:

$$\boldsymbol{\Gamma} = \left(\mathbf{J}^{\mathrm{T}} \left[\mathbf{K}_{\mathrm{P}} (\mathbf{X}^{\mathrm{d}} - \mathbf{X}) + \mathbf{K}_{\mathrm{d}} (\dot{\mathbf{X}}^{\mathrm{d}} - \dot{\mathbf{X}}) + \mathbf{K}_{\mathrm{I}} \int_{t_{0}}^{t} (\mathbf{X}^{\mathrm{d}} - \mathbf{X}) \mathrm{d}t \right]$$

Transform the task space error into the joint space

Extra cost for adding sensor in the operational space

Linearizing and decoupling control

Task requirements:

Search Fast motion

➢ High dynamic accuracy

Need:

☑ Improve performance of the control by taking into account the dynamic interaction effects between joints

Basic solution:

 \Join Linearizing and decoupling control based on canceling the nonlinearities in the robot dynamics \Rightarrow *Inverse dynamics control*

Dynamic model of an *n*-joint manipulator:

$$\boldsymbol{\Gamma} = \mathbf{A}(\mathbf{q})\ddot{\mathbf{q}} + \mathbf{H}(\mathbf{q},\dot{\mathbf{q}})$$

If we define the control law with w the new input control vector:

$$\Gamma = \hat{\mathbf{A}}(\mathbf{q})\mathbf{w} + \hat{\mathbf{H}}(\mathbf{q}, \dot{\mathbf{q}})$$

Solution Assuming perfect modeling ($\hat{\mathbf{A}} = \mathbf{A}, \hat{\mathbf{H}} = \mathbf{H}$) and absence of disturbances:

$$\ddot{\mathbf{q}} = \mathbf{w}$$

 \boxtimes The problem is reduced to the linear control of *n* decoupled double-integrators

By defining w:

LIRMM

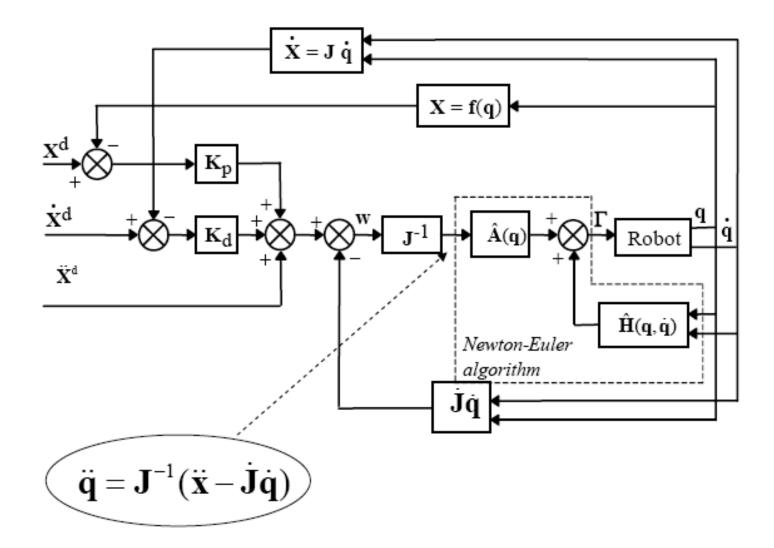
$$\mathbf{w} = \ddot{\mathbf{q}}^{d} + \mathbf{K}_{d}(\dot{\mathbf{q}}^{d} - \dot{\mathbf{q}}) + \mathbf{K}_{p}(\mathbf{q}^{d} - \mathbf{q})$$

Inverse dynamics control in the joint space

☑ The closed loop system response is determined by the decoupled linear error equation:

$$\ddot{\mathbf{e}} + \mathbf{K}_{d}\dot{\mathbf{e}} + \mathbf{K}_{p}\mathbf{e} = \mathbf{0}$$

 \boxtimes The gains are adjusted to provide the desired dynamics with a given damping coefficient ξ_i and a given control bandwidth fixed by a frequency ω_i :


$$\begin{cases} K_{pj} = \omega_j^2 \\ K_{dj} = 2\xi_j \omega_j \end{cases}$$

Generally $\xi_j = 1$ to obtain the fastest response without overshoot

➢ Robustness and stability [Samson 87] (in presence of modeling errors)

LIRMM

In case of load variation, high velocity trajectory, low tracking error, imperfect knowledge for model uncertainty, these controllers are not sufficient \Rightarrow

- Predictive controller ([Ginhoux 03], [Ortmaïer 03], [Sauvée 07])
- Adaptive control ([Krupa 02], [Ortmaïer 03])
- Robust control (sliding mode,...)

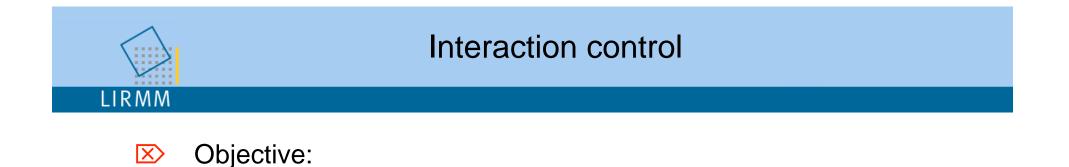
Predictive controller

Model based approach future / prediction past Set-point Predicted state Closed-loop state x $\min_{oldsymbol{u}_k^{N_p}} \, \mathcal{C}(oldsymbol{\epsilon}_k,oldsymbol{u}_k^{N_p})$ Optimal control Closed-loop input u subject to: k+Ts k+Nc k+Np Control horizon Nc Prediction horizon Np

$$\begin{aligned} \boldsymbol{x}_{i+1|k} &= f(\boldsymbol{x}_{i|k}, \boldsymbol{u}_{i|k}), \ \boldsymbol{x}_{0|k} = \boldsymbol{x}_k \\ \boldsymbol{\epsilon}_{i|k} &= \boldsymbol{x}^d - \boldsymbol{x}_{i|k}, \ i \in [1, N_p] \\ \boldsymbol{x}_{i|k} \in \mathbb{X}, \ i \in [1, N_p] \\ \boldsymbol{u}_{i|k} \in \mathbb{U}, \ i \in [1, N_c], \ \forall i \ge N_c \ \boldsymbol{u}_{i|k} = \boldsymbol{u}_{N_c|k} \end{aligned}$$

LIRMM

 \mathbf{X}

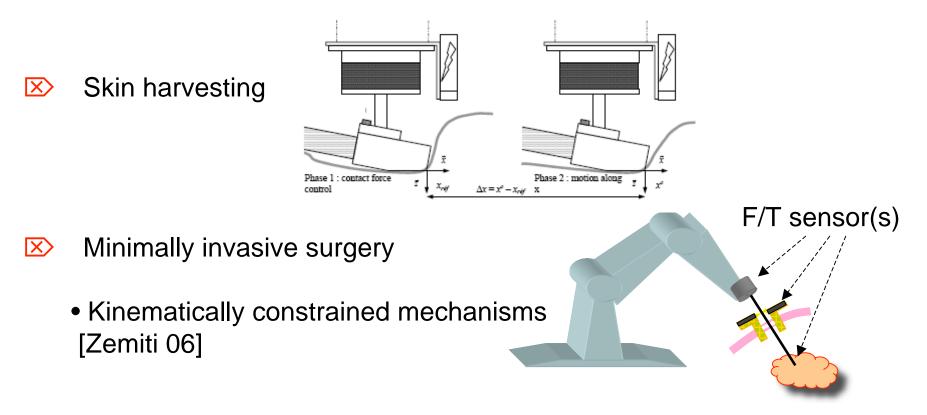

Figure 3: Principle of model predictive control.

Contents

➢ Motion control

- joint space control
- operational space control
- Interaction control
 - indirect force control
 - direct force control
- ☑ Examples
 - Autonomous mode / comanipulation --> SCALPP
 - Telemanipulation with force feedback --> MIS

Achieve a task requiring contact and control of interaction between the robot end-effector and the environment.


Solution First interaction controller based on motion control

- \boxtimes Difficulties with purely position control systems \Rightarrow it requires:
 - precise model of the mechanism
 - exact knowledge of the location and stiffness of the environment

Compliant motion in medical robotics

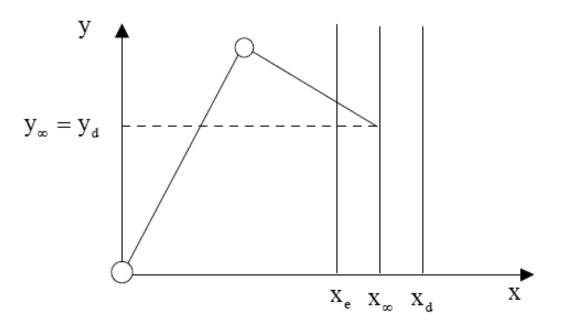
- Specificities in medical robotics:
 - interaction with patient (see examples below)
 - interaction with surgeon (*e.g.* manually guiding the robot by grabbing the tool or telemanipulating with haptic feedback)
 - soft deformable tissue with variable stiffness

Interaction control

- Design a control scheme able to:
 - control the robot position along the direction of the task space, the environment imposes natural force constraints
 - control the robot force along the direction of the task space, the environment imposes natural position constraints

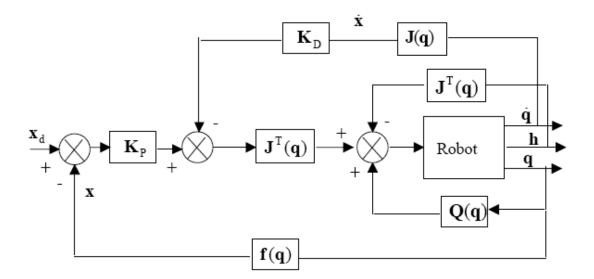


Interaction control strategies


Two categories:

 \bowtie Indirect force control \Rightarrow force control via motion control without explicit closure of a force feedback

- Compliance control, impedance control
- \boxtimes Direct force control \Rightarrow explicit force control to a desired value
 - Hybrid position/force control, external force control


 \boxtimes Two-link planar arm in contact with an elastically compliant plane (stiffness = $k_{\rm e}$)

- X_{∞} end-effector equilibrium position
- \mathbf{X}_{e} undeformed position
- \mathbf{X}_{d} desired position

 \boxtimes Compliance control with operational space PD control and gravity compensation $(x_{\rm d}=cte,\,\dot{x}_{\rm d}=0)$

LIRMM

Robot dynamic model: $\mathbf{A}(\mathbf{q})\ddot{\mathbf{q}} + \mathbf{C}(\mathbf{q},\dot{\mathbf{q}})\dot{\mathbf{q}} + \mathbf{Q}(\mathbf{q}) = \mathbf{w} - \mathbf{J}(\mathbf{q})^{\mathrm{T}}\mathbf{h}$ Control law: $\mathbf{w} = \mathbf{J}^{\mathrm{T}}(\mathbf{q}) \left[\mathbf{K}_{\mathrm{P}}\tilde{\mathbf{x}} - \mathbf{K}_{\mathrm{D}}\dot{\mathbf{x}}\right] + \mathbf{Q}(\mathbf{q})$ At the equilibrium: $\dot{x} = 0$ and $K_p \tilde{x} = h$ Assuming that: $h = K_e (x - x_e)$ $K_e = diag \{k_x, 0\}$ $K_p = diag \{k_{Px}, k_{Py}\}$ (frictionless) Let $p_d = \begin{bmatrix} x_d & y_d \end{bmatrix}^T$ be the desired tip position Equilibrium equation for position: $p_{\infty} = \begin{bmatrix} \frac{k_{Px}x_d + k_x x_e}{k_{Px} + k_x} \end{bmatrix}$

The elastic plane imposes that the arm moves as far as it reaches the coordinate

Compliance control

Equilibrium equation for force:

IRMN

Difference between xd and xe

Equivalent stiffness coefficient (parallel composition)

 \Rightarrow Arm stiffness and environment stiffness influence the resulting equilibrium configuration

$$\bowtie k_{Px}/k_x \gg 1 \Rightarrow x_{\infty} \approx x_d \quad f_{x\infty} \approx k_x (x_d - x_e)$$

IRMN

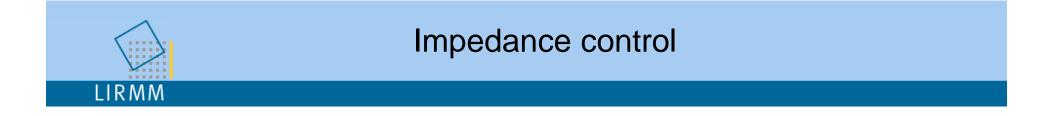
 \Rightarrow The plane complies almost up to xd and the elastic force is mainly imposed by the environment (passive compliance)

$$\bowtie k_{Px}/k_x \ll 1 \implies x_{\infty} \approx x_e \quad f_{x\infty} \approx k_{Px}(x_d - x_e)$$

 \Rightarrow The environment prevails over the arm. The elastic force is mainly generated by the arm (active compliance)

Basic idea: assigned a prescribed dynamic behaviour while its effector is interacting with environment

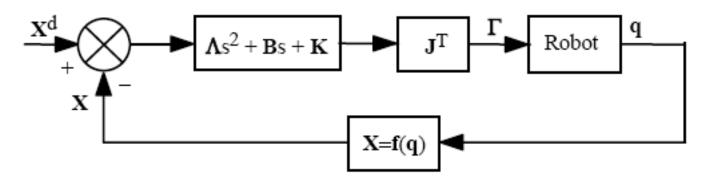
➢ Performances specified by a generalized dynamic impedance representing a mass-spring-damper system

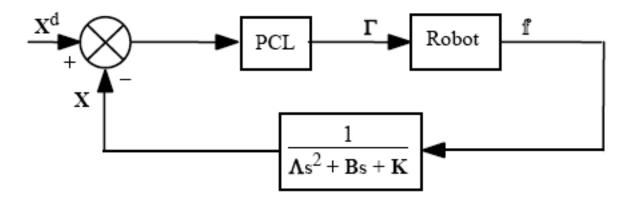

End-effector velocity or position and applied force are related by a mechanical impedance:

 $\mathbf{F}(s) = \mathbf{Z}(s)\mathbf{X}(s)$ or $\mathbf{F}(s) = s\mathbf{Z}(s)\mathbf{X}(s)$

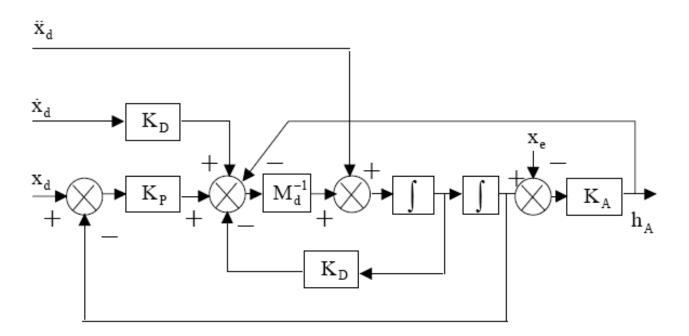
where: $sZ(s) = \Lambda s^2 + Bs + K$

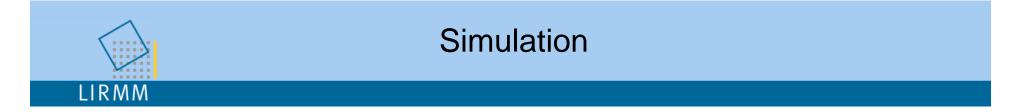
 Λ : the desired inertia matrix

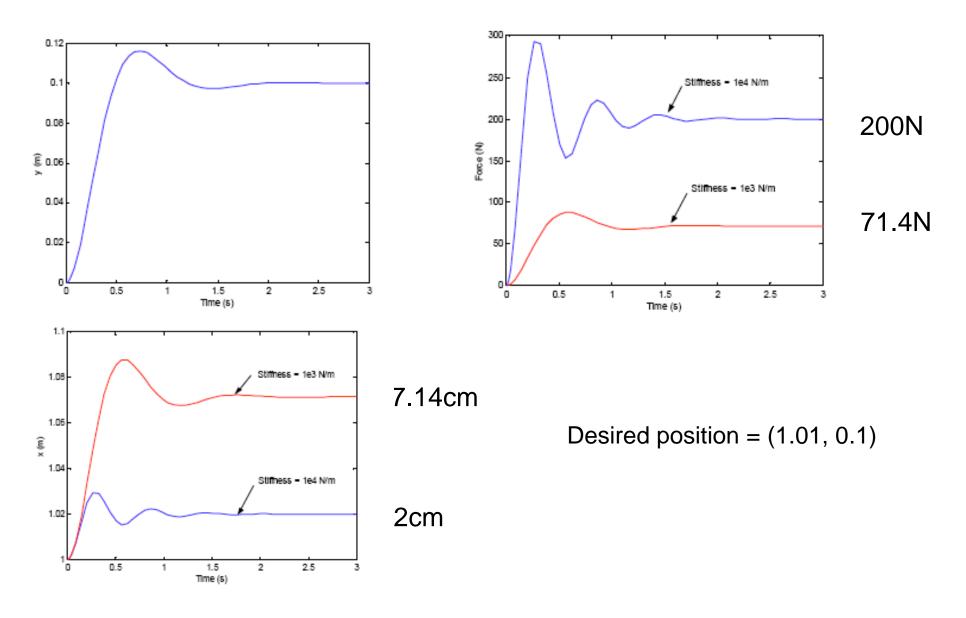

- B: the desired damping matrix
- ${\bf K}$: the desired stiffness matrix


- Λ \bowtie High values in the directions where a contact is expected in order to limit the dynamics
- ${f B}$ ${f \boxtimes}$ High values where it is necessary to dissipate the kinetic energy and damp the response
- \mathbf{K} $\mathbf{\boxtimes}$ The stiffness affects the accuracy of the position control

➢ Impedance control scheme without force feedback

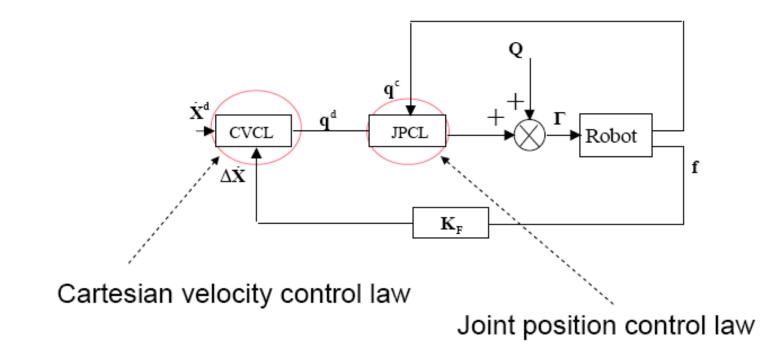

➢ Impedance control scheme with force feedback

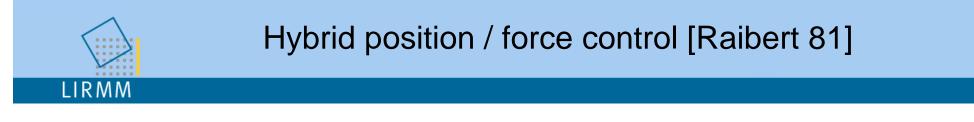


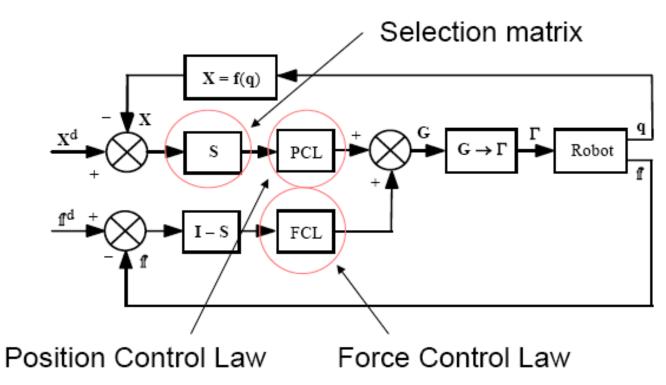


➢ Manipulator in contact with an elastic environment under impedance control

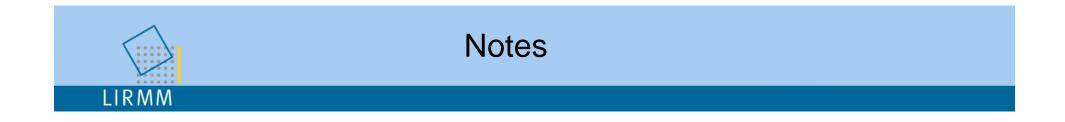
▷ Inverse dynamics control in the operational space and contact force measurement


Impossible to prescribe (and to control accurately) a desired wrench

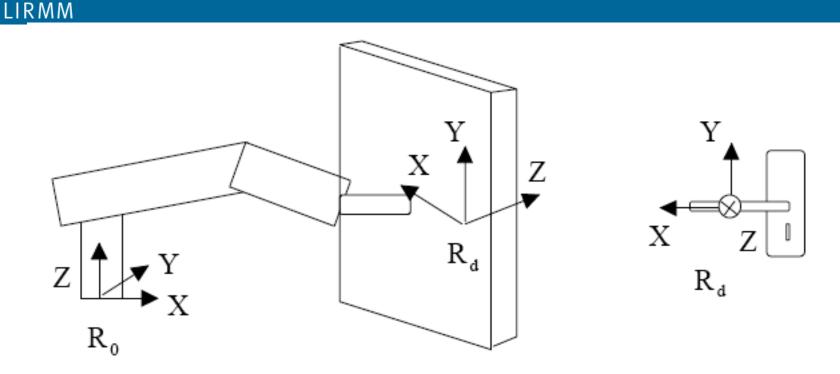

 \bowtie Mechanical devices interposed between the end-effector and the environment \Rightarrow Low versatility


▷ In [Taylor 92], the reference velocity is derived from the force error

 \boxtimes In [Davies 95], the reference velocity is derived from the guiding surgeon force



> Principle:


- \boxtimes Direction constrained in position \Rightarrow force controlled
- \boxtimes Direction constrained in force (null force) \Rightarrow position controlled

- Incoherence with respect to the Mason description [Mason 81]
 - force/position duality [Raibert 81]
 - force/velocity duality [Mason 81] \Rightarrow the task can be better described in terms of velocity and force

No robust behaviour in free space along a direction which is controlled in force but not constrained

- \boxtimes Open a door \Rightarrow two tasks 1) turn the handle and 2) pull the door
- 1) Velocity can be controlled along Y
- 2) Velocity can be controlled along Y and Z

➢ The task is described in term of velocity setpoint expressed in the operational space frame

☑ The motion direction depends on the current position of the task frame

In case of disturbances, the motion can always be executed without constraint \Rightarrow the trajectory is automatically adapted

To guide the robot by grabbing the end-effector --> control the force along non constrained directions with a desired force of 0 (\approx comanipulation)

Solution Assume that the robot is subject to a disturbance

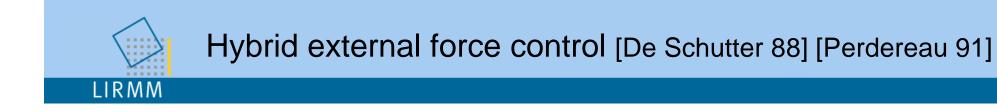
• case 1:

the disturbance is applied below the force sensor \Rightarrow the force control is active

• case 2:

the disturbance is applied before the force sensor \Rightarrow in free space, the robot is not controlled since the disturbance is not observed (and no position control)

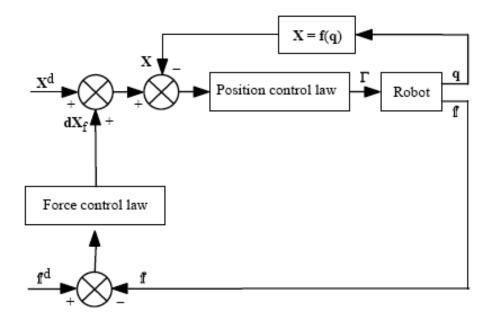
Necessity to use additional sensors



Some examples of hybrid control scheme

Strategy with on-line stiffness estimation and controller parameters tuning [Ortmaïer 03]

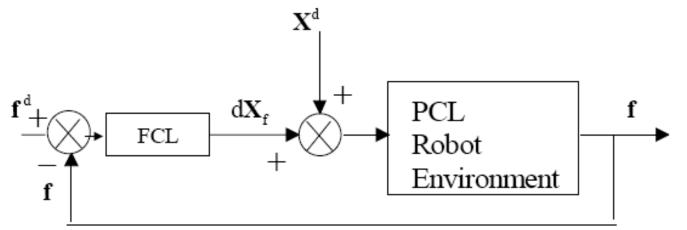
• In beating heart surgery, they compensate the heart motion by exerting a constant force to the organ


▷ Control « towards zero » the lateral forces applied to the constrained degrees of freedom (trocar) during laparoscopic manipulation [Krupa 02]

- It is composed of two embedded control loops:
 - Outer loop control force

The output of the outer loop is transformed into a desired position input for the inner loop

• Inner loop control position



Properties

Solution Force control loop is hierarchically superior with respect to position

- Let's consider a step on the desired position
- Control theory: a disturbance is rejected if there is an integrator before the disturbance

• A static error due to the desired position is cancelled

Properties

Inner position loop control is always active:

• less stability problem when switching between position control and force control

• if a disturbance is applied to the robot before the force sensor and if the robot is not in contact with the environment:

 \Rightarrow the disturbance is not detected by the force sensor

 \Rightarrow but it is compensated by the position loop

• if the force is applied after the force sensor, this is equivalent to a contact with the environment

 \Rightarrow the robot is moving along the direction of the applied force to compensate it

Easily implementable with decentralized industrial controllers (PID) due to the cascade structure of the scheme [Dégoulange 93]

- Except the IGM and DGM, few on line computations are required
- Solution Cascade structure easily tuned by starting with the inner position loop

Contents

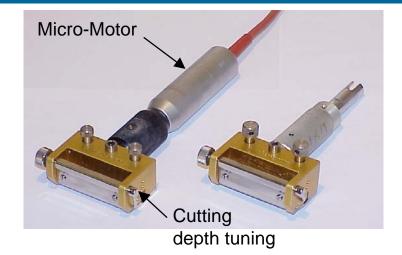
➢ Motion control

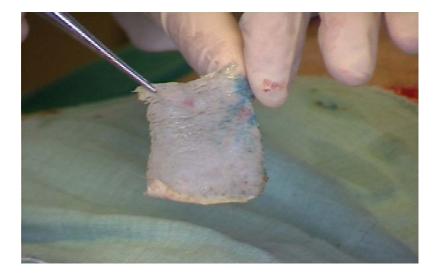
- joint space control
- operational space control
- ☑ Interaction control
 - indirect force control
 - direct force control

Examples

- Autonomous mode / comanipulation / identification --> SCALPP
- Telemanipulation with force feedback --> MIS

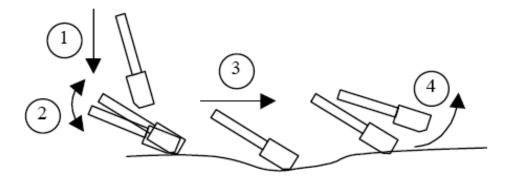
SCALPP Project (1999-2003)

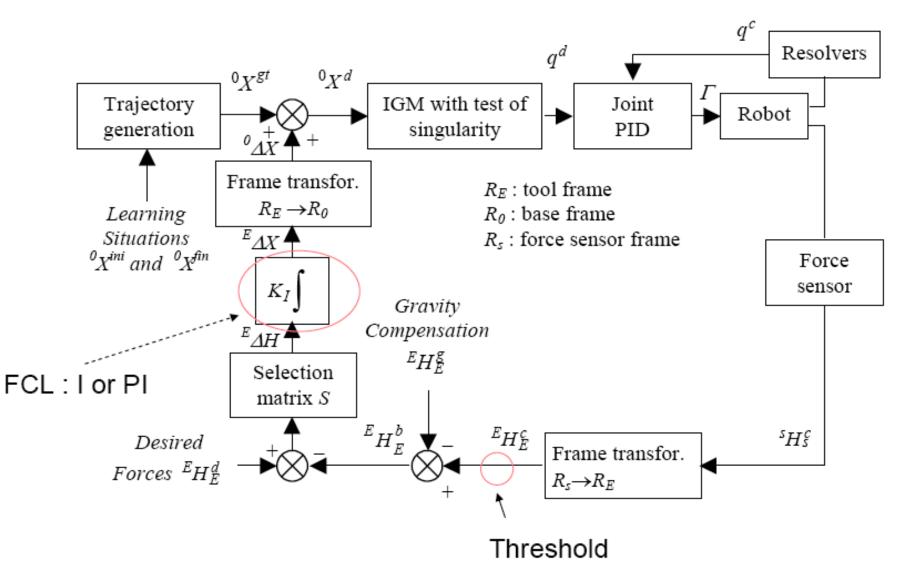

☑ Robotized skin harvesting in reconstructive surgery with external position / force control [Dombre 03]



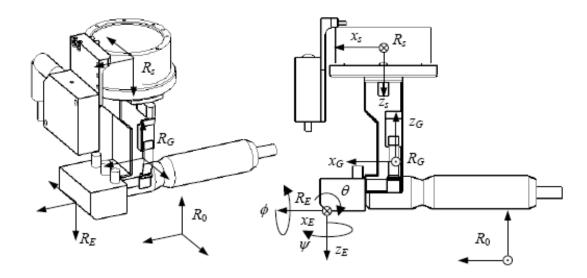
Skin Harvesting: Medical Task Analysis

- Severely burnt, maxilla-facial, orthopaedic...
- ☑ Two steps:
 - skin harvesting
 - grafting of the harvested skin strip onto a burnt location
- Constraints on the skin strip to reduce scars:
 –thickness regularity
 –width regularity
 –no hole
- ☑ ... depends on:
 - –harvested location (thighs, head, back...)–surgeon skill
 - -stability of the force and moment applied




Skin Harvesting: Robotic Approach

- Skin harvesting is a difficult gesture which requires high accuracy and high efforts to the surgeon
- It requires a long training process and a regular practice
- The surgeon action may be divided into four steps:
 - 1) free motion until contact is reached,
 - 2) orientation step to make that the blade penetrates the skin;
 - 3) harvesting process: the blade plane is kept against the skin with a roughly constant contact force
 - 4) quick rotation to free the dermatome


 \Rightarrow Robotization with position/force control to help especially untrained surgeons

- ≥ « Zero » of F/T sensor (Gamma 130N/10Nm from ATI)
- Source measurement threshold but no filtering implemented
- Selection matrix required to perfectly decouple the direction (for e.g. due to friction disturbance) and keep the orthogonality of the subspace

Zero force control in free space

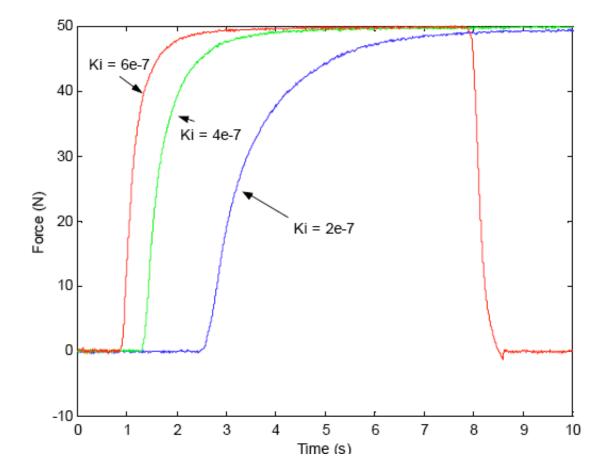
➢ Proportional controller

Limited motion setpoint proportional to the applied force End-effector comes back as soon as the disturbance stops

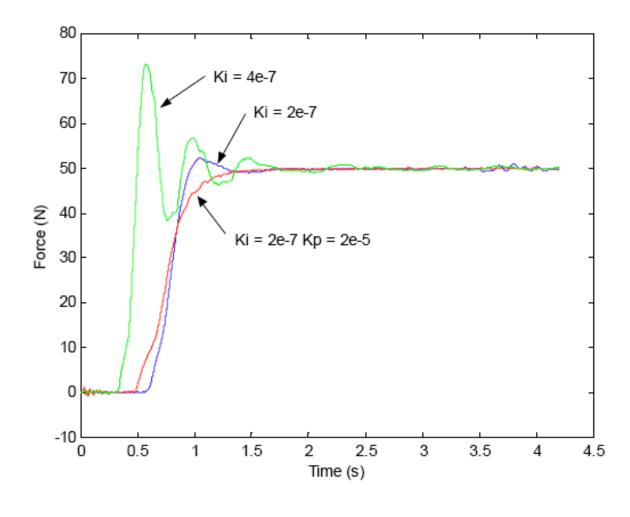
Zero force control in free space



- Position ramp while the force is applied
- « Memory of motion »: the current position is maintained if the force stops

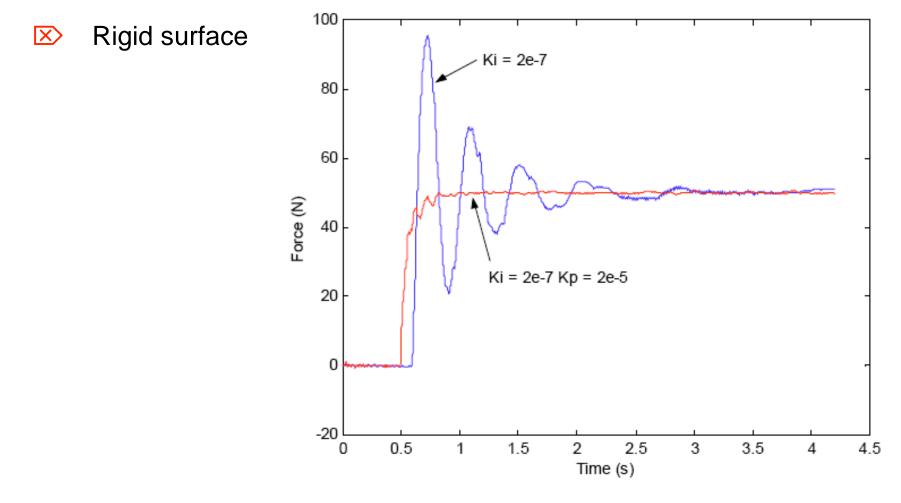


- ☑ I or PI for the force control loop ?
- Experimental procedure:



Soft surface

Experimental results


LIRMM

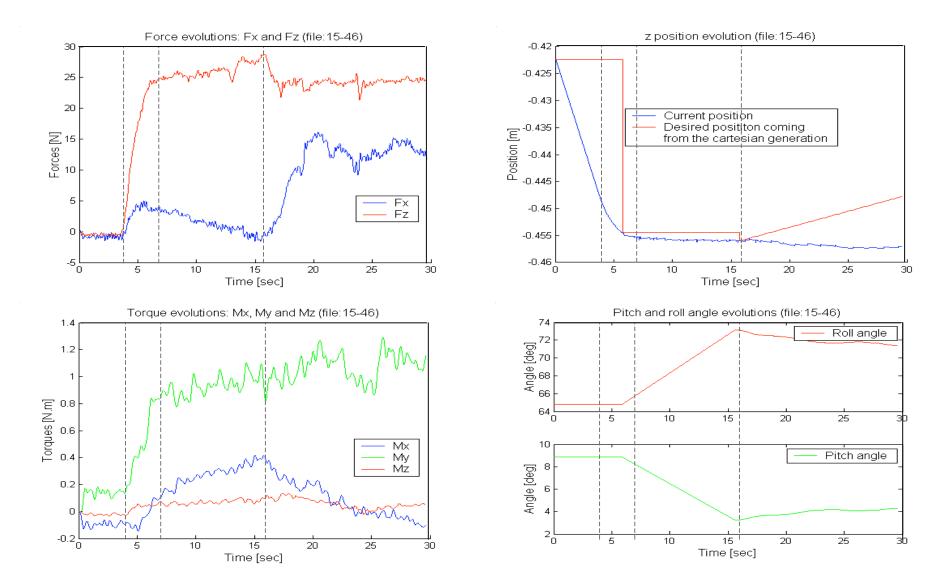
Polystyrene

Experimental results

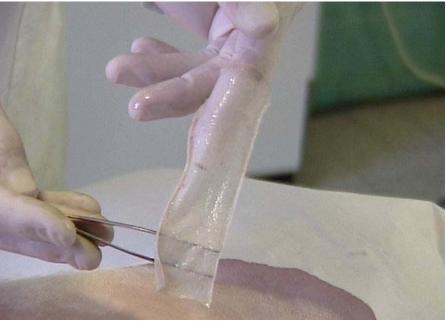
LIRMM

➢ Robustness with respect to stiffness variation: orthopeadic surgery, MIS

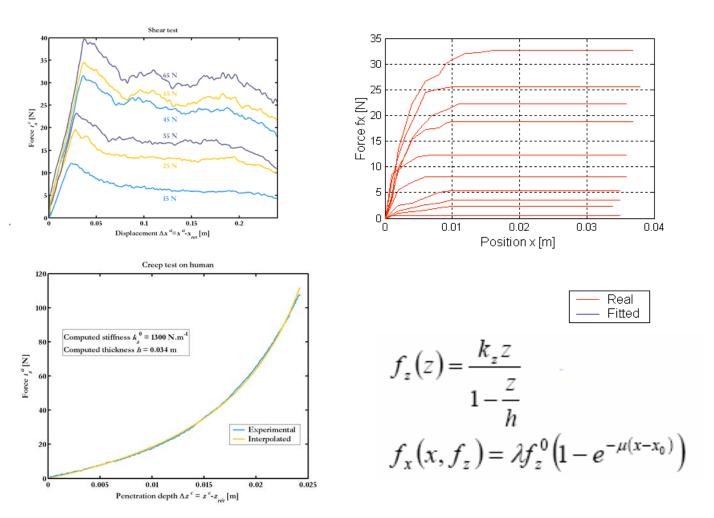
Risky situation : Skin harvesting on PhD student thigh



Clinical experiments on pig


Experimental Results

Experimental Results


Skin Modeling / Soft tissue mechanical properties identification

parameters

- Objectives: design of a physical parameter based model of deformable tissue of the skin (and the soft tissues underneath) reflecting its mechanical properties in order to:
 - improve tactile information
 - tune the control law according to the patient
- Protocol: 3 phases
 - Approach xith contact search
 Contact with desired force: direction Z
 Motion: direction X
- Relationship between forces and positions

Skin Modeling

LIRMM

Example of estimated parameters during Force Control Compression (FCC) tests:

$$f_z(z) = k_z(z)z = \frac{k_z^0 z}{1 - \frac{z}{h}}$$
 with z

ESTIMATED PARAMETERS	k_{z}^{0} and <i>h</i> during reproducibility FCC tests	
----------------------	---	--

	<i>h</i> [m]	$\sigma_{\rm R} [\%]$	k' [N/m]	$\sigma_{\rm R} [\%]$
Patient 1	0.045	5.1	620	7.2
Patient 2	0.048	3,3	752	6.8
Patient 3	0.038	6.2	576	10.2
Patient 4	0.041	2.9	672	6.3
Patient 5	0.032	4.6	688	5.7

Contents

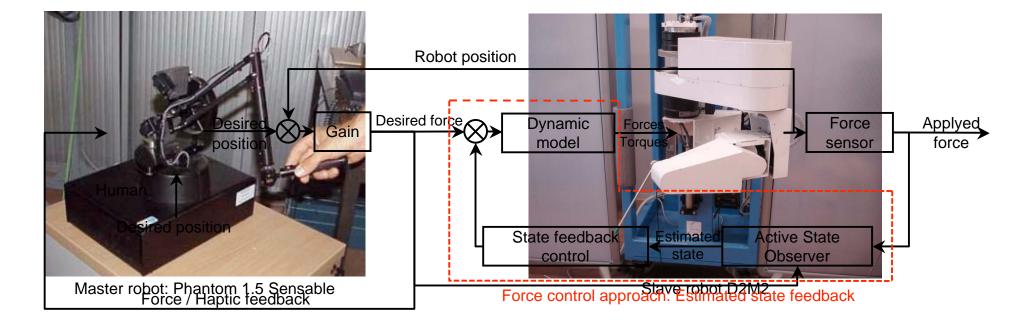
➢ Motion control

- joint space control
- operational space control
- ☑ Interaction control
 - indirect force control
 - direct force control

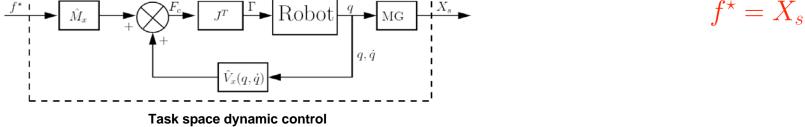
Examples

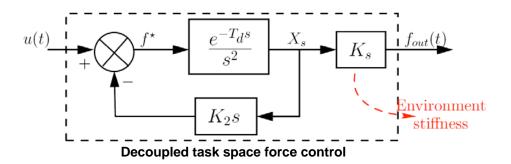
- Autonomous mode / Comanipulation --> SCALPP
- Telemanipulation with force feedback --> MIS

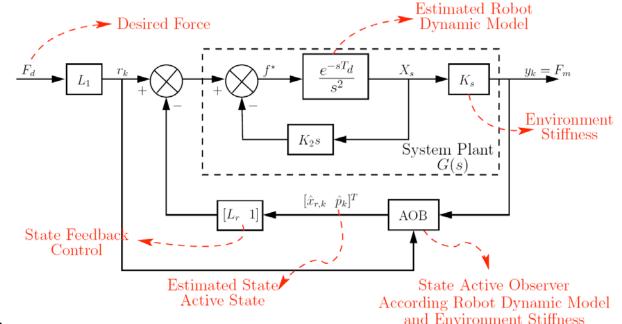
Haptic feedback teleoperation control


☑ Objectives

- Teleoperate a remote robot (position control)
- Free space motion (no contact)
- Contact with different stiffness objects
- Haptic feedback


Workspace


Sontrol approach


Kinematic:
$$X_s = J(q)\dot{q}$$

Dynamic: $F_c = \hat{M}_x f^\star + \hat{V}_x(q, \dot{q}) + \hat{g}_x(q) + \hat{F}_e + \hat{F}_f$

Force active observer

▷ Compliant motion with force controlled robot and force active observer [Cortesao 02] [Zarrad 07b]

➢ Advantages

- State estimation using Active Kalman Filtrering
- Stochastic parameters
- Modeling errors compensation
- Control law according to the desired model

Adaptive force control

Environment stiffness estimation

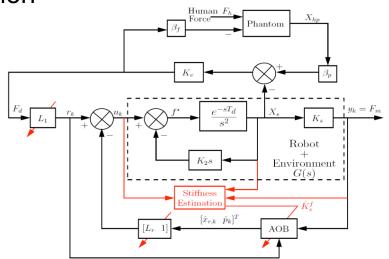
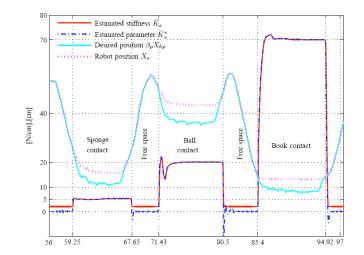
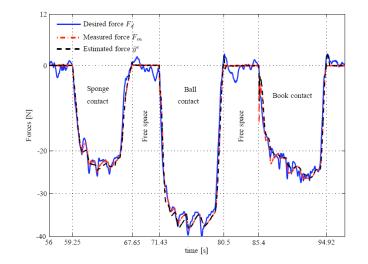




Fig. 4: teleoperation scheme with environment stiffness estimation strategy

Haptic Feedback Teleoperation System LIRMM

Challenging issues:

. . .

 \boxtimes Beating heart surgery (motion, friction compensation, ...) --> see visit of the lab

>>> Palpation, tactile information for haptic feedback

Small force / torque sensor for sterilizable and reusable instrument

Thanks to G. Duchemin, E. Dombre, W. Zarrad who contribute to these slides

References

[Barbé 06] Barbé L., Bayle B., De Mathelin M., Gangi A., « Online robust model estimation and haptic clues detection during in-vivo needle insertions », *Proc. of the IEEE Biomechanical robotics and Biomechatronics*, Pise, 2006

[Cortesao 02] Cortesao R., « Kalman Techniques for Intelligent Control Systems: Theory and Robotic Experiments », PhD Thesis, University of Coïmbra, Portugal, 2002.

[Davies 95] Ho S.C., Hibberd R.D., Davies B.L., « Robot Assisted Knee Surgery », *IEEE Eng. In Medicine and Biology Magazine*, pp. 292-300, 1995.

[Denis 03] Denis K. *et al.*, « Registration of the Tibia in Robot-Assisted Total Knee Arthroplasty using Surface Matching », *International Congres Series 1256,* pp. 664-669, 2003.

[De Schutter 88] De Schutter J., Van Brussel H., « Compliant Robot Motion II. A Control Approach Based on External Control Loops », *The Int. Journal of Robotics Research*, vol. 7(4), pp. 18-33, 1988.

[Dégoulange 93] Dégoulange E., « Commande en effort d'un robot manipulateur à deux bras: application au contrôle de la déformation d'un chaîne cinématique fermée », Ph.D. Thesis, University of Montpellier II, Montpellier, France, 1993.

[Dombre 03] Dombre E., Duchemin G., Poignet Ph., Pierrot F., « Dermarob: a Safe Robot for Reconstructive Surgery », *IEEE Transactions on Robotics and Automation, Special Issue on Medical Robotics*, special issue on medical robotics, vol. 19(5), pp. 876-884, 2003.

[Duchemin 05] Duchemin G., Maillet P., Poignet P., Dombre E., Pierrot F., « A hybrid Position/Force Control Approach for Identification of Deformation Models of Skin and Underlying Tissues», *IEEE Transactions on Biomedical Engineering*, vol. 52(2), pp. 160-170, 2003.

[Ginhoux 03] Ginhoux R., « Application de la commande prédictive à la compensation de mouvements d'organes répétitifs en chirurgie laparoscopique robotisée », Ph.D. Thesis, University of Strasbourg, France, 2003.

[Hannaford 99] Rosen J., Hannaford B. *et al.*, « Force Controlled and Teleoperated Endoscopic Grasper for Minimally Invasive Surgery – Experimental Performance Evaluation », *IEEE Trans. on Biomedical Engineering*, vol. 46(10), 1999, pp. 1212-1221

[Hogan 85] Hogan N., « Impedance Control: An Approach to Manipulation, Part I – Theory and Part II - Implementation », *ASME J. Dynamic Systems, Measurement and Control,* vol. 107, pp. 1-16.

[Khalil 02] Khalil W., Dombre E., « Modeling, Identification and Control of Robots », *Hermès Penton Science*, 2002.

[Kumar 00] Kumar R., Bekelman, Gupta P., Barnes A., Jensen P., Whitcomb L.L., Taylor R.H., « Preliminary Experiments in Cooperative Human/Robot Force Control for Robot Assisted Microsurgical Manipulation », *Proc.of IEEE ICRA'00*, 2000.

[Krupa 02] Krupa A., Morel G., De Mathelin M., « Achieving High Precision Laparoscopic Manipulation Through Adaptive Force Control », *Proc. of IEEE ICRA'02*, 2002.

[Mason 81] Mason M.T., « Compliance and Force Control for Computer Controlled Manipulators », *IEEE Trans. on Systems, Man and Cybernetics,* vol. 11(6), 1981, pp. 418-432.

[Ortmaïer 03] Ortmaïer T., Ph.D. Thesis, DLR, Munich, 2003.

[Perdereau 91] Perdereau V., « Contribution à la commande hybride force-position – Application à la coopération de deux robots », *Ph.D. Thesis*, University of Pierre and Marie Curie, Paris, France, 1991

[Pierrot 99] Pierrot F. *et al.*, « Hippocrate: a Safe Robot Arm for Medical Applications with Force Feedback », *Medical Image Analysis*, vol. 3(3), 1999, pp. 285-300.

[Raibert 81] Raibert M.H., Craig J.J., « Hybrid Force-Position Control of Manipulators », *Trans. of the ASME, Journal of Dynamic Systems, Measurement and Control,* vol. 103, June 1981, pp. 126-133.

[Sauvée 07] Sauvée M., Poignet P., Dombre E., « Ultrasound image-based visual servoing of a surgical instrument through nonlinear model predictive control », *To appear in International Journal of Robotics Research*, 2007.

[Shimachi 03] Schimachi S. *et al.*, « Measurement of Force Acting on Surgical Instrument for Force Feedback to Master Robot Console », *International Congres Series 1256,* 2003, pp. 538-546.

[Siciliano 00] Sciavicco L., Siciliano B., « Modelling and Control of Robot Manipulators », Springer-Verlag, 2000.

[Taylor 92] Kazandides P., Zuhars ., Mittelstadt B., Taylor R.H., « Force Sensing and Control for a Surgical Robot », *Proc. of IEEE ICRA 92,* 1992.

[Zarrad 07a] Zarrad W., Poignet P., Cortesao R., Company O., « Towards needle insertion with haptic feedback controller », *Proc. of the IEEE IROS 07*, 2007.

[Zarrad 07b] Zarrad W., Poignet P., Cortesao R., Company O., « Stability and transparency analysis of an haptic feedback controller for medical applications », *Proc. of the IEEE CDC 07*, 2007.

[Zemiti 06] Zemiti N., G. Morel, B. Cagneau, D. Bellot, A. Micaelli, « A passive formulation of force control for kinematically constrained manipulators », *Proc. of IEEE ICRA 06*, 2006.