

1. Introduction

University of Karlsruhe, Prof. Dr.-Ing. Heinz Wörn Institute for Process Control and Robotics (IPR)

3 Copyright by IPR, 2007

Orthognathic surgery for the correction of Dentofacial skeletal irregularities with an autonomous robot (IPR) Today: Experience for repositioning the bone segments to create a good outlook of the patient, manual measurements Idea: Assistive robot system for • holding the bone segments in the preplanned position during fixation procedure 1. Acquire initial and target position of the maxilla in the articulator Store relative transformation 2. Build individual maxillary splint from light curing resin (leicht aushärtendes Harz) University of Karlsruhe, Prof. Dr.-Ing. Heinz Wöm Institute for Process Control and Robotics (IPR) 34 Copyright by IPR, 2007

	Example	
·	PASCAL	KRL
Data types	REAL CHAR ENUM	
	÷	POS(x,y,z,A,B,C,. AXIS(A1,A2,A6)
Control structures	IFTH REPE SWITC WHILE	ATELSE ATUNTIL CHCASE .ENDWHILE
Procedures and functions	DEFFCTENDFCT	
Movements		PTP LIN CIRC
Interaction with Environment		SIGNAL
Interrupt-Handling		INTERRUPT

Basic types and arrays		Enumeration types	
INT JOHN[10]	; Declaration	ENUM EN_TYPE MALE, FEMALE	; Definition
CHAR LUISE, MARTHA		DECL EN_TYPE NAME	; Declaratio
JOHN[5] = 70	; Assignment	NAME = #MALE	; Assignmen
MARTHA = "Y"			
Structures			
STRUC ST_TYPE REAL LUISE, BOOL MARTH.	; Definition of struc	ture with different datas types	
DECL ST_TYPE JOHN	; Declaration of a co	; Declaration of a concrete structure named John	
JOHN = {LUISE 1.5, MARTHATRUE}	; Assignment		

Task	Example	Description
Set output / \$6 delete output	\$OUT[1] = TRUE	Set output 1 to TRUE
		(High).
Read input	MARTHA = \$IN[13]	Set input 13 to BOOL- variable MARTHA.
Wait until input is set	WAIT FOR \$IN[10] == FALSE	Wait until input 10 is set to FALSE (Low)
Pulse of defined Duration at output	PULSE (\$OUT[7],TRUE,5)	Set output 7 to TRUE For 5 sec.
Path synchronous invocation of a function	TRIGGER WHEN DISTANCE= 0	Do linear movement to P1 and synchronously start subprogram UP.
	LIN P1	

