Szymon Kostrzewski

szymon.kostrzewski@dlr.de / sz.kostrzewski@aster.pl

Organizations:
ンGerman Aerospace Center (DLR), Institute of Robotics and Mechatronics, >International Mater on Robotics 2006/07, University of Genova, ITALY.

Introduction

- Master of Science in Engineering at Warsaw University of Technology, Warsaw, Poland,
- Specialization: Automatic and Robotics, majoring in Robotics.
- International Master on Robotics 2006/07 postgraduate study of an additional and particular knowledge in Robotics
- Lectures - 6 months at University of Genoa, Department of Mechanics and Machines Design,
- Internship - 6 months at German Aerospace Center (DLR), Germany,
- End of course: November 2007.

KineMedic Robot

- The KineMedic is a custommade universal robot for surgical interventions based on the DLR light-weight robot and dexterous hand developments,
- Target application areas reach from minimally invasive surgery over orthopaedic interventions to urology and gynaecology,
- Project is funded by external companies and is in stage of very active development.

KineMedic System

- In target application up to three KineMedic robots are to be used,
- Highly integrated system involving:
- visual feedback,
- stereo vision,
- haptics.

Project: Optimization in solving inverse kinematics problem

- Application of Sequential Quadratic Programming nonlinear solver,
- Improvements:
- computations speed,
- accuracy,
- constraints considerations,
- Open Source and commercial implementations taken into consideration,

$$
\begin{aligned}
& f(\mathbf{x})=\min \{f(\mathbf{x}): \mathbf{x} \in S\}, \\
& S=\left\{\begin{array}{clllll}
& \mathbf{x}_{u} & \leq \mathbf{x} & \leq \mathbf{x}_{o} \\
\mathbf{x} \in \mathbb{R}^{n}: & \mathbf{b}_{u} & \leq & \mathbf{A x} & \leq \mathbf{b}_{o} \\
& \mathbf{c}_{u} & \leq c(\mathbf{x}) & \leq \mathbf{c}_{o}
\end{array}\right\} .
\end{aligned}
$$

Project: Optimization in solving inverse kinematics problem cont.

- First practical application results are obtained,
- Further development, comparison among different implementations and
 tuning possibilities are investigated

Project: Collision avoidance

- Collision detection with gradients for collision handling algorithms,
- Models built up from shells covering elements,
- For collision check physics engines and DLR internal solutions can be used.

Conclusion

As a part of International Master on Robotics 2006/07 the following projects concerning medical applications are performed:

- Practical application of a Sequential Quadratic Programming optimization algorithm in solving inverse kinematics problems
- Analytical procedures evaluation and comparison,
- Integration with existing system,
- Collision avoidance for KineMedic scene:
- Shells generation,
- Model build-up.

Thank you for your attention

