

3rd Summer European University in Surgical Robotics

Montpellier, France September 5-12, 2007

P.h.D in Biomedical Engineering Giuseppina Schiavone g.schiavone@unicampus.it

Biomedical Robotics Laboratory Università Campus Bio-Medico

10 September 2007

Summary

- · Campus Bio-Medico
- \cdot Research Group
- · PhD Research
 - · Neurodevelopmental Engineering
 - \cdot TACT
 - · Wearable Audio Visuo Vestibular systems
 - Work in Progress
 - Preliminary Results
- Future Work

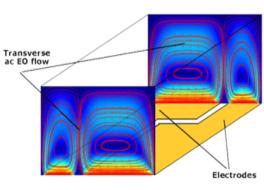
Università Campus Bio-Medico

www.unicampus.it

- Founded in Rome in **1991**
- Goal:
 - train qualified and ethical professionals
 - ensure a person-centred environment
 - encourage multidisciplinary and international collaborations
 - promote partnerships with biomedical companies
- **Faculties:**
 - \cdot Medicine
 - · Biomedical Engineering
 - · Nursering
 - Alimentation and Nutrition Sciences
 EMC
- University Hospital including
 - day-hospital
 - pre-hospitalisation
 - · departments for in-patients
- Interdisciplinary Research Center (CIR)
- PhD in Neuroscience, Endocrinology, Experimental Oncology, Biomedical Engineering ٠
- Total of 815 students and 65 between full, associate and assistant professors
- Collaborative partnerships with 18 Countries

•Biomedical Engineering Laboratories

- Automation and Controls
- **Biomedical Robotics**
- **Biomaterials**
- **Biomedical Instrumentation**
- Physics and Mathematical Models for Complex Systems
- Computer Science and Bio-informatics



Biomedical Robotics Laboratory

www.biorobotics.it

Research areas

- Rehabilitation Bioengineering
 - Methods and Systems for Robot-Mediated Motor Therapy
 - Functional Assessment
 - Assistive Technology
- Neurodevelopmental Engineering
- Miniature Systems
 - Design techniques based on multi-domain and multi-physics
 - Microfluidic platforms for manipulation of biomolecules
 - Drug-delivery systems for oncology application
 - Miniature sensors and actuators for robots

Neuro-developmental Engineering

- New interdisciplinary research area at the intersection of Developmental Neuroscience and Bioengineering aiming at providing new methods and tools for:
 - Undestanding neuro-biological mechanisms of human brain development
 - Objective and quantitative analysis of human behavior during neurodevelopment
 - Human neurodevelopmental *milestones* from birth onwards
 - Studying neuro-developmental disorders
 - Objective assessment via telematic, mechatronic, robotic systems
- Long term goals:
 - *New clinical protocols and standards* for early diagnosis, functional evaluation and therapeutic treatments for neuro-developmental disorders (ASD)
 - *New generation of educational, interactive toys* which can sustain, in ecological scenarios, the regular development of motor and cognitive abilities of the child

Thought in <u>ACT</u>ion (TACT) project

- 3 years, EU founded, started Jan 2006
- coordinated by Campus Bio-Medico
- Partners in Italy, Swidan, Switzerland, UK
- *NEST/Adventure programme*, 6th FP
 - New Emerging Science and Technology

- Visionary but scientifically rigorous goal
 - early diagnosis of neurodevelopmental disorders
 - highly interdisciplinary
 - developmental neuroscience, developmental psychology, child neurology, child psychiatry, robotics, mechatronics, electronic music, signal analysis, computer science & neural engineering, and bioethics.

TACT objectives

- Development of methods and devices for:
 - *assessing goal-directed actions* in normally developing babies
 - establishing standards against which measuring developemental disorders
 - detecting early signs of disturbed development
 - focus on
 - basic sensorimotor integration ◄
 - patterns gaze
 - expression of emotions
 - social communication
- Novelty:

CAMPUS

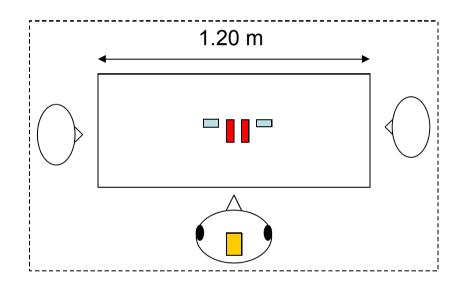
BIO-MEDICO

- Movement analysis is often very complex/expensive
 - Accesible to a limited number of children
 - For a limited amount of time
- Ecological operation conditions
 - Diagnostic tools could be directly available to families
- We propose a **complementary** technology suitable to operate also in kindergardens and homes
 - Child-centred design
 - Long term, continual monitoring

Montpellier, France September 5–12, 2007

TACT Instrumented Toys and Wearable Devices

Wearable Audio-Visuo-Vestibular Systems


- Neurodevelopmental disorders (like Autism) affect *perceptive and motory systems* and it is proved that some features of the disorder can be observed in the first months of life, even if the diagnosis of the disorder can't be currently doneafter **3 years** from the birth
- Wearable Audio-Visuo-Vestibular Systems and Instrumented Toys for behavior analysis in infants between **0-24 months**
- Multimodality and Sensor Integration

Vilensky et al. 1981	Deambulation disorders
Hallett et al., 1993	Limited range of motion of the hip, asymmetric posture
Van der Meer et al., 1995	Motor coordination through vision control
Von Hofsten & Rosander, 1997	Tracking ability
Teitelbaum et al., 1998	Video recordings of children first steps
Mari et al., 2003	Reach-to-grasp tasks, delay in action planning and action execution
	Montpellier, France September 5-12, 2007

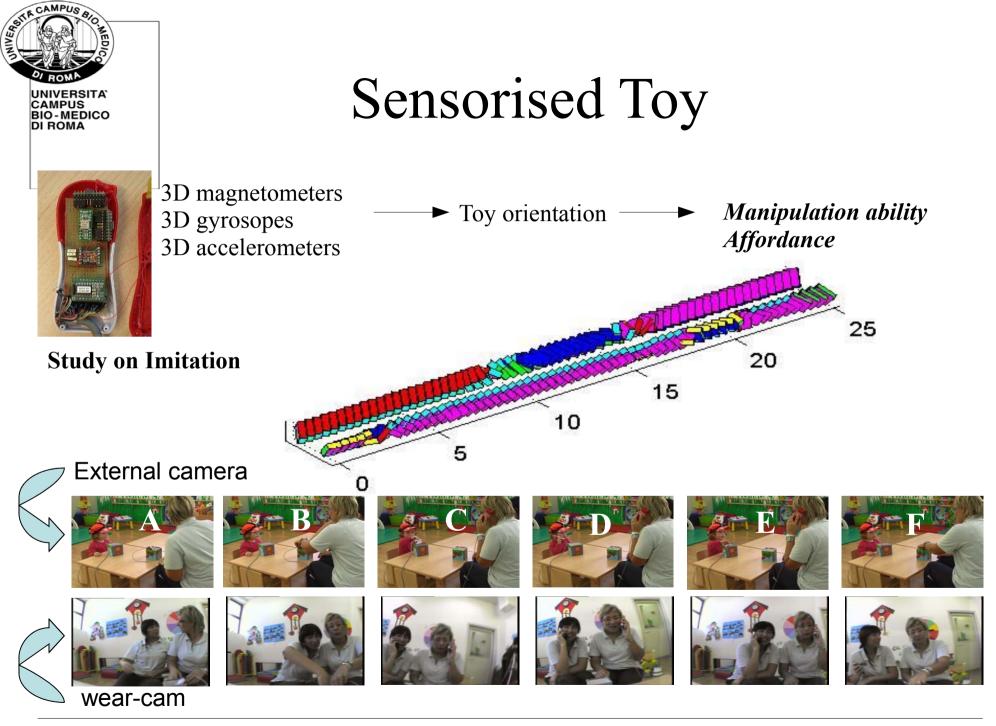
LIRMM

Protocol: Social Situation

Protocol Specifications

Age of the child: 8-14 months Equipment: coloured wooden bricks Acting personnel: two caregivers

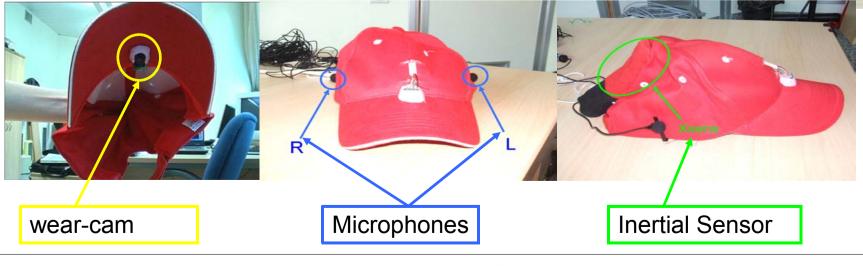
Social Situation


The experimenters are *talking to each other alternately*, one at the time.

All the time they are looking at each other (with an interested facial expression), not at the infant.

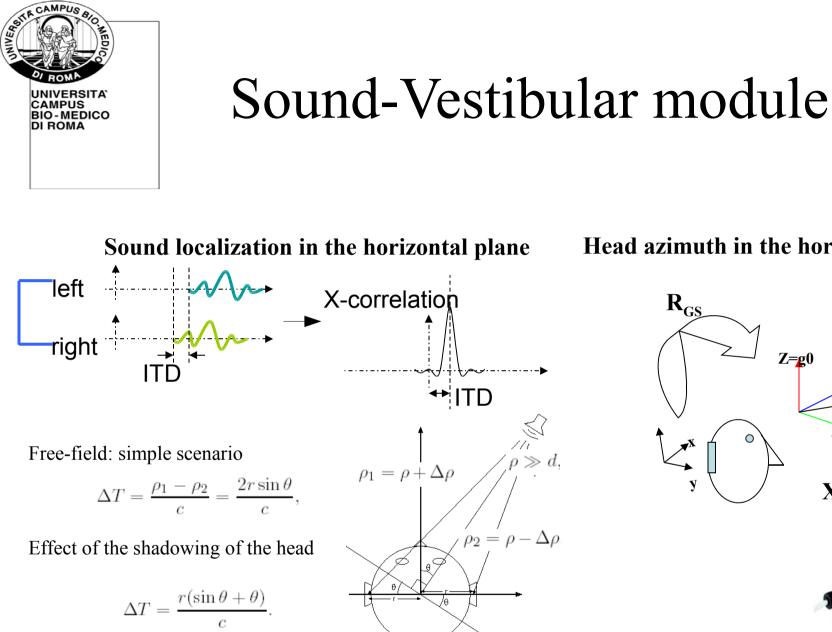
The experimenters are *putting bricks in front of the infant alternately*, one at the time.

Montpellier, France September 5–12, 2007

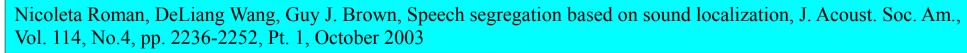


Audio-Visuo-Vestibular Cap

- Multimodal System
 - Auditory system
 - Vision system
 - *Kinematic system*


binaural microphones wear-cam inertial sensor

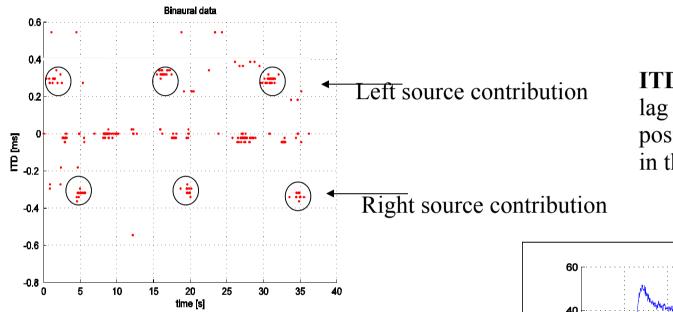
Montpellier, France September 5–12, 2007



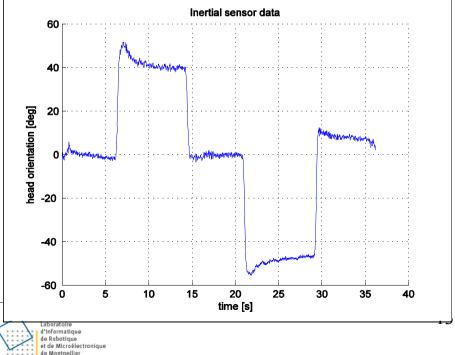
Head azimuth in the horizontal plane

Z=g0

X=m0


 $X = R_{GS} x$

Sensory Integration


ITD is estimated as the lag corresponding to the position of the maximum in the cross-correlation function.

Head azimuth is obtain with the projections of the geomagnetic vector **M** on the *xy-plane*

Montpellier, France

September 5-12, 2007

LIRMM

Preliminary results

- Combining binaural azimuth and head azimuth it is possible to
 - identify
 - where the baby is looking
 - if he is looking to the speaking cargiver
 - if he is looking to the object
 - if he can understand the game rules
 - if he is able to understand language
 - investigate
 - the way the baby interacts with the caregiver in social situations

Conclusion&Future Work

Sensory integration and *multimodal approach* can enhance quality and quantity of useful information about child interaction with the world

- Future work
 - Better solutions for computing binaural processing and sound localization
 - In-situ Test: testing the AVVC in kindergarden
 - Automatic Recognition of child behaviour
 - Classification of relevant/pathological actions

Questions?

• • •

... Thanks for your attention!

Montpellier, France September 5–12, 2007

