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1.1 Definitions

 Exteroceptive sensor  : 
   Sensor that provides measurements on the environment 

of the system.
 Examples : camera, ultrasound range sensor, 

medical imaging system, ...

 Visual servoing  : 

   Control of a mechanical actuated system using 
exteroceptive visual informations.
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1.2 History

Date

1973 10s

1979 1s

1984 33ms

1992 40ms

1996 16ms

1998 8ms

1999 1ms

Authors Task Sampling period

Shirai & Inoue (Tokyo, JP) Grasping

Prajoux (CNRS, FR) Tracking

Weiss (CMU, USA) Tracking

Chaumette (INRIA, FR) Tracking

Corke (CSIRO, AU) Tracking

Gangloff (LSIIT, FR) Tracking

Nakabo (U. Tokyo, JP) Tracking
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1.2 Some current challenges 
(situation in France)

 Robust visual servoing (INRIA Rennes, INRIA 
Sophia, ISIR Paris, LSIIT Strasbourg)

 Visual servoing of parallel robots (LASMEA, 
Clermont Ferrand)

 Physiological motion compensation (LSIIT 
Strasbourg, LIRMM Montpellier)

 Ulrasound imaging visual servoing (INRIA Rennes, 
LIRMM Montpellier, ISIR Paris)

 CT-scan and MRI visual servoing (LSIIT 
Strasbourg)



4th Summer School in Surgical Robotics
Jacques Gangloff, 2009

Page 7

1.3 Classification

 Criteria :
 Position of the camera(s)
 Type of control signal
 Type of measurement
 Bandwidth
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1.3.1 Position of the camera(s)

Eye in hand Eye to hand
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1.3.2 Type of control signal

Controller+


Trajectory
generation

Robot
Controller Drives

Robot + camera

Indirect visual servoing : robot joint positions are controlled by the controller provided by 
the robot manufacturer. The vision loop controller provides velocity control signals 
which are converted in position setpoints by the robot controller. This type of visual 
servoing is used when the sampling period is slow thus corresponding to a slow 
response time.
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1.3.2 Type of control signal

Controller+


Drives

Robot + camera

Velocity or torque control

Direct visual servoing : robot joints torques or velocities are controlled. Torque or 
velocity control signals are issued by the controller of the visual loop. They are sent 
directly to the drives. This architecture is used for high bandwidth visual servoing with 
a high sampling rate.
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1.3.3 Type of measurement

Controller+


(controller +) drives
+ robot + camera Im

age

Feature
extraction

3D
reconstruction

p*

p

P
os

e
es

tim
at

i o
n

Position based (3D) visual servoing : reference and measurement are poses. To 
reconstruct the measurement it is necessary to have a model of the object of interest.



4th Summer School in Surgical Robotics
Jacques Gangloff, 2009

Page 12

1.3.3 Type of measurement

Controller+


(controller +) drives
+ robot + caméra Im

age

Feature
Extraction

F *

F

Image plane measurement

Image based (2D) visual servoing : reference and measurement are feature coordinates. 
No 3D reconstruction. Not necessary to have a model of the object of interest.
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1.3.3 Type of measurement

2D
controller+



3D
controller+



(controller +) drives
+ robot + camera Im

age

Feature
extraction

Partial
recontruction

Hybrid (2,5D) visual servoing : some DoFs are controlled in the 3D space and other are 
controlled in the image plane. The goal is to obtain the best decoupling between the 2 
loops.

F *

p*

F

p
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1.3.3 Type of measurement

Controller+


(controller +) drives
+ robot + camera Im

age

Optical
flow

Ḟ *

̇F

Velocity field in the image

d2D/dt visual servoing : the reference and the measurement are velocities in the image.
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1.3.4 Bandwidth

Gain+


Integrator

  

 Kinematic visual servoing (slow)
 Continuous time model
 Robot = pure integrator
 Controller is a gain
 Dynamics of vision are neglected
 Indirect control scheme



4th Summer School in Surgical Robotics
Jacques Gangloff, 2009

Page 16

1.3.4 Bandwidth

 Dynamic visual servoing (fast)
 Discrete time model
 Detailed electromecanical modeling of the robot
 Detailed modeling of the camera (delays, sampling)
 Advanced control (predictive, robust, ...)
 Direct control scheme (velocity or torque)
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1.4 Examples

 Tasks :
 Tracking
 Grasping
 Insertion
 Positioning
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1.4.1 Tracking

 6 DoF fast target tracking 
(Gangloff et al., Strasbourg 
University) :
 Eye in hand, 2D, direct
 120 Hz
 Predictive control
 Velocity control signal

file:///home/jacques/Videos/vico/GRAViR_suivi_cible_vue_avant.sh
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1.4.1 Tracking

 2 DoF fast target tracking 
(Nakabo et al., Tokyo 
University) :
 Eye in hand, 2D, direct
 1 kHz
 Vision chip
 Torque control signal

file:///home/jacques/Videos/nakabo_bi.sh
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1.4.1 Tracking

 2 DoF tracking of liver (Ott et 
al., Strasbourg University):
 Eye in hand, 2D, direct
 25 Hz
 Repetitive control
 Velocity control signal
 The robot is an actuated 

flexible endoscope

file:///home/jacques/Videos/respendoflex.mpg
file:///home/jacques/Videos/respendoflex_cam.avi
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1.4.1 Tracking

 3 DoF tracking of beating 
heart (Ginhoux et al., 
Strasbourg University):
 Eye to hand, 2D, direct
 Predictive control
 Velocity control signal
 500 Hz

file:///home/jacques/Videos/beating.sh
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1.4.2 Grasping

 6 DoF grasping of a cube 
(Allen et al., Columbia 
University):
 Eye in hand, 3D
 Camera is at the wrist center

file:///home/jacques/Videos/vico/Columbia_saisie_piece.sh
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1.4.2 Grasping

 5 DoF satellite grasping 
(DLR):
 Eye in hand, 3D
 Use of a special end-effector to 

capture the satellite using its 
nozzles

 A second robot simulates 
micro-gravity

  The insertion phase is guided 
using LASER rangefinders.

file:///home/jacques/Videos/vico/DLR_capture_satelite_expe_complete.mpg
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1.4.3 Insertion

 5 DoF piston insertion (DLR):
 Eye in hand, 3D
 The engine block is put on a 

rotating table
 The approach of the cylinder is 

controlled by vision
 The insertion is force 

controlled

file:///home/jacques/Videos/vico/DLR_montage_moteur_phase_prehension_vue_camera.sh
file:///home/jacques/Videos/vico/DLR_montage_moteur_phase_insertion.sh
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1.4.3 Insertion

 4 DoF needle insertion 
(Nageotte et al., University of 
Strasbourg):
 Eye to hand, 2D
 The vision system is an 

endoscope

file:///home/jacques/Videos/suture.sh
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1.4.4 Positioning

 5 DoF needle positioning 
(Maurin et al., Strasbourg 
University):
 Eye to hand, 3D, indirect (look 

then move)
 The vision system is a CT-

scan
 Sequence : acquisition – 3D 

reconstruction – motion

file:///home/jacques/Videos/ctbot.sh
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1.4.4 Positioning

 1 DoF myocardium 
stabilization (Bachta et al., 
Strasbourg University):
 Eye to hand, 2D, direct
 300 Hz
 Piezoelectric actuation

file:///home/jacques/Videos/cardiolock.sh
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2. Measurement estimation

 Image acquisition
 Image processing (noise removal, filtering)
 Feature detection (detection of points, lines, 

ellipses, ...)
 For 3D visual servoing : 3D reconstruction

 Dementhon method
 Image Jacobian method
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2.1 Dementhon method

 Computes the pose of an object defined by points (not 
necessarily coplanar)

 Minimum of 4 points

 Iterative method : non deterministic execution time

 References : 

 D. DeMenthon et L. S. Davis, Model-Based Object Pose in 
25 Lines of Code, International Journal of Computer Vision, 
volume 15, pages 123 à 141, 1995.

 http://www.cfar.umd.edu/~daniel/#pose
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2.1.1 Definitions

H

Z
0

M
0

M
i

u

v
w

M
1

M
2

C

O i

jk

Image plane

f
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2.1.1 Definitions

f

M
0

M
i

P
i

H

Z
0

C p
i

m
i

m
0

u

vw

O i

j
k

Image plane

N
i

Rc

Ro
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2.1.2 Objectives

Let M
co
, the homogeneous transformation between the camera frame R

c 
(O, i, j, k) and the 

frame linked to the object R
o
 (M

o
 , u, v, w) :

M co=[
i u i v iw T x

ju jv jw T y

k u k v k w T z

0 0 0 1
]

Coordinates of i in Ro denoted oi

Coordinates of j in Ro denoted oj

T
x
 = x

0
 Z

0
 / f , T

y
 = y

0
 Z

0
 / f et T

z
 = Z

0

oi × oj

To estimate M
co
 , it is sufficient to estimate the coordinates of i and j in R

o
 and the 

coordinates of M
0
 in R

c
 . The coordinates of M

0
 in R

c
 , is obtained from the depth Z

0
 : if x

0
 

and y
0
 are the coordinates of m

0
 in R

c
 then T

x
 = x

0
 Z

0
 / f and T

y
 = y

0
 Z

0
 / f
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2.1.3 Orthographic projection

Let m
i
 (x

i
 y

i
 f)Rc the perspective projection of M

i
 (X

i
 Y

i
 Z

i
)Rc in the image plane and p

i
 (x'

i
 y'

i
 f)Rc 

its othographic projection.
Let :

x ' i= f
X i

Z 0

y ' i= f
Y i

Z 0

And :
xi= f

X i

Z i

y i= f
Y i

Z i

Let s = f/Z
0
 be the magnification factor of the orthographic projection. 

Let :

x ' i= f
X 0

Z 0

 f
X i−X 0

Z 0

=x0s  X i−X 0

y ' i= y0s Y i−Y 0
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2.1.4 Fundamental relationship

Equations :

M 0M i⋅
f
Z 0

i=x i 1i−x0

M 0M i⋅
f
Z 0

j= y i 1i− y0

with : i=
1
Z 0

M 0M i⋅k

(1)

(2)

Demonstration : see paper.
f

M
0

M
i

P
iH

Z
0

C p
i

m
i

m
0

u
vw

O i

jk

Image plane

N
i

Ro



4th Summer School in Surgical Robotics
Jacques Gangloff, 2009

Page 35

2.1.4 Fundamental relationship
Equations (1) et (2) can be put in the compact form :

M 0M i⋅I=i
M 0M i⋅J=i

With :

I=
f
Z 0

i J=
f
Z 0

j i=x i 1i−x0 i= y i1i− y0

Let [U iV iW i ] , I
o
=[ I u I v I w]  and Jo =[ J u J v J w ] respectively the 

coordinates of M oM i , I  and J  in frame Ro .

Let A the matrix of the coordinates [U
i
 V

i
 W

i
] of points M

i
 , x ', is the vector of the 

ξ
i
 and y ' is the vector of the η

i
 . It yields the following equations :

A Io =x ' A Jo = y ' (3)
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2.1.5 Resolution

With at least 3 points M
i
 other than M

0
 , the rank of matrix A is 3. So oI and oJ are 

obtained from the inverse or the pseudo-inverse B of A : 

Io =B x ' Jo =B y ' avec B=[AT A]−1AT

The depth Z
0
 is derived from the norm of I or J. It yields :

T x=x0

Z 0

f
T y= y0

Z 0

f
T z=Z 0

This yields : io =
Io

∥I∥
jo =

Jo

∥J∥
ko = io × jo
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2.1.6 Algorithm

Equations (1) and (2) put into matrix form (3) can be solved by fixing a value for 
ε

i
 . The initial value of ε

i
 in the algorithm is 0, then, at each new iteration ε

i
  is 

reevaluated thanks to the following equation :

i=
1
Z 0

M 0M i⋅k

The iterations stop when the difference between two successive values of ε
i
 

falls below a defined threshold. Usually, this falls needs less than 10 iterations to 
converge.

The assumption made by arbitrary fixing ε
i 
= 0  is equivalent to the assumption 

of a planar object parallel to the image plane. Of course, in the general case, this 
is false but not false enough to make the algorithm diverge.
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2.1.6 Algorithm

H

Z
0

C

O i

jk

Image plane

f

Iteration 1 :

M
0

M
i

M
1

M
2
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2.1.6 Algorithm

H

Z
0

C

O i

jk

Image plane

f

M
0

M
i

M
1 M

2

Iteration 2 :
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2.1.6 Algorithm

H

Z
0

C

O i

jk

Plan image

f

M
0

M
i

M
1

M
2

Iteration 3 :
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H

Z
0

2.1.6 Algorithm

C

O i

jk

Image plane

f

M
0

M
i

M
1

M
2

Iteration n :
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2.1.6 Algorithm
Initialization : n=0, N = number of points. Initialization of matrix A (N 1)x3

Compute B 3x(N 1), pseudoinverse of A. ε
i(0)

 = 0, i = 1...N 1

Compute oi, oj, Z
0
 : Compute x' et y' of dimension N 1 which

coordinates are : xi 1i n−1−x0  et yi 1in−1− y0

s1= I⋅I 
1 /2 s2=J⋅J 1 /2 io =

Io

s1

jo =
Jo

s2

Z 0=
2f

s1s2

Compute ε i(n) : ko = io × jo i n=
1
Z 0

M 0M i⋅k i=1...N−1

∣in −i n−1∣thrd
yes no

n=n+1

Construction of M
co
 

from the last values of 
oi, oj and Z

0

Compute Io  and Jo  : Io =B x ' Jo =B y '
Compute io , jo  and Z 0 :
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2.2 Image Jacobian method

 p* : desired pose
 p : current pose
 Find e = p – p*

 Task : target tracking
 Maintain e as small as possible

Rc

Rc
*

Ro

p

p*
e
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2.2.1 Formulation

Let : Ḟ=LFT c  with :
Ḟ  the velocities of the points in the image,
LF  the image Jacobian,
T c  the velocity skrew of the camera frame.
ė=LeT c  with :

Le=[Rc∗c 0
0 L u

] e=[ t c∗c u ]T

t c∗c  and Rc∗c  : resp. translation vector and rotation matrix between Rc
*  and Rc

u  is the unit vector defining the rotation axis and   the rotation angle

Lu= I 3−


2
[u ]×1−

sinc

sinc2
2 [u ]×

2 [u ]×=[
0 −u z u y
uz 0 −u x
−u y ux 0 ]
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2.2.2 First order approximation
Since Ḟ=LFT c  and ė=LeT c

it yields : ė=Le LF
+ Ḟ  with LF

+=LF
T LF

−1 LF
T

First order approximation : e≈Le LF
+
F−F *

 for F−F *  and e  small
with : F  and F *resp. the current and desired feature vector
Considering that L

e=0
e=I  it yields :

e≈LF
+ F−F *

 Suited for tracking since e is supposed to be 
small

 L
F
 can be computed beforehand

 Very efficient algorithm



4th Summer School in Surgical Robotics
Jacques Gangloff, 2009

Page 46

2.2.3 Case of point features
The scene is defined by n  points :
F=[ x1 y1 x2 y2 xn yn]

T  with  xi y i  the coordinates in the image plane of point i
In this case :

LF=[
−G x

Z 1

0
x1

Z1

x1 y1

G y

−
G x

2
 x1

2

G x

y1

G x

G y

0
−G y

Z 1

y1

Z1

G y
2 y1

2

G y

−x1 y1

G x

−x1

G y

G x

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

−G x

Z n

0
xn
Z n

xn yn
G y

−
G x

2 xn
2

G x

yn
G x

G y

0
−G y

Z n

yn
Z n

G y
2
 yn

2

G y

−xn yn
G x

−xn
G y

G x

]
 with G x  and G y  the lens magnification along x and y (pixel unit)
Z i  is the depth of point i  in 3D space
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2.2.4 Example

Rc

x

yz

Ro
z

x

y

M
0

M
1

M
2

M
3

G
x 
= G

y 
= 1000

M
co

M 0 0 0 0 M 1 0.1 0 0 M 2 0 0.1 0 M 3 0 0 0.1

M c∗o=[
1 0 0 0.15
0 0 −1 0.1
0 1 0 0.3
0 0 0 1

]
F d=[500 333.33 833.33 333.33 375 250 500 0]T

t c∗c=[0.1 0 0]T =0.1 rad u=[1 0 0]T

F=[173.3 448.7 519.9 448.7 128.9 359.3 167.5 100.3 ]T

LF F−F d=[
0.0990
0.0021
0.0016

0.1016
0.9861
0.0594
−0.1549]

Matlab script : jacod3D.m
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3. Control

 Kinematic control
 2D (IBVS)
 3D (PBVS)

 Dynamic control
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3.1.1 2D kinematic vis. servoing

F *

−


−k LF
+e T c

*

1
T c

L F

Ḟ = ė 1
s

F

F *  : desired image F  : measured current image
Control law : T c

*=−k LF
+ e  with LF

+  estimated pseudo-inverse of image Jacobian

T c=T c
*  : the robot is supposed to be perfect

ė=
d
dt

F−F *= Ḟ  with F * supposed to be constant

According to the definition of the image Jacobian : Ḟ=ė=LFT c

Since T c=T c
*
=−k LF

+ e  it yields : ė=−kLF LF
+ e

For 3 points and if we suppose LF=LF  the solution is :
e  t =e 0exp −kt  where e 0  is the error at t=0
See simulink simulation 2Dservo.mdl
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3.1.2 3D kinematic vis. servoing

p*

−


−k L p
1e T c

*

1
T c

L p

ṗ= ė
1
s

p

p*  : desired pose p  : reconstructed current pose
Control law : T c

*=−k L p
-1e  with L p

-1  estimated inverse of L p

T c=T c
*  : the robot is supposed to be perfect

ė=
d
dt

 p− p*= ṗ  with p*  supposed to be constant

According to the definition of L p  : ṗ=ė=L pT c

Since T c=T c
*=−k L p

-1e  it yields : ė=−kL p
LF

-1 e

If we suppose L p=L p  the solution is :
e  t =e 0exp −kt  where e 0  is the error at t=0



4th Summer School in Surgical Robotics
Jacques Gangloff, 2009

Page 51

3.1.3 Limitations

 Simplified continuous-time kinematic 2D VS :

 Simplified discrete-time kinematic 2D VS :

F *

−
 ke

1
1
s

F

F *

−
 k

e
ZOH

T 1
s

F

T s

z−1
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3.1.3 Limitations

 Response of the discrete-time 2D VS with k = 
0.34 :



4th Summer School in Surgical Robotics
Jacques Gangloff, 2009

Page 53

3.2 Dynamic control

 Image acquisition model
 Manipulator model
 Typical dynamic visual loop
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3.2.1 Image acquisition model

 Acquisition sequence :
  Integration of light-generated charges in pixels

  Readout of the charges : 
 Global shutter : all charges are read together
 Rolling shutter :  each charge is read sequentially
 Progressive scan : the whole image is scanned at once
 Interlaced scan : even and odd lines are scanned 

alternatively
  Image transfer to the acquisition board :

 Analog transfer : coaxial cable (50 Mpix/s max)
 Digital transfer : USB2 (480 Mbits/s), Firewire (800 

Mbits/s), LDVS (4 Gbits/s), Gigethernet (1 Gbits/s), 
Camlink (7.14 Gbits/s)
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3.2.1 Image acquisition model

 Typical image acquisition time diagram :

T
v

T
v

t
t t

t
 = transfer time

t
p t

p
 = processing time

t
c 
= control signal computation time

t
c 

D

t
i t

i
 = integration time

Equivalent image
sampling time Model = Delay D ⇔ z

−int 
D
T v

0.5
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3.2.1 Image acquisition model

 Motion blur :

V

Image

Position at
frame n-1

Position at
frame n

Extracted position

Model = averaging filter=
1z−1

2
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3.2.2 Manipulator model

 Computed torque :

+


  q̈ q̇ q
D−1

q  s−1 s−1

C q , q̇g q

F d q

F v

+D q

F v

C q , q̇ g q 

F d q 

++

+


*

Equivalent model : 
q̇ s 

* s
=

1
s
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3.2.2 Manipulator model

 Virtual Cartesian motion device :

1
s


* q̇

C v

q̇*

H s

Lc
T c L p

ṗ 1
s

p
Lc
−1 L p

−1ṗ*
 z 

ZOH

T s p  z 

T z =
p z 
ṗ*z 

=1−z−1Z {L p LcH s Lc
−1 L p

−1

s2 }≈1−z−1Z {H s
s2 }
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3.2.2 Manipulator model

 Notations :
ṗ*  : reference velocity
ZOH  : Zero Order Hold (model of the DACs)
L p  : estimated Jacobian of the representation s.t. : ṗ= L pT c

Lc  : estimated Jacobian of the robot s.t. : T c= Lc q̇

q̇*  : joint velocity reference
C v  : velocity controller of the decoupled robot

* : torque reference for the computed torque algorithm
q̇  : joint velocity
H  s  : model of the velocity controlled decoupled robot
T c  : velocity skrew of the camera
p  : output (can be a pose (2D) or a feature vector(3D))
T s  : sampling period
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3.2.3 Typical dynamic visual loop

z−1C  z  T  z 

z−d
1z−1

2

p*

p

pṗ*

p*  : reference
p  : visual measurement
C z   visual loop controller

 Notes :
 Controllability : the dimension of p should be less or equal to the number 

of degrees of freedom of the manipulator in order for the system to be 
controllable. So in case of IBVS, the number of features coordinates 
should be restricted to 6. When using more feature coordinates, PBVS 
should be preferred.

 The additional delay in the direct transfer is due to the time needed to 
compute the control signal (applied at the next iteration).
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4. Conclusion

 Kinematic visual servoing :
 Slow, simple to implement

 Suited when robustness and accuracy are more important than speed

 Applications : positioning of surgical instruments with respect of static 
structures (brain surgery, orthopedic surgery)

 Dynamic visual servoing :
 Fast, can by tricky to tune

 Suited when advanced control techniques are relevant (predictive 
control, repetitive control)

 Applications : physiological motion compensation
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4. Conclusion

 Perspectives :
 High bandwidth visual servoing with medical 

imaging feedback (X-ray, CT, MRI, Ultrasound)
 Issue : high bandwidth and low latency access to 

the low level data

Thank you !
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