

A-mode

ultrasound acquisition system for computer assisted

orthopaedic surgery

...and other

Danilo De Lorenzo

danilo. delorenzo @mail. polimi. it

Surgical Robotics - 4th summer school - Montpellier 9-16 September 2009

Politecnico di Milano – Milan, Italy

Neuroengineering and medical robotics laboratory

www.biomed.polimi.it/nearlab

ROBOCAST Project

Bioengineering Department Politecnico di Milano, Italy.
Department of Neurological and Vision Sciences - University of Verona, Italy.
SIRSLab - Robotics and System Lab - University of Siena, Italy.
Department of Mechanical Engineering and the Institute of Biomedical Engineering - Imperial College, London, UK
Prosurgics Ltd, UK
Laboratory for CAS and Medical Image Processing - The Hebrew University of Jerusalem, Israel
Faculty of Mechanical Engineering - Technion, Israel Institute of Technology, Haifa, Israel

Mazor Surgical Technologies Ltd, Israel
 Lehrstuhl f
ür Computeranwendungen in der Medizin, Institut f
ür Informatik - Technische Universit
ät M
ünchen, Germany
 Institute for Process Control and Robotics - Universit
ät Karlsruhe (TH), Germany

✓ Finanziamenti Unione Europea S.r.I, Milan, Italy

The Concept

Force sensing

Aim

• Validation of an ultrasound system for bone surface acquisition....

• ... in computer assisted orthopaedic sugery.

Knee prosthesis

Surgical navigation system

Why ultrasound system?

The developed system

Methods - silicone layer thickess validation

- After calibration position of the probe tip and beam direction in the imaging space is known (after ICP).
- It's possible to measure thickness of each silicone layer with oblique slices and compare those thickness with the ones calculated with US (velocity of sound is known from characterization)

Results – Overall US system vs Pointer

- On **exposed surfaces** (Bone Interface), the **tracked pointer** shows a median distance value of 0.14mm which is significantly **better** than the US probe value (0.21mm median value), but which is still acceptable.
- In the phantom **regions covered** by silicone, the **US probe** behaves significantly **better** (max median value 1.2 mm) compared to the pointer.

Conlusions

- A-mode signal detection allows for **real-time surface points detection**.
- Accuracy tests of the whole system showed that the US probe acquisition behaves significantly better (max median value 1.2 mm vs. 4.2mm) compared to the acquisition with pointer.
- The tested system can considerably increase accuracy of registration and biomechanical point computation
- Perpendicularity problem \rightarrow further development

• Problem: A-mode acquisition is slower than standard pointer points acquisition

Conlusions

Future developments:

- system testing in vivo during surgical procedure
- Perpendicularity check / feedback
- US real time velocity correction for each soft tissue, to improve distance detection

Thanks for your attention!

