Physiological Motion Compensation for Minimally Invasive Surgery

Juan Manuel Florez - PhD Student Advisors: Guillaume Morel, Delphine Bellot, Jérôme Szewczyk

Institut des Systèmes Intelligents et de Robotique Université Pierre et Marie Curie Paris VI

AGATHE group Assistance to Gesture with Application to THErapy

Application

Epicardial Lead Implantation through Minimally Invasive Surgery

- Targets infants and neonates but also adult patients with aberrant anatomy or limited transvenous access
- Requires a very performant control law in order to provide the surgeon with transparent force feedback ergo an enhanced precision capacity → MIS

¹MEDTRONIC Sprint Fidelis Lead

²Maginot et al. Progress in Pediatric Cardiology

Application

ISIR's Know-How

³Zemiti 2005 - Force Control of Robotical Systems for MIS
⁴Cagneau 2008 - Force Control Contributions for Surgical Robotics
⁵Sallé 2004 - Optimal Conception of High Mobility Robotical Instruments for MIS

Juan Manuel Florez

Surgical Robotics Summer School, Montpellier 16/09/09

ISIR

INSTITUT DES SYSTÈMES

INTELLIGENTS ET DE ROBOTIQUE

Close Loop of Robotic Surgery

Modeling in the Big loop

⁶Left: Sermesant et al.

Motivation

 $\mathsf{Predictive}\ \mathsf{Control} \to$

Interaction Dynamics Modeling \rightarrow Mechanical Impedance Cancellation \rightarrow Novel Estimation Methods

DES SYSTÈMES INTELLIGENTS ET DE ROBOTIQUE

Estimation for RT model update

Parametric Estimation	Non Parametric Id Methods
equation $F = K_c(x(t) - d_c(t)) +$	NO EQ
$f_c(\dot{x}(t) - \dot{d}_c(t)) +$	
$m_c(x(t) - d_c(t)) + cte$	
Very Fast	More Computationally Expensive
Not excitable system	Input/Output Dependable
Not Very Accurate	RT updatability
Incrememental Online Learning Techniques	
Non Parametric State Space Identification Methods	

- Identification of time varying pseudo-periodic system with in vivo measurements.
- Enhancements on a Model Predictive Control Law.
- Dexterous Surgical Instrument Design.

Close Loop of Robotic Surgery

Great Expectations

⁷Kerckhoffs 2006 - Computational Methods for Cardiac Electromechanics.

Close Loop of Robotic Surgery

Thank You

You are Welcome to visit us in Paris.

