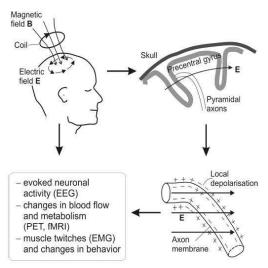
Robotized Transcranial Magnetic Stimulation (TMS)

4th European Summer University in Surgical Robotics, Montpellier

Lars Richter


Institute for Robotics and Cognitive Systems, University of Lübeck

Graduate School for Computing in Medicine and Life Sciences, University of Lübeck

September, 2009

Transcranial Magnetic Stimulation (TMS)

Jarmo Ruohonen. Transcranial Magnetic Stimulation: Modelling and New Techniques, 1998

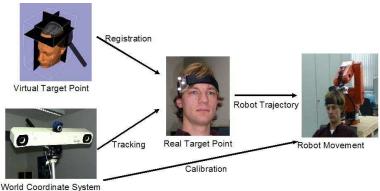
Changing currents in the coil

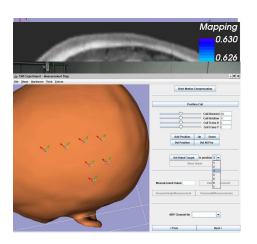
- ⇒ Changing magnetic field
- ⇒ Magnetic field passes through the skull
 - ⇒ Induces an electric field in the brain
- ⇒ Local depolarisation of axons
- ⇒ The neuron becomes activated
- 5. \Rightarrow Response

Motivation

- Why does TMS sometimes work and sometimes fail
 - ▶ For depression?
 - ► For chronic pain?
 - ► For chronic tinnitus?

:


- An automated system unifies involentary experimental conditions
 - Positioning
 - Motion
 - Treatment time
- Is this the answer?


How the robot system works

- Calibration: Robot to Trackingsystem
- ▶ Registration: Virtual Target Point ⇒ Real Target Point
- Tracking: Real target point is tracked
- Robot trajectory: Robot is moved to real target point

Features

- High Precision TMS
 - Precise analysis and documentation
 - Brain mapping
 - Using fMRI / PET targeting
- Motion Compensation
 - Avoid head fixation
 - Keep high precision during treatment
- Repeatable Stimulation
 - Intra-session: Finding a "hot-spot"
 - Inter-session: Treatment over days

Next Steps

- Clinical studies
 - Chronic Tinnitus
 - Alcoholism
 - Influence of coil-orientations
- Force-Torque-Sensor
 - For safety
 - ► For precision
 - For usability

Thank you!

