

*American College of Retinal Surgeon Survey

Integration with Assistive Robots

Micron - Carnegie Mellon University (Riviere et al)

Steady Hand Eye Robot – Johns Hopkins University (Taylor et al)

Future

- New OCT
 - 28Khz A Scan Rate
 - 2µm resolution
- Integrate with Micron
- Refine Instrument Calibration
- Use in aqueous environment
- Sensory substitution
 - Auditory
 - Visual overlays

Thank You

- Russ Taylor PhD
- •Jin Kang PhD
- •Iulian Iordachita PhD
- Cameron Riviere PhD
- Peter Gehlbach MD
- •James Handa MD
- Laura Pinni MD

Jae Ho Han
Xuan Liu
Kang Zhang
Yi Yang
Robert Romano
Jason Hsu
Zhenglong Sun

Funding. This work was partially funded by the National Science Foundation (NSF) under Engineering Research Center grant EEC9731748, National Institutes of Health (NIH) BRP 1 R01 EB 007969-01 A1, ARCS Foundation, and by the Johns Hopkins University internal funds.