pRob

LICIT AND PARAMETRIC FEMUR RFACE RECONSTRUCTION

o Daniel Dinis Teodoro
o Miguel Santos Pires
coordinator: José Sá da Costa co-coordinatoir: Jorge Martins

From a CT scan, distinct points of a femur, scattered and nc uniformly distributed are obtained

$R B F+P U$

Using radial basis functions plus a Gaussian based partitior unity, the data is implicit approximated.

$M C+P P+P N T+1$

- A triangular mesh, obtained through marching cubes, is spl two halves planar parameterizations. Applying the curved P triangle method, these parameterizations are quadrilateral r meshed and interpolated with a bi-cubic TP-B-spline, obtair therefore the parametric reconstruction of the femur.

Implicit representation
$F(x, y, z)=0$
Parametric representation
$(x, y, z)=\left(s_{x}(u, v), s_{y}(u, v), s_{z}(u, v)\right)$

Radial Basis Function scattered data interpolation:

Solution:

$$
S(\mathbf{x})=\sum_{i=1}^{N} \lambda_{i} \varphi\left(\left\|\mathbf{x}-\mathbf{x}_{i}\right\|\right)+P(\mathbf{x})
$$

- λ_{i} is the weight of centre \mathbf{x}_{i}
- $\varphi(r)=r^{2 n-1}$ is the basis function
- $P(x)$ is a low-degree polynomial
- ||.\| is the Euclidean norm
er to obtain a distance field, where its isovalue defines the femur su Irface 'normals' points are also assigned in the RBF (Carr et al, 2001

-Positive values
(outside)
- Negative values
(inside)
emented algorithm: The scattered is subdivided in n overlapping ns along a chosen w direction. In region, the belonging data is fitted by F. The final surface is reconstructed imming the RBFs weighted by bership degrees (top).

applying the marching cubes shnique to the implicit surface, a angular mesh defining the femur is tained.
reafter, the mesh is split in two lifs, where in each one a planar disk rameterization is performed.
er each planar parameterization, an timized quadrilateral grid of $m \times n$ ots is set.

d Point-Normal triangles (Vlachos 2001) mapping:
methodology the local surface ture in each mesh face is taking onsideration by recurring to the nation of the normals at each e of the face.

nt P belonging to the curved PN le face is given by the triangular r cubic patch:

$$
=\sum_{i+i+l=3} b_{i j k} \frac{3!}{i!j!k!} w^{i} u^{j} v^{k}, \quad w=1-u-v
$$

Planar disk parameterization (close

$$
\begin{aligned}
& \text { Direct } \\
& \text { Mapping }
\end{aligned}
$$

Curved Triangle Mapping

terms of implicit reconstruction, the maximum error lowed is 0.1 mm .
arametric reconstruction time is about ~ 1 minute.

\#surface points	\#RBF centers	Im rec
20 k	4081	86
40 k	6374	87
60 k	8367	90
80 k	10153	101
100 k	12291	112

Identification Error Results (mm)

	Lower Extremity			Body			Upper Extremity			Femur (Global)		
Map	Emax	MAE	RMSE									
- G1	0,710	0,073	0,113	0,687	0,101	0,142	0,613	0,048	0,075	0,710	0,078	0,118
C0	0,880	0,091	0,137	0,840	0,108	0,148	0,803	0,070	0,102	0,880	0,092	0,
G1	1,189	0,098	0,176	0,209	0,023	0,034	0,725	0,054	0,084	1,189	0,053	0,106

Validation Error Results (mm)

- Carr, J. C., R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Frig C. McCallum, and T. R. Evans (2001). Reconstruction and representation of 3d objects with radial basis functions. In SIGGF '01: Proceedings of the 28th annual conference on Computer gra and interactive techniques, New York, NY, USA, pp. 67-76. ACN
- Vlachos, A., J. Peters, C. Boyd, and J. L. Mitchell (2001). Curved triangles. In In Symposium on Interactive 3D Graphics, pp. 159-1

