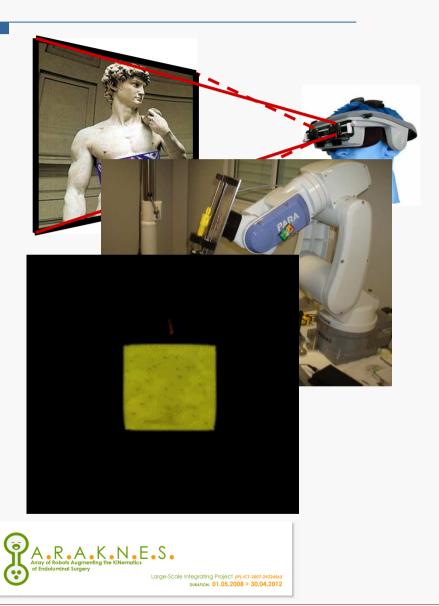
Research activity

Sara Condino, PhD Student

sara.condino@endocas.org

EndoCAS, University of Pisa, Italy

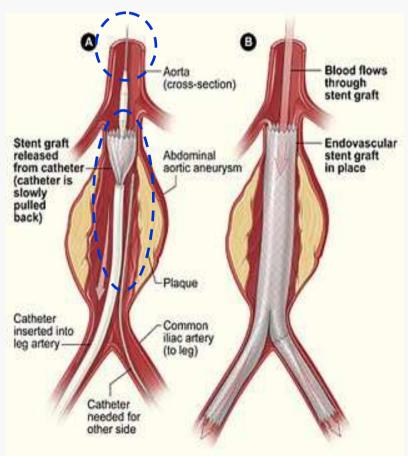


Current activities

 Surgical Navigators and Mixed Reality systems

Robotic/mechatronic Instruments

- Simulation and Deformable Models
- □ Araknes project


Endovascular Surgery

Endovascular surgery employs MIS techniques to relieve arterial obstructions or treat aneurysm using catheters under fluoroscopic guidance.

- Advantages:
 - Smaller incision
 - Local/regional anesthetics needed, not general anesthesia
 - Less need for blood products
 - Reduced stress on the heart
 - Reduced risks for patients with other diseases
 - Fast return of the patient to his/her normal life

Drawbacks:

- The patient and the medical staff are exposed to dangerous radiations
- Contrast medium injection (to see the instruments) can cause adverse effects
- Angiography offers projective images, which does not allow a 3D representation of the vascular structure

Endovascular Surgical Navigator

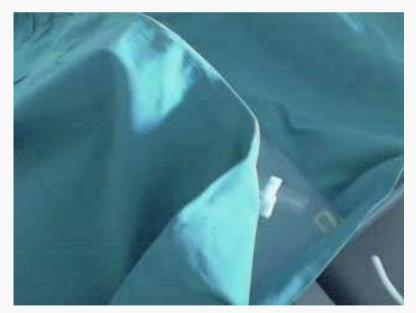
Aim:

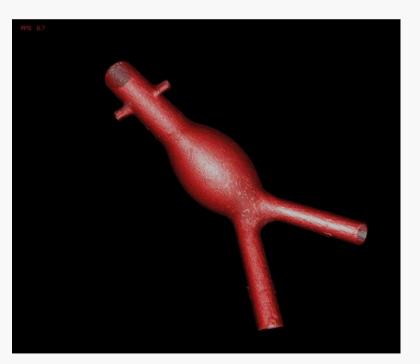
- Reduce the exposure to X-rays and the injection of contrast medium
- Provide assistance in positioning and tracking of the instruments during endovascular interventions with a complete 3D visualization
- □ Minimize the potential human stress/error during operation

Specifications:

- □ Real-time tracking of surgical instruments
- Real-time visualization of the patient vasculature and surgical catethers:
 - 3D representation
 - Virtual endoscopic view
- Required precision: 2 mm (worst case)
- □ Intuitive and user friendly GUI

Modules of the navigation system





Navigation system demonstration

Fluoroscopic image example

Future work

- In vitro and in vivo testing session of the current prototype
- Improvement of GUI functionalities adding virtual endoscopic view
- Enhancement of 3D vessel model realism through biomechanical modelling of arterial pulsation and breathing motion

