Suture knot manipulation with a robot

Tian Xia

Ph.D Advisor: Peter Kazanzides Project Advisor: Russell Taylor, Rajesh Kumar

> Johns Hopkins University Baltimore, Maryland, USA

THE JOHNS HOPKINS UNIVERSITY

Tian Xia, LCSR, JHU

Knot Tying Video

Some Approaches to Knot tying and placement

- Mayer et al @ TUM
 - Knot tying using supervised machine learning algorithms on trajectories recordings of surgeons, then intelligent playback.
 - Autonomous.
- Our approach: "surgeon-in-the-loop"
 - Controller that reduces the cognitive load of the surgeons
 - Leaves surgeons in command at all times
 - Semi-autonomous

Currently only concerned with knot placement!

A constrained optimization approach to virtual fixtures

- Virtual fixtures are task-dependent computer-generated constraints, which help a robotic manipulator perform a task by limiting its movement into restricted regions and/or influencing its movement along desired paths.
- We can implement virtual fixtures using instantaneous kinematics (e.g. Jacobian) of the manipulator and the geometric constraints
- Approach: For a given geometric constraints, generate virtual fixtures in the form of a quadratic optimization problem with linear constraints
- Compute output incremental joint motion given input desired motion using the formulation:

$$\Delta \boldsymbol{q}_{cmd} = \arg\min_{\Delta \boldsymbol{q}} C(\boldsymbol{x}(\boldsymbol{q} + \Delta \boldsymbol{q}), \boldsymbol{s}, \boldsymbol{x}^d)$$

s.t. $A(\boldsymbol{x}(\boldsymbol{q} + \Delta \boldsymbol{q}), \boldsymbol{s}) \leq \boldsymbol{b},$
 $\boldsymbol{s}_{up} \geq \boldsymbol{s} \geq \boldsymbol{s}_{low} \geq 0; \qquad \Delta \boldsymbol{q}_{up} \geq \Delta \boldsymbol{q} \geq \Delta \boldsymbol{q}_{low}$

Tian Xia, LCSR, JHU

A constrained optimization approach to virtual fixtures

- Abstract aspects of the surgical procedures into assistive motion primitives:
 - rotate around a fixed point, move toward a point
 - following a line, rotate around a line
 - stay above a plane ...

Fig. 1. Geometric relation for (a) Mo to a direction

M. Li, et al, 2008 9/16/09

Tian Xia, LCSR, JHU

Knot Placement: Task Analysis

9/16/09

Knot Placement: Task Analysis

Prior Work @ JHU: dual robot test bed

Admittance type robots consist of three translational stages per robot. threads to simplify tracking of knot and robot end-effector.

Prior Work @ JHU: dual robot test bed

Assistance Modes

In Human Subject Experiment

No Assistance

Dual Hand Assistance

Follower Assistance

A Constrained Optimization Approach to Virtual Fixtures for Multi-Handed Tasks

Application Example: Knot Positioning

Ankur Kapoor and Russell H. Taylor

NSF Engineering Research Center for Computer Integrated Surgical Systems and Technology The Johns Hopkins University

Now: The JHU custom da Vinci robotic system

Tian Xia, LCSR, JHU

Constrained Optimization for Multiple Robots

Software Architecture

Contributions

Implement system component on the da Vinci robot - Robot control, teleoperation, vision, optimization algorithms - * Impedance vs. Admittance control. Consider Pseudoadmittance Bilateral Telemanipulation approach by Abbott, IJRR 2007 Perform complete experiments for knot placement Human subjects experiments

now

future

- Other possible tasks (two-handed?)
 - Motion overlays: palpation/elastography
 - Integrating real-time sensor information
 - Dynamic or deformable constraints generation

www.lcsr.jhu.edu

Questions?

Many thanks to:

Ankur Kapoor, Rajesh Kumar, Russell Taylor, Peter Kazanzides, Iulian Iorchita, Anton Deguet, Marcin Balicki and others ...

Many thanks to:

Robotics Summer School Etienne DOMBRE Philippe POIGNET And others...

Coming soon...

Relevant Publications:

- **Kapoor** and **Taylor**. A Constrained Optimization Approach to Virtual Fixtures for Multi-Handed Tasks. **ICRA 2008**.
- Abbott and Okamura. Pseudo-admittance Bilateral Telemanipulation with Guidance Virtual Fixtures. IJRR 2007.
- Funda and **Taylor**, et al. Constrained Cartesian Motion Control for Teleoperated Surgical Robots. IEEE Trans. Robotics and Automation, Vol 12, No. 3. **June 1996.**