

Safety For Surgical Robotics

Arjang Hourtash 2009-Sept-12

Overview

- My Background
- daVinci Si
- Safety
- Q&A

My Background

- BS Nuclear Engineering, University of California, Santa Barbara
- MSME (Dynamics), University of California, Santa Barbara
- PhD ME (Robotics & Control), University of California, San Diego
 - Thesis: Path Planning for Manipulators.
- Mechanical Design: Hewlett-Packard (Inkjet printers)
- Manipulator Kinematics and Dynamics Analyses and Simulations: NASA Johnson Space Center
- daVinci Si Master Manipulator: Control, Analysis, Calibration: Intuitive Surgical (2007 - Present)
 - http://www.intuitivesurgical.com

daVinci Si

Fundamentally New Capability

Master Manipulators

2009-Sept-12

daVinci Si

First Impressions

"... A (((ROBOT))) is going to operate on me??? ..."

ISI Priorities

- 1. Patient Value
- 2. Surgeon Value
- 3. Hospital Value
- 4. Employee Value
- 5. Stockholder Value

Patient's Perception of Value

Safety

- Failures and Risk Analysis
- Design for Safety
- The Designer

Design Process

Product Requirements

Examine potential risks:

2009-Sept-12

- 1. Failure to design something that is buildable.
- 2. Failure to consistently manufacture the design.
- 3. Failure in the field due to reliability.
- 4. Failure in the field resulting in safety hazards.

13

INTUTTIVE

Safety Related Failures

Measurements: Injuries, Converts, & Aborts.

Failures due to:

- 1. Technical shortcoming.
- 2. Incorrect system behavior.
- 3. Usability due to poor User Interface.
- 4. Lack of use (surgeon frustration, confidence).
- 5. Surgical error.

14

INTUITIVE

2009-Sept-12

Risk Analysis

- Risk Prioritization:
 - Probability of Occurrence
 - Degree of Severity
 - Probability of Detection
 - Composite = (PO) x (DS) x (PD) < (Threshold)</p>
- Top-down: Clinical Risks: Hazards of the robot features in the clinical environment.
 - Uncontrolled motion
 - Uncontrolled applied load
 - Non-intuitive motion
- Bottom-up: Sub-system failure risks: Failure Modes and Effects Analysis (FMEA).
 - Sensor failure
 - Communication link failure
 - Cable break

Design For Safety (1)

- Redundant sensors
 - Mechanical coupling
 - Resolution
 - Latency
- Redundant transmission
 - Single-failure operation
- Use of brakes

Design For Safety (2): Algorithms

- Risk mitigation using interlocks and UI logic
- Startup health tests
- Math models of healthy subsystems
- Redundancy in calculations
- Multiple bit gates: (10100101) instead of just (1) for TRUE
- Sensor health monitoring
- Communication link monitoring
- Voltage supply monitoring
- CRC and checksum
- Watchdogs

Signal Lifecycle: Sensor \rightarrow Actuator

- 1. Sensor output is read.
- 2. Check sensor output to be within lower and upper bounds.
- 3. Check sensor health monitoring.
- 4. Check health of signal transmission (CRC, other monitors)
- 5. Compare with redundant sensor.
- 6. Compare with math model.
- 7. If all is OK, use to generate actuator input.
- 8. Compare with redundant calculation.
- 9. Check actuator input to be within lower and upper bounds.

- 10. Compare with math model.
- 11. If all is OK, output to actuator.

Fault Handling

• Fast Faults:

- Timeline of a servo cycle.
- Example: Encoder stops counting.
- System must intervene.
- Slow Faults:
 - Timeline of several seconds or slower
 - Example: Gravity compensation is out of calibration.
 - Human judgment is often required.

Fast Fault Handling

Safe State controlled by Fault Reaction Logic (FRL):

- Available to software at all times
- Power bus is shorted to ground by fail-safe hardware relay
- All manipulator motors are unpowered
- All manipulator motors are shorted to provide regenerative braking
- Brakes are activated to stop motion
- Critical stopping distances must be met

ABS-Braking on Snowy Roads (from 35 mph)

Winter Tire Braking Distance: 100%

All-Season Tire Braking Distance: 142%

2009-Sept-12

Verification & Validation

- Verify that the design function has been met.
- Verify that the clinical objective has been met.
- Outliers?

The Designer: Habits / Discipline

Sow a thought and you reap an action. Sow an act and you reap a habit. Sow a habit and you reap a character. Sow a character and you reap a destiny.

- Use software to test your source code:
 - Lint
 - Memory Leaks, Uninitialized Variables, ...
 - Static Source Code Verification
- Identify good programming habits.
- Use checklists to remind yourself to reinforce the habits.
- Write scripts for enforcing habits:
 - If-else, switch-default
 - Check arguments to functions with limited domain
 - sqrt(), log(), asin(), acos(), "/"
- Regression tests
- Process for layers of other people to systematically test your code.

VULTURES

2009-Sept-12

