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Overview

Preliminaries on tolerance graphs.

A new intersection model.

A canonical representation and applications of this model.

Minimum Coloring: O(n log n) (optimal) [previous result: O(n2)].

Maximum Clique: a O(n log n) (optimal) [previous result: O(n2)].

Maximum Weighted Independent Set: O(n2) [previous result: O(n3)].

Open problems.
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Intersection graphs

Definition

An undirected graph G = (V , E ) is called an intersection graph, if each
vertex v ∈ V can be assigned to a set Sv , such that two vertices of G are
adjacent if and only if the corresponding sets have a nonempty
intersection, i.e. E = {uv | Su ∩ Sv 6= ∅}.

Then, F = {Sv | v ∈ V } is the intersection model of G .

Lemma

Every undirected graph G has a (trivial) intersection model, based on
adjacency relations.
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Interval and permutation graphs

Definition

A graph G is called an interval graph, if G is the intersection graph of a
set of intervals on the real line.

a

b c d
e

a

b

c d

e
⇔

Definition

A graph G is called a permutation graph, if G is the intersection graph of
a set of line segments between two parallel lines.

L1

L2

a c d eba
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e
⇔
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Tolerance and bounded tolerance graphs

Both interval and permutation graphs can be generalized as follows:

Definition (Golumbic, Monma, 1982)

A graph G = (V , E ) is called a tolerance graph, if there is a set
I = {Iv | v ∈ V } of intervals and a set t = {tv | v ∈ V } of positive
numbers, such that uv ∈ E if and only if |Iu ∩ Iv | ≥ min{tu, tv}.

The pair 〈I , t〉 is called a tolerance representation of G .
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Tolerance and bounded tolerance graphs

Both interval and permutation graphs can be generalized as follows:

Definition (Golumbic, Monma, 1982)

A graph G = (V , E ) is called a tolerance graph, if there is a set
I = {Iv | v ∈ V } of intervals and a set t = {tv | v ∈ V } of positive
numbers, such that uv ∈ E if and only if |Iu ∩ Iv | ≥ min{tu, tv}.
The pair 〈I , t〉 is called a tolerance representation of G .

Tolerance graphs find important applications
[Golumbic, Tolerance graphs, 2004]:

biology and bioinformatics (DNA sequences),

temporal reasoning,

resource allocation,

scheduling ...
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Tolerance and bounded tolerance graphs

Definition

A vertex v of a tolerance graph G = (V , E ) with a tolerance
representation 〈I , t〉 is called a bounded vertex, if tv ≤ |Iv |.

Otherwise, if tv > |Iv |, v is called an unbounded vertex.
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Tolerance and bounded tolerance graphs

Definition

A vertex v of a tolerance graph G = (V , E ) with a tolerance
representation 〈I , t〉 is called a bounded vertex, if tv ≤ |Iv |.
Otherwise, if tv > |Iv |, v is called an unbounded vertex.

Definition

A tolerance graph G is called a bounded tolerance graph, if there exists a
tolerance representation 〈I , t〉 of G , such that all vertices of G are
bounded.

Bounded tolerance graphs have a (non-trivial) intersection model of
parallelograms between two parallel lines.
[Langley, PhD thesis, 1993; Bogart et al., 1995]
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Tolerance and bounded tolerance graphs

Definition

A vertex v of a tolerance graph G = (V , E ) with a tolerance
representation 〈I , t〉 is called a bounded vertex, if tv ≤ |Iv |.
Otherwise, if tv > |Iv |, v is called an unbounded vertex.

Definition

A tolerance graph G is called a bounded tolerance graph, if there exists a
tolerance representation 〈I , t〉 of G , such that all vertices of G are
bounded.

Question: Does there exist a non-trivial intersection model for the class of
tolerance graphs?

Why? A succinct intersection model enables us to design efficient
algorithms.
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Parallelogram and bounded tolerance graphs

Definition

A graph G is called a parallelogram graph, if G is the intersection graph of
a set of parallelograms between two parallel lines.

L1

L2

Theorem (Langley; Bogart et al.)

Bounded tolerance graphs coincide with parallelograms graphs.

Clearly:

interval graphs are bounded tolerance graphs (tu = ε, for all u ∈ V ),

permutation graphs are bounded tolerance graphs (lines are trivial
parallelograms).
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Parallelogram and bounded tolerance graphs

Idea (for bounded vertices):

L1

L2

tv

cv bv

av

dv

P v⇔

av

bv

tv tv

cv dv

Question: How do we deal with the unbounded vertices?

Answer: We exploit the third dimension.
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The slopes of the parallelograms

We extend the construction of the parallelograms Pv to the case of
unbounded vertices v .

We define the slope φv of the parallelogram Pv as:

φv = arctan ( 1
tv

), if v is bounded,

φv = arctan ( 1
|Iv | ), if v is unbounded.

The slopes φv capture essential information about the structure.

L1

L2

1

tu tu

bu

du
au |Iu|

Pu
P v Pw

av = dv

cv = bv

tv

|Iv| |Iw|

tw = ∞

aw = dw

cw = bwcu
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The slopes of the parallelograms

The parallelogram representation does not suffice for general tolerance
graphs:

0 1 2 3 4 5 6 7 8 9 10
⇔

11 12 13 14

Iu

tv = 2 < |Iv| = 4
tw = 100 > |Iw| = 8

Iv

Iw

(bounded)
(bounded)
(unbounded)

15

tu = 13 < |Iu| = 15
u

v

w
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Intersection of 3D-parallelepipeds

We define the parallelepipeds Pv as follows:

If v is bounded, then
Pv = {(x , y , z) ∈ R3 | (x , y) ∈ Pv , 0 ≤ z ≤ φv}.
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If v is bounded, then
Pv = {(x , y , z) ∈ R3 | (x , y) ∈ Pv , 0 ≤ z ≤ φv}.
If v is unbounded, then
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Intersection of 3D-parallelepipeds

The parallelepiped representation: (an intersection model for general
tolerance graphs)
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The parallelepiped representation

Definition

An unbounded vertex v of a tolerance graph G (in a certain parallelepiped
representation) is called inevitable, if replacing Pi with
{(x , y , z) | (x , y) ∈ Pv , 0 ≤ z ≤ φv} creates a new edge in G .

Otherwise, v is called evitable.
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The parallelepiped representation

Definition

Let v be an inevitable unbounded vertex of a tolerance graph G (in a
certain parallelepiped representation). A vertex u is called a hovering
vertex of u if φu < φv , au < av , and bu > bv .

φ

P

1 6 12 17 21 27 32 37 41 43 4947 52 54 61 66 684

P

P
P

P

P

P

P
1

1

2

2

3
3

4

4

5

6

5

8

7
7

6

8

1

L1

L2 x

yz

φ

φ

φ

φ

φ

φ

φ

b3
a3

a4 b4 a8 b8

a6 b6

George Mertzios (RWTH Aachen Univ.) An Intersection Model for Tolerance Graphs WG 2009 14 / 26



Overview

Preliminaries on tolerance graphs.

A new intersection model.

A canonical representation and applications of this model.

Minimum Coloring: O(n log n) (optimal) [previous result: O(n2)].

Maximum Clique: a O(n log n) (optimal) [previous result: O(n2)].

Maximum Weighted Independent Set: O(n2) [previous result: O(n3)].

Open problems.
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The parallelepiped representation

Definition

A parallelepiped representation of a tolerance graph G is called canonical if
every unbounded vertex is inevitable.

The canonical tolerance representation of a tolerance graph G can be
defined similarly [Golumbic, Siani, 2002].
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The canonical (parallelepiped) representation

Lemma (Golumbic, Siani, 2002)

Given a tolerance representation of a tolerance graph G, a canonical
tolerance representation of G can be computed in O(n2) time.

Exploit the slopes of the parallelograms (resp. heights of parallelepipeds)
⇒ construct a canonical representation in O(n log n) time.
Idea: binary search
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The canonical (parallelepiped) representation
Sketch of the algorithm

Definition

Let α = (xα, yα) and β = (xβ, yβ) be two points in the plane. Then α
dominates β if xα > xβ and yα > yβ.

Given a set A of points, the point
γ ∈ A is called an extreme point of A if there is no point δ ∈ A that
dominates γ. Ex(A) is the set of the extreme points of A.

α

β

x

y
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The canonical (parallelepiped) representation
Sketch of the algorithm

Let {v1, v2, . . . , vn} be the vertices of G ,

sort the vertices vi increasingly by the lower left endpoint ai of P i ,

associate to vertex vi the Eucledian point pi = (xi , yi ), where:

xi = bi is the upper right endpoint of P i ,
yi = π

2 − φvi ,

process the vertices v1, v2, . . . , vn (points p1, p2, . . . , pn) sequentially,

let Ai = {p1, p2, . . . , pi} be the first i points.
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The canonical (parallelepiped) representation
Sketch of the algorithm

Lemma

Let vi be an unbounded vertex of a tolerance graph G. Then:

(a) If pi ∈ Ex(Ai ) then vi is evitable.

(b) If pi /∈ Ex(Ai ) and point pj dominates pi for some vertex vj ∈ Ai ,
then vi is inevitable and vj is a hovering vertex of vi .
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The canonical (parallelepiped) representation
Sketch of the algorithm

Lemma

Let vi be an unbounded vertex of a tolerance graph G. Then:

(a) If pi ∈ Ex(Ai ) then vi is evitable.

(b) If pi /∈ Ex(Ai ) and point pj dominates pi for some vertex vj ∈ Ai ,
then vi is inevitable and vj is a hovering vertex of vi .

Compute at every step i the extreme points Ex(Ai ), using binary
search on the set Ex(Ai−1).

If vi is bounded, do nothing.

If vi is unbounded, then:

if pi ∈ Ex(Ai ), then vi is evitable ⇒ make vi bounded.
if pi /∈ Ex(Ai ), then vi is inevitable ⇒ do nothing.
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Optimal coloring and clique algorithms
Sketch of the algorithms

Construction of a canonical representation of G :

n iterations (one for each vertex),

O(log n) steps at every iteration (binary search),

Total complexity: O(n log n).

Given the canonical representation of G :

Minimum coloring: in O(n log n) time (optimal) (previously O(n2)),
similarly to [Golumbic, Siani, 2002]
(by coloring a bounded tolerance subgraph [Felsner et al., 1997]).

Maximum clique: in the same time (O(n log n)) time (optimal)
(previously O(n2)), since tolerance graphs are perfect.
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Overview

Preliminaries on tolerance graphs.

A new intersection model.

A canonical representation and applications of this model.

Minimum Coloring: O(n log n) (optimal) [previous result: O(n2)].

Maximum Clique: a O(n log n) (optimal) [previous result: O(n2)].

Maximum Weighted Independent Set: O(n2) [previous result: O(n3)].

Open problems.
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Weighted independent set

Weighted independent set:
Input: a graph G and a positive weight wv for every vertex v of G .
Output: an independent set in G with the greatest sum of weights.

Best known runtime for tolerance graphs: O(n3)
[Golumbic, Tolerance graphs, 2004]

Use of the parallelepiped representation ⇒ O(n2).
(by dynamic programming)
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ai di
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Open problems

Is the O(n2)-algorithm for the Maximum Weighted Independent Set
problem optimal ?
If not, design an optimal one.

Recognition of tolerance / bounded tolerance graphs ?
We recently proved: both are NP-complete
http://sunsite.informatik.rwth-aachen.de/Publications/AIB/2009/2009-06.pdf

Recognition of proper / unit tolerance graphs ?
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Thank you for your attention!
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