A New Intersection Model and Improved Algorithms for Tolerance Graphs

George B. Mertzios¹ Ignasi Sau² Shmuel Zaks³

¹RWTH Aachen University, Germany

²INRIA/CNRS/UNSA, Sophia-Antipolis, France UPC, Barcelona, Spain

³Technion, Haifa, Israel

WG 2009

A New Intersection Model and Improved Algorithms for Tolerance Graphs

George B. Mertzios¹ Ignasi Sau² Shmuel Zaks³

¹RWTH Aachen University, Germany

²INRIA/CNRS/UNSA, Sophia-Antipolis, France UPC, Barcelona, Spain

³Technion, Haifa, Israel

WG 2009

Overview

- Preliminaries on tolerance graphs.
- A new intersection model.
- A canonical representation and applications of this model.
 - Minimum Coloring: $O(n \log n)$ (optimal) [previous result: $O(n^2)$].
 - Maximum Clique: $O(n \log n)$ (optimal) [previous result: $O(n^2)$].
 - Maximum Weighted Independent Set: $O(n^2)$ [previous result: $O(n^3)$].
- Open problems.

Definition

An undirected graph G = (V, E) is called an intersection graph, if each vertex $v \in V$ can be assigned to a set S_v , such that two vertices of G are adjacent if and only if the corresponding sets have a nonempty intersection, i.e. $E = \{uv \mid S_u \cap S_v \neq \emptyset\}$.

Definition

An undirected graph G = (V, E) is called an intersection graph, if each vertex $v \in V$ can be assigned to a set S_v , such that two vertices of G are adjacent if and only if the corresponding sets have a nonempty intersection, i.e. $E = \{uv \mid S_u \cap S_v \neq \emptyset\}.$

Then, $F = \{S_v \mid v \in V\}$ is the intersection model of G.

3 / 26

Definition

An undirected graph G=(V,E) is called an intersection graph, if each vertex $v\in V$ can be assigned to a set S_v , such that two vertices of G are adjacent if and only if the corresponding sets have a nonempty intersection, i.e. $E=\{uv\mid S_u\cap S_v\neq\varnothing\}$.

Then, $F = \{S_v \mid v \in V\}$ is the intersection model of G.

Definition

An undirected graph G=(V,E) is called an intersection graph, if each vertex $v\in V$ can be assigned to a set S_v , such that two vertices of G are adjacent if and only if the corresponding sets have a nonempty intersection, i.e. $E=\{uv\mid S_u\cap S_v\neq\varnothing\}$.

Then, $F = \{S_v \mid v \in V\}$ is the intersection model of G.

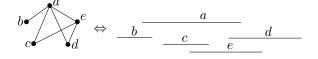
Lemma

Every undirected graph G has a (trivial) intersection model, based on adjacency relations.

Interval and permutation graphs

Definition

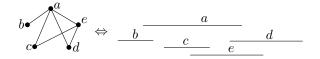
A graph G is called an interval graph, if G is the intersection graph of a set of intervals on the real line.



Interval and permutation graphs

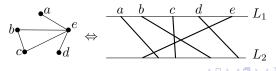
Definition

A graph G is called an interval graph, if G is the intersection graph of a set of intervals on the real line.



Definition

A graph G is called a permutation graph, if G is the intersection graph of a set of line segments between two parallel lines.



Both interval and permutation graphs can be generalized as follows:

Definition (Golumbic, Monma, 1982)

A graph G = (V, E) is called a tolerance graph, if there is a set $I = \{I_v \mid v \in V\}$ of intervals and a set $t = \{t_v \mid v \in V\}$ of positive numbers, such that $uv \in E$ if and only if $|I_u \cap I_v| \ge \min\{t_u, t_v\}$.

Both interval and permutation graphs can be generalized as follows:

Definition (Golumbic, Monma, 1982)

A graph G=(V,E) is called a tolerance graph, if there is a set $I=\{I_v\mid v\in V\}$ of intervals and a set $t=\{t_v\mid v\in V\}$ of positive numbers, such that $uv\in E$ if and only if $|I_u\cap I_v|\geq \min\{t_u,t_v\}$.

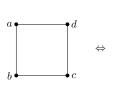
The pair $\langle I, t \rangle$ is called a tolerance representation of G.

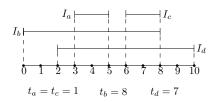
Both interval and permutation graphs can be generalized as follows:

Definition (Golumbic, Monma, 1982)

A graph G = (V, E) is called a tolerance graph, if there is a set $I = \{I_v \mid v \in V\}$ of intervals and a set $t = \{t_v \mid v \in V\}$ of positive numbers, such that $uv \in E$ if and only if $|I_u \cap I_v| \ge \min\{t_u, t_v\}$.

The pair $\langle I, t \rangle$ is called a tolerance representation of G.





5 / 26

Both interval and permutation graphs can be generalized as follows:

Definition (Golumbic, Monma, 1982)

A graph G=(V,E) is called a tolerance graph, if there is a set $I=\{I_v\mid v\in V\}$ of intervals and a set $t=\{t_v\mid v\in V\}$ of positive numbers, such that $uv\in E$ if and only if $|I_u\cap I_v|\geq \min\{t_u,t_v\}$.

The pair $\langle I, t \rangle$ is called a tolerance representation of G.

Tolerance graphs find important applications [Golumbic, *Tolerance graphs*, 2004]:

- biology and bioinformatics (DNA sequences),
- temporal reasoning,
- resource allocation,
- scheduling ...

Definition

A vertex v of a tolerance graph G = (V, E) with a tolerance representation $\langle I, t \rangle$ is called a bounded vertex, if $t_v \leq |I_v|$.

Definition

A vertex v of a tolerance graph G=(V,E) with a tolerance representation $\langle I,t\rangle$ is called a bounded vertex, if $t_v\leq |I_v|$. Otherwise, if $t_v>|I_v|$, v is called an unbounded vertex.

Definition

A vertex v of a tolerance graph G = (V, E) with a tolerance representation $\langle I, t \rangle$ is called a bounded vertex, if $t_v < |I_v|$. Otherwise, if $t_v > |I_v|$, v is called an unbounded vertex.

Definition

A tolerance graph G is called a bounded tolerance graph, if there exists a tolerance representation $\langle I, t \rangle$ of G, such that all vertices of G are bounded.

Definition

A vertex v of a tolerance graph G = (V, E) with a tolerance representation $\langle I, t \rangle$ is called a bounded vertex, if $t_v \leq |I_v|$. Otherwise, if $t_v > |I_v|$, v is called an unbounded vertex.

Definition

A tolerance graph G is called a bounded tolerance graph, if there exists a tolerance representation $\langle I, t \rangle$ of G, such that all vertices of G are bounded.

Bounded tolerance graphs have a (non-trivial) intersection model of parallelograms between two parallel lines.

[Langley, PhD thesis, 1993; Bogart et al., 1995]

Definition

A vertex v of a tolerance graph G = (V, E) with a tolerance representation $\langle I, t \rangle$ is called a bounded vertex, if $t_v < |I_v|$. Otherwise, if $t_v > |I_v|$, v is called an unbounded vertex.

Definition

A tolerance graph G is called a bounded tolerance graph, if there exists a tolerance representation $\langle I, t \rangle$ of G, such that all vertices of G are bounded.

Question: Does there exist a non-trivial intersection model for the class of tolerance graphs?

Definition

A vertex v of a tolerance graph G = (V, E) with a tolerance representation $\langle I, t \rangle$ is called a bounded vertex, if $t_v \leq |I_v|$. Otherwise, if $t_v > |I_v|$, v is called an unbounded vertex.

Definition

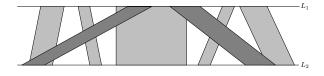
A tolerance graph G is called a bounded tolerance graph, if there exists a tolerance representation $\langle I, t \rangle$ of G, such that all vertices of G are bounded.

Question: Does there exist a non-trivial intersection model for the class of tolerance graphs?

Why? A succinct intersection model enables us to design efficient algorithms.

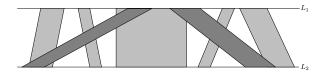
Definition

A graph G is called a parallelogram graph, if G is the intersection graph of a set of parallelograms between two parallel lines.



Definition

A graph G is called a parallelogram graph, if G is the intersection graph of a set of parallelograms between two parallel lines.

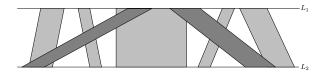


Theorem (Langley; Bogart et al.)

Bounded tolerance graphs coincide with parallelograms graphs.

Definition

A graph G is called a parallelogram graph, if G is the intersection graph of a set of parallelograms between two parallel lines.



Theorem (Langley; Bogart et al.)

Bounded tolerance graphs coincide with parallelograms graphs.

Clearly:

ullet interval graphs are bounded tolerance graphs ($t_u=arepsilon$, for all $u\in V$),

Definition

A graph G is called a parallelogram graph, if G is the intersection graph of a set of parallelograms between two parallel lines.

Theorem (Langley; Bogart et al.)

Bounded tolerance graphs coincide with parallelograms graphs.

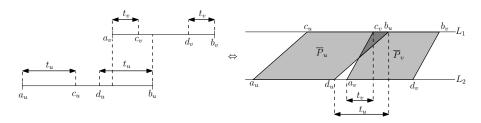
Clearly:

- ullet interval graphs are bounded tolerance graphs ($t_u=arepsilon$, for all $u\in V$),
- permutation graphs are bounded tolerance graphs (lines are trivial parallelograms).

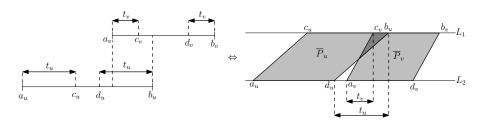
Idea (for bounded vertices):



Idea (for bounded vertices):

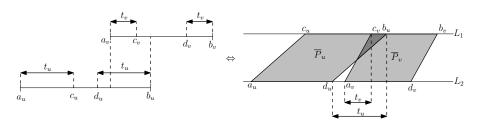


Idea (for bounded vertices):



Question: How do we deal with the unbounded vertices?

Idea (for bounded vertices):



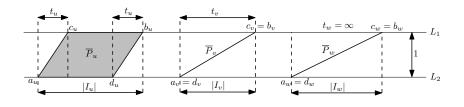
Question: How do we deal with the unbounded vertices?

Answer: We exploit the third dimension.

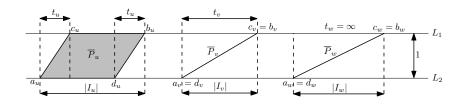
Overview

- Preliminaries on tolerance graphs.
- A new intersection model.
- A canonical representation and applications of this model.
 - Minimum Coloring: $O(n \log n)$ (optimal) [previous result: $O(n^2)$].
 - Maximum Clique: $O(n \log n)$ (optimal) [previous result: $O(n^2)$].
 - Maximum Weighted Independent Set: $O(n^2)$ [previous result: $O(n^3)$].
- Open problems.

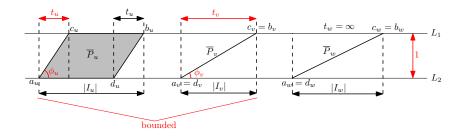
• We extend the construction of the parallelograms \overline{P}_{v} to the case of unbounded vertices v.



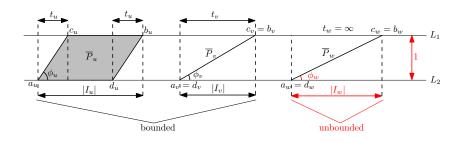
- We extend the construction of the parallelograms \overline{P}_{v} to the case of unbounded vertices v.
- We define the slope ϕ_{ν} of the parallelogram \overline{P}_{ν} as:



- We extend the construction of the parallelograms \overline{P}_{v} to the case of unbounded vertices v.
- We define the slope ϕ_{ν} of the parallelogram \overline{P}_{ν} as:
 - $\phi_V = \arctan(\frac{1}{t_V})$, if V is bounded,

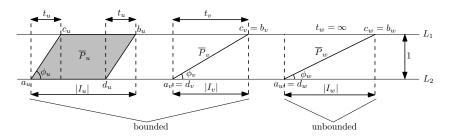


- We extend the construction of the parallelograms \overline{P}_{v} to the case of unbounded vertices v.
- We define the slope ϕ_{ν} of the parallelogram \overline{P}_{ν} as:
 - $\phi_V = \arctan(\frac{1}{t_V})$, if V is bounded,
 - $\phi_V = \arctan\left(\frac{1}{|I_V|}\right)$, if V is unbounded.



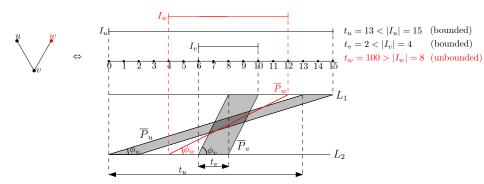
- We extend the construction of the parallelograms \overline{P}_{v} to the case of unbounded vertices v.
- We define the slope ϕ_{v} of the parallelogram \overline{P}_{v} as:
 - $\phi_V = \arctan(\frac{1}{t_V})$, if V is bounded,
 - $\phi_{V} = \arctan\left(\frac{1}{|I_{V}|}\right)$, if V is unbounded.

The slopes ϕ_{ν} capture essential information about the structure.

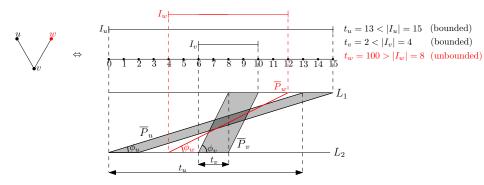


The parallelogram representation does not suffice for general tolerance graphs:

The parallelogram representation does not suffice for general tolerance graphs:

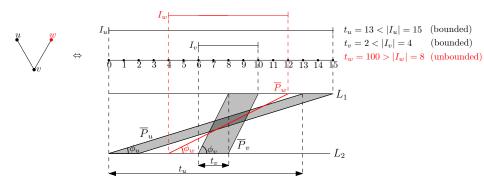


The parallelogram representation does not suffice for general tolerance graphs:



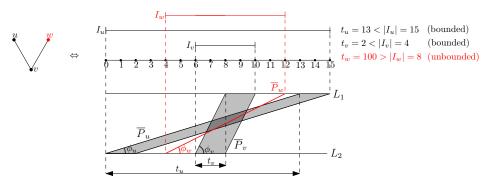
 \overline{P}_w intersects both \overline{P}_v and \overline{P}_u

The parallelogram representation does not suffice for general tolerance graphs:

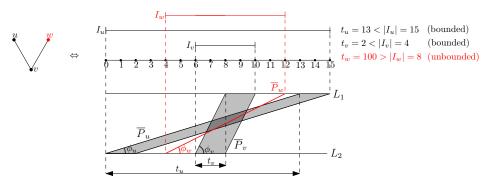


 \overline{P}_w intersects both \overline{P}_v and \overline{P}_u

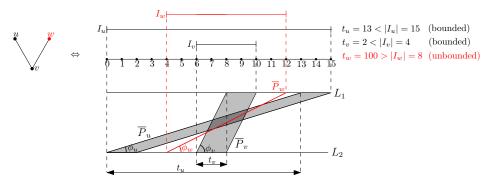
However, $wv \in E$, but $wu \notin E$.



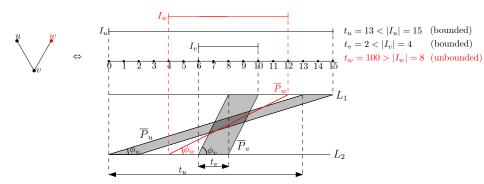
$$|I_{\mathsf{w}}| > |I_{\mathsf{w}} \cap I_{\mathsf{v}}| = |I_{\mathsf{v}}| > t_{\mathsf{v}}$$



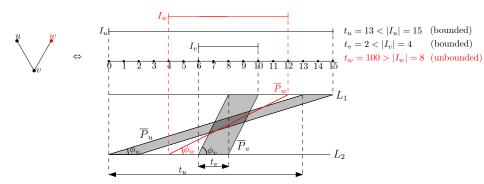
$$|I_{\mathbf{w}}| > |I_{\mathbf{w}} \cap I_{\mathbf{v}}| = |I_{\mathbf{v}}| > t_{\mathbf{v}} \Rightarrow \mathbf{w}\mathbf{v} \in E$$



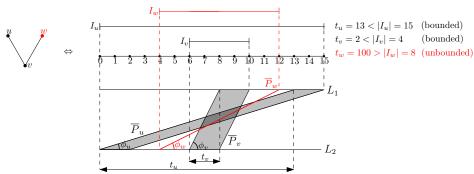
$$|{\color{red}I_{w}}|>|{\color{red}I_{w}}\cap I_{v}|=|I_{v}|>t_{v}\Rightarrow wv\in E, \quad \tan({\color{red}\phi_{w}})<\tan({\color{red}\phi_{v}}), \quad {\color{red}\phi_{w}}<\phi_{v}$$



$$|I_w| > |I_w \cap I_v| = |I_v| > t_v \Rightarrow wv \in E$$
, $\tan(\phi_w) < \tan(\phi_v)$, $\phi_w < \phi_v$
 $|I_w \cap I_u| = |I_w| < t_u$



$$\begin{split} |I_{w}| > |I_{w} \cap I_{v}| &= |I_{v}| > t_{v} \Rightarrow wv \in E, \quad \tan(\phi_{w}) < \tan(\phi_{v}), \quad \phi_{w} < \phi_{v} \\ |I_{w} \cap I_{u}| &= |I_{w}| < t_{u} \qquad \Rightarrow wu \notin E, \end{split}$$



$$\begin{aligned} |I_{w}| > |I_{w} \cap I_{v}| &= |I_{v}| > t_{v} \Rightarrow wv \in E, & \tan(\phi_{w}) < \tan(\phi_{v}), & \phi_{w} < \phi_{v} \\ |I_{w} \cap I_{u}| &= |I_{w}| < t_{u} & \Rightarrow wu \notin E, & \tan(\phi_{w}) > \tan(\phi_{u}), & \phi_{w} > \phi_{u} \end{aligned}$$

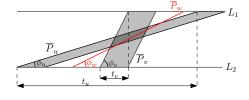
We define the parallelepipeds P_{ν} as follows:

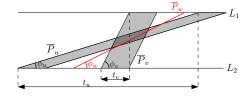
• If v is bounded, then $P_v = \{(x, y, z) \in \mathbb{R}^3 \mid (x, y) \in \overline{P}_v, \ 0 \le z \le \phi_v\}.$

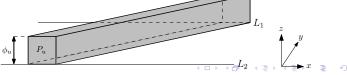
We define the parallelepipeds P_v as follows:

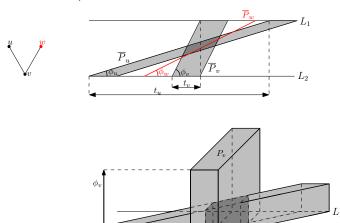
- If v is bounded, then $P_v = \{(x, y, z) \in \mathbb{R}^3 \mid (x, y) \in \overline{P}_v, \ 0 \le z \le \phi_v\}.$
- If v is unbounded, then

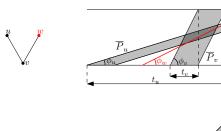
$$P_{\nu} = \{(x, y, z) \in \mathbb{R}^3 \mid (x, y) \in \overline{P}_{\nu}, \ z = \phi_{\nu}\}.$$

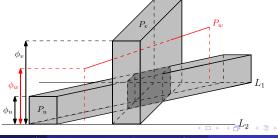


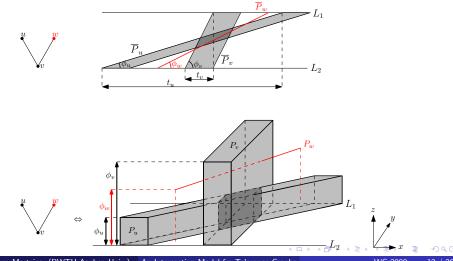






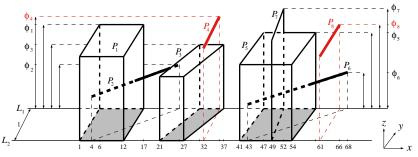






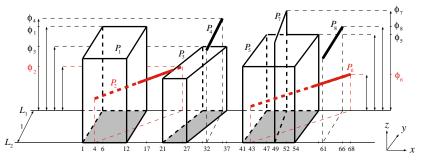
Definition

An unbounded vertex v of a tolerance graph G (in a certain parallelepiped representation) is called inevitable, if replacing P_i with $\{(x,y,z)\mid (x,y)\in P_v, 0\leq z\leq \phi_v\}$ creates a new edge in G.



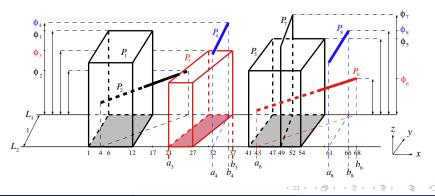
Definition

An unbounded vertex v of a tolerance graph G (in a certain parallelepiped representation) is called inevitable, if replacing P_i with $\{(x,y,z)\mid (x,y)\in P_v, 0\leq z\leq \phi_v\}$ creates a new edge in G. Otherwise, v is called evitable.



Definition

Let v be an inevitable unbounded vertex of a tolerance graph G (in a certain parallelepiped representation). A vertex u is called a hovering vertex of u if $\phi_u < \phi_v$, $a_u < a_v$, and $b_u > b_v$.

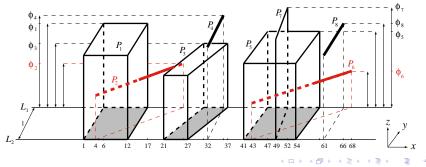


Overview

- Preliminaries on tolerance graphs.
- A new intersection model.
- A canonical representation and applications of this model.
 - Minimum Coloring: $O(n \log n)$ (optimal) [previous result: $O(n^2)$].
 - Maximum Clique: $O(n \log n)$ (optimal) [previous result: $O(n^2)$].
 - Maximum Weighted Independent Set: $O(n^2)$ [previous result: $O(n^3)$].
- Open problems.

Definition

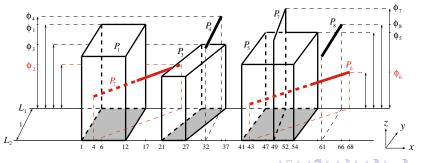
A parallelepiped representation of a tolerance graph G is called canonical if every unbounded vertex is inevitable.



Definition

A parallelepiped representation of a tolerance graph G is called canonical if every unbounded vertex is inevitable.

The canonical tolerance representation of a tolerance graph G can be defined similarly [Golumbic, Siani, 2002].



Lemma (Golumbic, Siani, 2002)

Given a tolerance representation of a tolerance graph G, a canonical tolerance representation of G can be computed in $O(n^2)$ time.

Lemma (Golumbic, Siani, 2002)

Given a tolerance representation of a tolerance graph G, a canonical tolerance representation of G can be computed in $O(n^2)$ time.

Exploit the slopes of the parallelograms (resp. heights of parallelepipeds)

 \Rightarrow construct a canonical representation in $O(n \log n)$ time.

Lemma (Golumbic, Siani, 2002)

Given a tolerance representation of a tolerance graph G, a canonical tolerance representation of G can be computed in $O(n^2)$ time.

Exploit the slopes of the parallelograms (resp. heights of parallelepipeds)

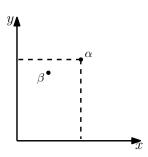
 \Rightarrow construct a canonical representation in $O(n \log n)$ time.

Idea: binary search

Sketch of the algorithm

Definition

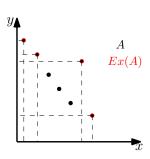
Let $\alpha=(x_{\alpha},y_{\alpha})$ and $\beta=(x_{\beta},y_{\beta})$ be two points in the plane. Then α dominates β if $x_{\alpha}>x_{\beta}$ and $y_{\alpha}>y_{\beta}$.



Sketch of the algorithm

Definition

Let $\alpha = (x_{\alpha}, y_{\alpha})$ and $\beta = (x_{\beta}, y_{\beta})$ be two points in the plane. Then α dominates β if $x_{\alpha} > x_{\beta}$ and $y_{\alpha} > y_{\beta}$. Given a set A of points, the point $\gamma \in A$ is called an extreme point of A if there is no point $\delta \in A$ that dominates γ . Ex(A) is the set of the extreme points of A.



Sketch of the algorithm

• Let $\{v_1, v_2, \ldots, v_n\}$ be the vertices of G,

- Let $\{v_1, v_2, \ldots, v_n\}$ be the vertices of G,
- sort the vertices v_i increasingly by the lower left endpoint a_i of \overline{P}_i ,

- Let $\{v_1, v_2, \ldots, v_n\}$ be the vertices of G,
- sort the vertices v_i increasingly by the lower left endpoint a_i of \overline{P}_i ,
- associate to vertex v_i the Eucledian point $p_i = (x_i, y_i)$, where:
 - $x_i = b_i$ is the upper right endpoint of \overline{P}_i ,
 - $\bullet \ y_i = \frac{\pi}{2} \phi_{v_i},$

- Let $\{v_1, v_2, \ldots, v_n\}$ be the vertices of G,
- sort the vertices v_i increasingly by the lower left endpoint a_i of \overline{P}_i ,
- associate to vertex v_i the Eucledian point $p_i = (x_i, y_i)$, where:
 - $x_i = b_i$ is the upper right endpoint of \overline{P}_i ,
 - $\bullet \ y_i = \frac{\pi}{2} \phi_{v_i},$
- process the vertices v_1, v_2, \ldots, v_n (points p_1, p_2, \ldots, p_n) sequentially,

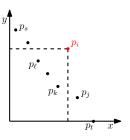
- Let $\{v_1, v_2, \ldots, v_n\}$ be the vertices of G,
- sort the vertices v_i increasingly by the lower left endpoint a_i of \overline{P}_i ,
- associate to vertex v_i the Eucledian point $p_i = (x_i, y_i)$, where:
 - $x_i = b_i$ is the upper right endpoint of \overline{P}_i ,
 - $\bullet \ y_i = \frac{\pi}{2} \phi_{v_i},$
- process the vertices v_1, v_2, \ldots, v_n (points p_1, p_2, \ldots, p_n) sequentially,
- let $A_i = \{p_1, p_2, \dots, p_i\}$ be the first i points.

Sketch of the algorithm

Lemma

Let v_i be an unbounded vertex of a tolerance graph G. Then:

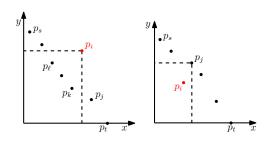
(a) If $p_i \in Ex(A_i)$ then v_i is evitable.



Sketch of the algorithm

Lemma

- (a) If $p_i \in E_X(A_i)$ then v_i is evitable.
- (b) If $p_i \notin Ex(A_i)$ and point p_j dominates p_i for some vertex $v_j \in A_i$, then v_i is inevitable and v_j is a hovering vertex of v_i .



Sketch of the algorithm

Lemma

- (a) If $p_i \in Ex(A_i)$ then v_i is evitable.
- (b) If $p_i \notin Ex(A_i)$ and point p_j dominates p_i for some vertex $v_j \in A_i$, then v_i is inevitable and v_j is a hovering vertex of v_i .
 - Compute at every step i the extreme points $Ex(A_i)$, using binary search on the set $Ex(A_{i-1})$.

Sketch of the algorithm

Lemma

- (a) If $p_i \in Ex(A_i)$ then v_i is evitable.
- (b) If $p_i \notin Ex(A_i)$ and point p_j dominates p_i for some vertex $v_j \in A_i$, then v_i is inevitable and v_j is a hovering vertex of v_i .
 - Compute at every step i the extreme points $Ex(A_i)$, using binary search on the set $Ex(A_{i-1})$.
 - If v_i is bounded, do nothing.

Sketch of the algorithm

Lemma

- (a) If $p_i \in Ex(A_i)$ then v_i is evitable.
- (b) If $p_i \notin Ex(A_i)$ and point p_j dominates p_i for some vertex $v_j \in A_i$, then v_i is inevitable and v_i is a hovering vertex of v_i .
 - Compute at every step i the extreme points $Ex(A_i)$, using binary search on the set $Ex(A_{i-1})$.
 - If v_i is bounded, do nothing.
 - If v_i is unbounded, then:

Sketch of the algorithm

Lemma

- (a) If $p_i \in Ex(A_i)$ then v_i is evitable.
- (b) If $p_i \notin Ex(A_i)$ and point p_j dominates p_i for some vertex $v_j \in A_i$, then v_i is inevitable and v_j is a hovering vertex of v_i .
 - Compute at every step i the extreme points $Ex(A_i)$, using binary search on the set $Ex(A_{i-1})$.
 - If v_i is bounded, do nothing.
 - If v_i is unbounded, then:
 - if $p_i \in Ex(A_i)$, then v_i is evitable \Rightarrow make v_i bounded.

The canonical (parallelepiped) representation

Sketch of the algorithm

Lemma

Let v_i be an unbounded vertex of a tolerance graph G. Then:

- (a) If $p_i \in Ex(A_i)$ then v_i is evitable.
- (b) If $p_i \notin Ex(A_i)$ and point p_j dominates p_i for some vertex $v_j \in A_i$, then v_i is inevitable and v_j is a hovering vertex of v_i .
 - Compute at every step i the extreme points $Ex(A_i)$, using binary search on the set $Ex(A_{i-1})$.
 - If v_i is bounded, do nothing.
 - If v_i is unbounded, then:
 - if $p_i \in E_X(A_i)$, then v_i is evitable \Rightarrow make v_i bounded.
 - if $p_i \notin E_X(A_i)$, then v_i is inevitable \Rightarrow do nothing.

Sketch of the algorithms

Construction of a canonical representation of G:

• *n* iterations (one for each vertex),

Sketch of the algorithms

Construction of a canonical representation of G:

- n iterations (one for each vertex),
- $O(\log n)$ steps at every iteration (binary search),

Sketch of the algorithms

Construction of a canonical representation of G:

- n iterations (one for each vertex),
- $O(\log n)$ steps at every iteration (binary search),
- Total complexity: $O(n \log n)$.

Sketch of the algorithms

Construction of a canonical representation of G:

- n iterations (one for each vertex),
- $O(\log n)$ steps at every iteration (binary search),
- Total complexity: $O(n \log n)$.

Given the canonical representation of G:

Sketch of the algorithms

Construction of a canonical representation of G:

- n iterations (one for each vertex),
- $O(\log n)$ steps at every iteration (binary search),
- Total complexity: $O(n \log n)$.

Given the canonical representation of G:

Minimum coloring: in $O(n \log n)$ time (optimal) (previously $O(n^2)$),

Sketch of the algorithms

Construction of a canonical representation of G:

- n iterations (one for each vertex),
- $O(\log n)$ steps at every iteration (binary search),
- Total complexity: $O(n \log n)$.

Given the canonical representation of G:

```
Minimum coloring: in O(n \log n) time (optimal) (previously O(n^2)), similarly to [Golumbic, Siani, 2002] (by coloring a bounded tolerance subgraph [Felsner et al., 1997]).
```

Sketch of the algorithms

Construction of a canonical representation of G:

- n iterations (one for each vertex),
- $O(\log n)$ steps at every iteration (binary search),
- Total complexity: $O(n \log n)$.

Given the canonical representation of G:

```
Minimum coloring: in O(n \log n) time (optimal) (previously O(n^2)), similarly to [Golumbic, Siani, 2002] (by coloring a bounded tolerance subgraph [Felsner et al., 1997]).
```

Maximum clique: in the same time $(O(n \log n))$ time (optimal) (previously $O(n^2)$), since tolerance graphs are perfect.

Overview

- Preliminaries on tolerance graphs.
- A new intersection model.
- A canonical representation and applications of this model.
 - Minimum Coloring: $O(n \log n)$ (optimal) [previous result: $O(n^2)$].
 - Maximum Clique: $O(n \log n)$ (optimal) [previous result: $O(n^2)$].
 - Maximum Weighted Independent Set: $O(n^2)$ [previous result: $O(n^3)$].
- Open problems.

Weighted independent set:

Input: a graph G and a positive weight w_v for every vertex v of G.

Output: an independent set in G with the greatest sum of weights.

Weighted independent set:

Input: a graph G and a positive weight w_v for every vertex v of G. *Output*: an independent set in G with the greatest sum of weights.

Best known runtime for tolerance graphs: $O(n^3)$ [Golumbic, *Tolerance graphs*, 2004]

Weighted independent set:

Input: a graph G and a positive weight w_v for every vertex v of G. *Output*: an independent set in G with the greatest sum of weights.

```
Best known runtime for tolerance graphs: O(n^3) [Golumbic, Tolerance graphs, 2004]
```

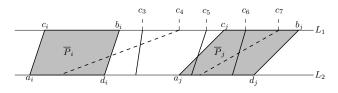
Use of the parallelepiped representation $\Rightarrow O(n^2)$. (by dynamic programming)

Weighted independent set:

Input: a graph G and a positive weight w_v for every vertex v of G. *Output:* an independent set in G with the greatest sum of weights.

Best known runtime for tolerance graphs: $O(n^3)$ [Golumbic, *Tolerance graphs*, 2004]

Use of the parallelepiped representation $\Rightarrow O(n^2)$. (by dynamic programming)



Overview

- Preliminaries on tolerance graphs.
- A new intersection model.
- A canonical representation and applications of this model.
 - Minimum Coloring: $O(n \log n)$ (optimal) [previous result: $O(n^2)$].
 - Maximum Clique: $O(n \log n)$ (optimal) [previous result: $O(n^2)$].
 - Maximum Weighted Independent Set: $O(n^2)$ [previous result: $O(n^3)$].
- Open problems.

• Is the $O(n^2)$ -algorithm for the Maximum Weighted Independent Set problem optimal ? If not, design an optimal one.

- Is the $O(n^2)$ -algorithm for the Maximum Weighted Independent Set problem optimal ? If not, design an optimal one.
- Recognition of tolerance / bounded tolerance graphs ?

- Is the $O(n^2)$ -algorithm for the Maximum Weighted Independent Set problem optimal ? If not, design an optimal one.
- Recognition of tolerance / bounded tolerance graphs ?
 We recently proved: both are NP-complete
 http://sunsite.informatik.rwth-aachen.de/Publications/AIB/2009/2009-06.pdf

- Is the $O(n^2)$ -algorithm for the Maximum Weighted Independent Set problem optimal ? If not, design an optimal one.
- Recognition of tolerance / bounded tolerance graphs ?
 We recently proved: both are NP-complete
 http://sunsite.informatik.rwth-aachen.de/Publications/AIB/2009/2009-06.pdf
- Recognition of proper / unit tolerance graphs?

Thank you for your attention!