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Circulant Graph

For n ∈ N and D ⊆ N, the circulant graph CD
n

has vertex set

V
(

CD
n

)
= [0, n − 1] = {0, 1, . . . , n − 1}

and edge set

E
(

CD
n

)
= {ij | i , j ∈ [0, n − 1], ∃d ∈ D : j = (i ± d) mod n} .

We may always assume that max(D) ≤ n
2 .
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Circulant Graph

n = 16, D = {1, 4}
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Circulant Graph

Because of their simplicity, extendability, regularity, reliability,...
the circulant graphs are interesting for many applications :

Interconnection networks,

local area computer networks,

large area communication networks,

parallel processing architectures,

distributed computing,

VLSI design,

...
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Circulant Graph

Some surveys:

Bermond et al., Distributed Loop Computer Networks

Hwang, A survey on multi-loop networks

Liu, Distributed Loop Computer Networks

The mathematical properties of circulant graphs are interesting
and (very) well-studied.

Cayley graphs of cyclic groups

Cycles and paths

Connectivity and diameter

Isomorphism testing and recognition

...
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Distance Graph

For n ∈ N and D ⊆ N, the distance graph PD
n has vertex set

V
(

PD
n

)
= [0, n − 1]

and edge set

E
(

PD
n

)
= {ij | i , j ∈ [0, n − 1], j − i ∈ D} .

We may always assume that max(D) ≤ n − 1.
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Distance Graph

n = 11, D = {1, 3}

u u u u u u u u u u u
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Distance Graph

n = 11, D = {1, 10}

u u u u u u u u u u u
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Distance Graph

PD
n ⊂ CD

n+max(D)

Proposition

The circulant graphs are exactly the regular distance graphs.

(Skip proof?)

Proof: “⇒”
CD

n
∼= P

D∪{n−d |d∈D}
n .

“⇐” Let PD
n be a regular distance graph.

Let D = {d1, d2, . . . , dk} be such that

1 ≤ d1 < d2 < . . . < dk ≤ n − 1.

⇒ PD
n is k-regular.
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Distance Graph

Let i ∈ [1, k].

r r rr r r· · · · · ·
1 n − 1di − 1 di

i − 1 k + 1− i

⇒ (di − 1) + dk+1−i ≤ n − 1
⇒ di + dk+1−i > n − 1
⇒

di + dk+1−i = n ∀ i ∈ [1, k]

⇒
PD

n
∼= C
{d∈D|d≤ n

2}
n .

2
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Distance Graph

We want to extend fundamental results concerning circulant
graphs to distance graphs.

Until now mainly coloring problems were considered starting with
Eggleton, Erdős, and Skilton who studied colorings of (infinite)
distance graphs.

We will present results concerning:

Long cycles and paths

Connectivity and diameter

Recognition
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Long Cycles and Paths

Combining results due to Boesch and Tindell, Burkard and
Sandholzer, and Garfinkel, we obtain the following.

Theorem (BT, BS, G)

For n ∈ N and a finite set D ⊆ N, the following statements are
equivalent.

(i) CD
n is connected.

(ii) gcd({n} ∪ D) = 1.

(iii) CD
n has a Hamiltonian cycle.
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Long Cycles and Paths

Theorem

For a finite set D ⊆ N, the following statements are equivalent.

(i) There is a constant c1(D) such that for every n ∈ N, the
distance graph PD

n has a component of order at least
n − c1(D).

(ii) gcd(D) = 1.

(iii) There is a constant c2(D) such that for every n ∈ N, the
distance graph PD

n has a cycle of order at least n − c2(D).

Proof Sketch:
(i) ⇒ (ii): ∃ i : i and i + 1 are in one component.
(iii) ⇒ (i): trivial.
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Long Cycles and Paths

(ii) ⇒ (iii)

Q1

Q2

Q3

Q4

P1

P2 P3

i0

P ′
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Long Cycles and Paths
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Long Cycles and Paths
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Long Cycles and Paths

(ii) ⇒ (iii)

Q1,2

Q3

Q4

Q5

Q6

Q7

P2

P4

P6

P3

P5

P ′

2

LDP-DR-JLS Distance Graphs



Long Cycles and Paths

If all elements in {n} ∪ D are odd, then PD
n is bipartite and every

cycle misses at least one vertex.

Conjecture

For a finite set D ⊆ N, the following statements are equivalent.

(i) gcd(D) = 1.

(ii) There are two constants c3(D) and c4(D) such that for every
n ∈ N, the distance graph PD

n has a path

u0u1 . . . ul

of order at least n − c3(D) such that

uj > ui for all 0 ≤ i , j ≤ l with j − i ≥ c4(D).
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Long Cycles and Paths

For every ε > 0, there is such a path of order at least

(1− ε)n − c5(D, ε).

If d1, d2 ∈ N are such that gcd({d1, d2}) = 1, then

P
{d1,d2}
d1+d2+1

has a Hamiltonian path which begins at 0 and ends at d1 + d2.

If D = {6, 10, 15} = {2 · 3, 2 · 5, 3 · 5}, then

0, 6, 12, 2, 8, 14, 4, 10, 16, 1, 7, 13, 3, 9, 15, 5, 11, 17

is a Hamiltonian path in PD
18 which begins at 0 and ends at 17.
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Connectivity and Diameter

Proposition (G)

CD
n is connected if and only if gcd({n} ∪ D) = 1.

Proof: Since CD
n is vertex-transitive, it is connected if and only if it

contains a path from 0 to 1. This happens if and only if there are
integers l and ld for d ∈ D such that 1 = ln +

∑
d∈D

ldd . 2

Problem (Connectivity of PD
n )

Instance: n ∈ N and D ⊆ N.
Question: Is PD

n connected?

Conjecture

Connectivity of PD
n is NP-hard.
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Connectivity and Diameter

Clearly, PD
n is connected if and only if for every i ∈ [0, n− 2], there

are integers x1, x2, . . . , xl such that

|xi | ∈ D for all i ∈ [1, l ], (1)

1 =
l∑

j=1

xj , and (2)

i +
k∑

j=1

xj ∈ [0, n − 1] for all k ∈ [0, l ]. (3)

(1) and (2) are easy. What about (3)?
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Connectivity and Diameter

Problem (Bounded Partial Sums)

Instance: x0, x1, x2, . . . , xl ∈ Z and n ∈ N.
Question: Is there a permutation π ∈ Sl such that

x0 +
k∑

j=1

xπ(j) ∈ [0, n − 1]

for all k ∈ [0, l ]?

Proposition

Bounded Partial Sums is NP-complete.
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Connectivity and Diameter

Theorem

Let n, d1, d2 ∈ N be such that d1 < d2. For i ∈ [0, d1 − 1], let

ri = (id2) mod d1 and si = (n − 1− ri ) mod d1.

Furthermore, for i∗ ∈ [1, d1 − 1], let

d+
i∗ = max {ri | i ∈ [0, i∗ − 1]} and

d−i∗ = max
{

s−i mod d1
| i ∈ [0, d1 − i∗ − 1]

}
.

Finally, let
d∗ = max

i∗∈[1,d1−1]
min{d+

i∗ , d
−
i∗}.

P
{d1,d2}
n is connected if and only if gcd({d1, d2}) = 1 and

d∗ + d2 ≤ n − 1.
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Connectivity and Diameter

Theorem

Let n ∈ N and D ⊆ N be such max(D) ≤ n − 1.
If max(D) ≤ n−1

2 , then PD
n is connected, if and only if gcd(D) = 1.

(Skip Proof?)

Proof: Let i ∈ [0, n − 2]. Let nd ∈ Z for d ∈ D be such that

1 =
∑
d∈D

ndd .

We assume that l =
∑

d∈D |nd | is smallest possible.
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Connectivity and Diameter

The following algorithm yields a path in PD
n from i to i + 1.

j ← 0;
while j < l do

if
((

i ≤ n−1
2

)
∧ (∃d ∈ D : nd > 0)

)
∨ (6 ∃d ∈ D : nd < 0) then

Choose d ∈ D with nd > 0;
i ← i + d ;
nd ← nd − 1;

else
Choose d ∈ D with nd < 0;
i ← i − d ;
nd ← nd + 1;

end
j ← j + 1;

end

2
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Connectivity and Diameter

The exact calculation/minimization of the diameter of CD
n is a

difficult and well-studied problem even for |D| = 2.

Using Wong and Coppersmith’s arguments (J. ACM, 1974), we
obtain

diam
(

PD
n

)
≥ 1

2
(|D|!n)

1
|D| − |D| and

diam
(

P
{1,d ,...,dk−1}
dk

)
≤ k(d − 1).
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Connectivity and Diameter

Problem (Short Path in PD
n )

Instance: n ∈ N, D ⊆ N and l ∈ N.
Question: Is there some u ∈ [0, n−2] such that PD

n contains
a path of length at most l between u and u + 1?

Theorem

Short Path in PD
n is NP-hard.

(Skip Proof?)
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Connectivity and Diameter
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Connectivity and Diameter

Proof: Let x1, x2, . . . , xk ∈ Z be an instance of Partition.
Let

l = 2(k + 1)

d = 2(k + 1) max ({|x1|, |x2|, . . . , |xk |}) + 1

n = 2d3k+4 + 1

D = {xi ,j | ...}

(n,D, l) is a“yes”-instance of Short Path in PD
n if and only if

x1, x2, . . . , xk is a “yes”-instance of Partition.
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Connectivity and Diameter

d0 d1 d2 d3 d4 d5 d6 d7 d8 . . . d3k+2 d3k+3

x1,1 x1 1 1
x1,2 1 1
x1,3 1 1
x1,4 x1 1 1

x2,1 x2 1 1
x2,2 1 1
x2,3 1 1
x2,4 x2 1 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

xk+1,1 1 1 1
xk+1,2 1 1

2
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Recognition

We only consider D = {d1, d2, . . . , dk} with

1 = d1 < d2 < . . . < dk ≤
n − 1

2
.

Proposition

If D is as above, then PD
n has 2(di+1 − di ) vertices of degree k + i

for 0 ≤ i ≤ k − 1. Hence D is uniquely determined by the degree
sequence of PD

n .
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Recognition

An index of ambiguity of PD
n .

u uu uu uu u
1 n − 1

u
r

	 Ru
s

· · · · · ·

Theorem

Let D be as above. If PD
n has l indices of ambiguity, then D and

the ordering of its vertices can be obtained from PD
n given up to

isomorphism in time O(4ln2).
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Thank you for your attention!
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