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BackgroundBackground

Many distributed applications 
make use of predefined network 
representations:
◦ Compact routing schemes
◦ Informative labeling schemes 
for a variety of applications



BackgroundBackground

An important special case of a 
predefined network representation 
is that of a spanning tree.

Applications:
◦ Broadcast 
◦ Convergecast
◦ Graph exploration



BackgroundBackground

Desired property:                      
compact storage                            
   (in terms of number of bits).

Studied extensively for a variety 
of types of spanning trees.



Port-Based Port-Based 
RepresentationsRepresentations

n-node graph G(V,E) 
Each node u has        

  a pre-assigned 
distinct port number 
Port(u,v)                  
(from the range {0,
…,deg(u)-1})       for 
each edge (u,v)
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Port-Based Port-Based 
RepresentationsRepresentations

Note: 
The port numbers 
are not necessarily 
symmetric;

it could be that 
Port(u,v) ≠ Port(v,u).
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Port-Based Port-Based 
RepresentationsRepresentations
The nodes are required to maintain 

a directed spanning tree T of G
Each node is required to remember 

the port number leading to its 
parent in T.



The problemThe problem

The cost of a tree T is the total 
number of bits stored by the nodes,

 
Cost(T,G) ≈ ∑v log(Port(v,parent(v,T)))

Cost(G) = minT {Cost(T,G)} 



Illustration: Bad TreeIllustration: Bad Tree
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Illustration: Good TreeIllustration: Good Tree
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GoalsGoals

Algorithmic goal: given a graph G(V,E) 
and port assignment, find a spanning 
tree T of minimum cost.

Combinatorial goal: establish tight 
bounds on the function Cost(G)



Schemes for Port-Based Tree Schemes for Port-Based Tree 
RepresentationsRepresentations
The problem of compact port-based 

representations for spanning trees 
was introduced in [Cohen, 
Fraigniaud, Ilcinkas, Korman, Peleg, IWDC’05]

Question raised: the existence of 
spanning trees with representations 
in which the average number of bits 
stored at each node is constant 
(Cost(T,G) = O(n) )



KnownKnown
Lemma [Cohen et al., IWDC’05]:

  Cost(G) = O(n loglog n)                         
 for every n-node graph G.

Special cases: Cost(G) = O(n) 
for every complete n-node graph G 
for every n-node graph with a 

symmetric port labeling.



Conjecture [Cohen et al., IWDC’05]:

 Cost(G) = O(n) for every n-node G. 



New resultNew result

We confirm this conjecture, 
establishing a tight upper bound of O(n) 
for an arbitrary n-node  graph G with 
an arbitrary port assignment.



Trivial Upper BoundTrivial Upper Bound

A trivial upper bound of O(n log n) 
can be derived by taking an arbitrary 
spanning tree of the graph G.



Complete GraphsComplete Graphs

The algorithm maintains a collection 
of rooted directed trees.

Initially, each vertex forms a tree 
on its own. 

A tree construction algorithm



Complete GraphsComplete Graphs

The algorithm merges these trees into 
larger trees until it remains  with a 
single tree spanning the entire graph.



Complete GraphsComplete Graphs
The algorithm operates in log n phases 
Phase k handles all trees T such that 
size(T) < 2k



Complete GraphsComplete Graphs

For each such tree T with root r(T), look 
at the set of outgoing edges that connect 
T to some other tree T’ and select the 
edge e(T) of minimum cost.

r(T) T’



Complete GraphsComplete Graphs

Lemma
This process yields a tree of cost O(n)



Handling General GraphsHandling General Graphs
For an arbitrary graph, this process 
might fail once it encounters a tree T 
whose root has no outgoing edge        
to any node outside T

r(T)



Handling General GraphsHandling General Graphs
For each directed sub-tree T, 

search for the shortest 
reverse-path (v1,…,vk) of T     
(in hops):
◦ v1 = r(T),
◦ v1,…,vk ∈ V(T),
◦ (vi, vi+1) ∈ E,

◦ vk is an exit node, i.e.,             
 it has a neighbor                   
outside T



Handling General GraphsHandling General Graphs

Reverse the relevant edges on the 
path (v1,…,vk).



Handling General GraphsHandling General Graphs

Second, the algorithm looks at the set of 
exit edges of r(T’), and selects the exit 
edge (r(T’), z) of minimum Port(r(T’), z).

Merge T’ with the tree containing z by 
adding the edge (r(T’), z).



Handling General GraphsHandling General Graphs

By the analysis of Cohen et al., 
this algorithm yields a tree of 
cost O(n loglogn)



A tight Upper Bound – O(n)A tight Upper Bound – O(n)

The reverse paths could be 
expensive.
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A tight Upper Bound – O(n)A tight Upper Bound – O(n)

The goal is to use reverse paths as 
“light” as possible.



A tight Upper Bound – O(n)A tight Upper Bound – O(n)
Consider all nodes that participate 

in some “lighter” reverse path of 
later iterations .

Treat these nodes as nodes outside 
the tree T.

x



A tight Upper Bound – O(n)A tight Upper Bound – O(n)

x



A tight Upper Bound – O(n)A tight Upper Bound – O(n)

Partition the edges of the final tree 
into two subsets, Eout and Ervrs.

We bound separately the total cost 
of edges in each subset by O(n).



Out EdgesOut Edges



Reverse EdgesReverse Edges



Reverse Paths- CostReverse Paths- Cost

Consider a reverse edge (x,y). Let 
c = Port(x,y).

There are exactly c neighbors w of 
x that are “cheaper” than y, i.e., 
such that Port(x,w) < Port(x,y).

 Charging rule: If the algorithm 
selects the reverse edge (x,y),       
then for each such cheaper node w, 
incur a charge of 1 for w.



Reverse Paths- CostReverse Paths- Cost

Lemma 1
The lighter reverse paths are 

disjoint.

Lemma 2
Every node w is being charged in 

only one lighter reverse path.



Reverse Paths- CostReverse Paths- Cost

Lemma 3
Consider a reverse path P where w is being 
charged. 
Then there are at most three edges on P 
that charge  w.



A tight Upper Bound – O(n)A tight Upper Bound – O(n)

A careful analysis of the 
construction with the lighter reverse 
paths shows that the cost of the 
tree is O(n).



SummarySummary

We show the construction of 
spanning trees in which the average 
number of bits stored at each node 
is constant.

This is a tight upper bound.
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