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Problem Definition
Input: an undirected graph G whose edges are labeled/colored; 

     a property Π
Problem: compute a set of edges in G satisfying property Π that uses

           the minimum number of colors



Motivation

 Applications:  
 Telecommunication networks
 Multi-model transportation

 Example: Telecommunication Networks
 Nodes can communicate via different types of media
 Compute a connected topology that uses the fewest 

number of communication types/media
                          ⇔ Minimum Label Spanning Tree (MLST)
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Our Work

 We look at the minimum label graph problems from the 
parameterized complexity angle

 Parameter: number of labels
 Parameter: size of the solution (cardinality of the set of edges 

forming the solution)

 We show that most of the problems under consideration are W[2]-
hard when parameterized by the number of labels/colors, even on 
graphs whose pathwidth is at most a constant



Our Work

 We show that most of these problems are FPT when parameterized
by the solution size, with the exception of Minimum Label Path and 
Minimum Label Cut, which are W[1]-hard, even on graphs of 
pathwidth at most 2 and 4, respectively

 We present nontrivial FPT algorithms for Minimum Label Maximum 
Matching and Minimum Label Edge Dominating Set parameterized 
by the solution size
 



Parameterized Complexity: A 
Quick Review

  A parameterized problem Q is a set of
 instances of the form (x, k) 

Q is FPT if it can be solved in time f(k)nO(1)

Q is fpt-reducible to Q’ if there exists a reduction 
T that:                  

                      (x, k)  (x’, g(k)),
          and T runs in time f(k)|x|O(1)



Parameterized Complexity: A 
Quick Review

W-hierarchy:
                   At the bottom:  FPT 
                   W[i]: i ≥ 1

  W[1]-complete: Clique, IS
     W[2]-complete: DS, Set Cover, Hitting Set

   



W-hardness Results

 Theorem. Parameterized by the number of used labels:
 MLEDS and MLMM are W[2]-hard on trees of pw ≤ 2
 MLST and MLP are W[2]-hard on graphs with pw ≤ 2
 MLC and MLPM are W[2]-hard on graphs with pw ≤ 2
 MLHC is W[2]-hard on graphs with pw ≤ 5

    Proof. FPT-reduction from the W[2]-hard problem 
 Hitting Set 



W-hardness Results

 Theorem. Parameterized by the solution size:
 MLC is W[1]-hard on graphs of pw ≤ 4
 MLP is W[2]-hard on graphs with pw ≤ 2
 

    Proof. FPT-reduction from the W[1]-hard problem 
 Multicolored Clique



Tractability Results

Minimum Label Maximum Matching (MLMM)

Input: an undirected graph G whose edges are colored; 
      a parameter k: size of a maximum matching in G
     

Problem: compute a matching in G of size k whose edges 
           are colored with the minimum number of colors

 Theorem. MLMM is FPT 

 



The Algorithm

 The algorithm is a search-tree algorithm

 It grows a partial solution into an optimal solution OPT

 Let M be a maximal matching in G and I = V(G)\V(M); 
note that I is an independent set and that |M| ≤ k

 The algorithm consists of 3 stages

 



Stage 1

 
 

M

I

Branch on every e ∈ G[M]:

e in OPT: 
 remove e and its endpoints
 decrement k
 record color(e)

e ∉OPT:  remove e 



Stage 1

 
 

M

I

Branch on every remaining 
vertex v ∈ V(M):

v ∈ OPT:  keep v

v ∉OPT:   remove v



Stage 1

 
 

  S

I

B=(S, I) is bipartite
S has at most k vertices

Number of search-tree paths 
is O((8ek)k)



Stage 2

 
 

  S

I

 B=(S, I) is bipartite

 S has at most k vertices
  (assume w.l.o.g. |S|= k)

 Every vertex in S is an endpoint of
   an edge in OPT

  Problem: Compute a matching from
    S into I that uses the minimum
    number of colors 

 Constraint: some of the
   colors have already been used



Stage 2

 A matching is monochromatic if all its edges have the 
same color

 We try every possible partition of S into groups S1, …, Sl, 
such that all vertices in Si are matched in OPT by a 
monochromatic matching of distinct color

  Fix such a partition S1, …, Sl   



Stage 2

 
 

S2

S1

I

 

 

Sl



Stage 2

 It is possible that a group Si uses the color of an edge 
that was determined to be in OPT in Stage 1

 Therefore, for each subset of the colors used in Stage 1, 
we try every possible one-to-one mapping from this 
subset to S1, …, Sl  



Stage 2

 
 

S2

S1

I

 

 

Sl



Stage 2

 For each Si, if Si  has a pre-assigned color ci let
   Mi  = {Mi : Mi is a monochromatic matching of color ci that 

           matches Si into I} 
Otherwise, let

 Mi  = {Mi : Mi is a monochromatic matching that 
           matches Si into I}

 Let h(k) be a function of k to be determined later



Stage 2

We branch further to make B=(S, I) satisfy the following: 

Assumption. For each i=1,…, l
–  |Mi|  > h(k) 
–  Either the number of colors in Mi is more than h(k) or it is

 exactly 1 

–   If Mi has exactly one color in it, the every vertex in Si has
  more than h(k) edges incident on it in Mi

The number of branches in Stage 2 is O(kk+1 k! +h(k)3k),
and the running time along each branch is O(m√n +h(k)n)

            
 



Stage 3

  Let h(k) = k2 + k, and consider a partition of S into S1, 
…, Sl  where each Mi satisfies the previous assumption

Then:

 Theorem. In O(k3) we can compute a matching M’ 
matching S into I such that the set of edges in M’ 
incident on Si is a monochromatic matching in Mi



Proof

 
 

Sj+1

S1

I

 

 

Case 1: Mj+1 
contains more 
than h(k) colors

Case 2: Mj+1 
contains a single 
color



Running Time

Choosing h(k) = k2 + k: 

 The number of search-tree paths in Stage 1 is 
O((8ek)k) 

 The number of search-tree paths in Stage 2 is 
O((8ek)k k7k) 

  Stage 3 has no branching
 The running time along each path in the search-tree is 

O(km√n + k3n)
 Therefore, the running time of the algorithm is  

O((8e)k k7k+3m√n)
 

            
 



Minimum Label Edge Dominating 
Set

 Theorem. Parameterized by the solution size, Minimum 
Label Edge Dominating Set (MLEDS) is FPT

 

    Proof. Similar in flavor to that of MLMM



Concluding Remarks

 We showed that most minimum label problems are 
(parameterized) intractable w.r.t. the number of labels, 
even on graphs of bounded pathwidth, whereas most of 
these problems are FPT w.r.t. solution size

  Structured graph problems have received a lot of
  attention recently:

 Applications in Computational Biology and Networking
 They are hard
 Try to parameterize by different parameters: treewidth, pathwidth, VC, etc…

 Study other minimum label problems: Minimum Label 
Feedback Arc Set on directed graphs
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