Logical locality entails frugal distributed computation over graphs

Stéphane Grumbach, Zhilin Wu INRIA-LIAMA

Classical logics

- First order logic (FO)
- Fixpoint logics
- Monadic second order logic (MSO)

The starting point: FO

First Order Logic

- Foundation of mathematics and theoretical computer science
 - Used in databases: relational query languages
- Expressive power
 - Locality
 - Local areas of the graphs sufficient to evaluate FO formulas
 - Expressive power limited
 - Connectivity, parity (whether a set is of even size) are non-local properties, thus not expressible in FO

Complexity of FO

- Sequential complexity
 - Linear time over classes of locally tree decomposable graphs (including bounded degree graphs, planar graphs, etc)
- Parallel complexity
 - Evaluated in AC⁰, constant time over Boolean circuits with unbounded fan-in
- Distributed complexity?

Local distributed computation

- Message passing model
- Constant distributed time
 - Compute with information only from a bounded neighborhood

Solve global problems

by local distributed computations around each node

Does logical locality imply local distributed computation?

The answer is "NO"

Simple properties cannot be checked by local computations

"There are at least two distinct triangles"

Non-local communication is necessary

to check the distinctness of the two triangles

Frugal distributed computations

A bounded number of messages of size O(log n) sent over each link

Frugal computations resemble local computations over bounded degree networks

Each node receives only a bounded number of messages

Though the messages can come from remote nodes

Outline

- Locality of first order logic (FO)
- Frugal distributed computation
- Frugality of FO over bounded degree networks
- Frugality of FO over planar networks
- Frugality beyond FO properties

Locality of FO: Intuition

Connectivity: non-local

Parity: non-local

Neighborhood

- First order logic over graphs FO with vocabulary "E(x,y)"
- *k*-neighborhood of $v(N_k(v))$ Vertices with distance from v no more than k
- Let \overline{v} be a list of vertices, then $N_k(\overline{v}) \coloneqq \prod_i N_k(v_i)$
- "The distance between \overline{x} and z is no more than k" Expressed by an FO formula $dist(\overline{x}, z) \le k$

Local Formula

Local formula $\varphi(\bar{y})^{(k)}(\bar{x})$

(\overline{x} is a list of variables not occurring in $\varphi(\overline{y})$) The quantifiers of $\varphi(\overline{y})$ are bounded to the *k*-neighborhood of \overline{x}

• Example, if $\varphi(\overline{y}) \coloneqq \exists z \psi(\overline{y}, z)$, then $(\varphi(\overline{y}))^{(k)}(\overline{x}) \coloneqq \exists z (dist(\overline{x}, z) \le k \land (\psi(\overline{y}, z))^{(k)}(\overline{x}))$

Gaifman theorem

Each FO formula $\varphi(\overline{u}) (\overline{u} = u_1 \cdots u_p)$ can be written into a Boolean combination of sentences of the form

$$\exists x_1 \cdots \exists x_s \left(\bigwedge_{1 \le i < j \le s} d(x_i, x_j) > 2r \land \bigwedge_i \psi^{(r)}(x_i) \right)$$

and formulae of the form $\Psi^{(t)}(\overline{y})$, where $\overline{y} = y_1 \cdots y_q$ and $y_i \in \{u_1, \cdots, u_p\}$

Outline

- Locality of first order logic (FO)
- Frugal distributed computation
- Frugality of FO over bounded degree networks
- Frugality of FO over planar networks
- Frugality beyond FO properties

Distributed computation model

- Message passing model
- Asynchronous system
- Network topology modeled by a graph G=(V,E)
- Unique identifier for each node
- A breath-first-search (BFS) tree rooted at a distinguished node (requesting node) distributively stored

Frugal distributed algorithms

Only a constant number of messages of size O(log n) sent over each link during its computation

Frugal computation of FO sentences

- Let C be a class of graphs, and φ be an FO sentence. φ can be frugally computed over C if
 - ∃ a frugal distributed algorithm such that $\forall G \in C$ and any requesting node in *G*, after the algorithm terminates, the requesting node is in the accepting state iff *G* |= ϕ

Outline

- Locality of first order logic (FO)
- Frugal distributed computation
- Frugality of FO over bounded degree networks
- Frugality of FO over planar networks
- Frugality beyond FO properties

Locality of FO

over bounded degree networks

r-type of *v*

Isomorphic type of $(\langle N_r(v) \rangle^G, v)$

• G_1 and G_2 are (r,m)-equivalent

For every *r*-type τ ,

either G_1 and G_2 have the same number of vertices with *r*-type τ ,

or both have at least *m* vertices with *r*-type τ .

Locality of FO over bounded degree networks (continued)

Theorem. Fagin-Stockmeyer-Vardi

 $\forall k,d, \exists r=f(k), m=g(k,d), \text{ s.t.}$

- For all G_1 and G_2 with degree at most d,
 - if G_1 and G_2 are (r,m)-equivalent, then
 - G_1 and G_2 satisfy the same
 - FO sentences with quantifier rank at most k.

Frugal algorithm for FO over bounded degree networks

- The requesting node ask each node to collect the topology information of its rneighborhood.
- The *r*-types of the nodes are aggregated through the BFS tree to the requesting node up to the threshold *m* for each *r*-type.
 Finally the requesting node decides whether *G* |= φ

by using the information about the *r*-types. WG 2009 21

Complexity

- The total number of distinct *r*-types of graphs with degree bounded by *d* depends only on *r* and *d*
- Each *r*-type is counted up to the threshold *m*
- Over each link, only O(1) messages are sent during the computation

Outline

- Locality of first order logic (FO)
- Frugal distributed computation
- Frugality of FO over bounded degree networks
- Frugality of FO over planar networks
- Frugality beyond FO properties

Frugality of FO over planar networks

Idea

Transform the linear time centralized evaluation algorithm into the frugal distributed evaluation algorithm

Linear time centralized computation of FO over planar graphs

- Sufficient to consider FO sentences of the form $\exists x_1 \cdots \exists x_s \left(\bigwedge_{1 \le i < j \le s} d(x_i, x_j) > 2r \land \bigwedge_i \psi^{(r)}(x_i) \right)$
- Centralized algorithm
 - □ Select a distinguished vertex v_0 , decompose G=(V,E) into subgraphs $G[i,i+2r]:=\{v \mid i \leq dist(v_0,v) \leq i+2r\}$.
 - Evaluate $\psi^{(r)}(x)$ over G[i,i+2r]
 - Each G[i,i+2r] is a graph with bounded tree width
 - Construct from $\psi^{(r)}(x)$ an automaton **A** and run it over a tree decomposition obtained from G[i,i+2r]
 - □ Let *P* be the set of vertices *v* such that $\exists i, N_r(v) \subseteq G[i,i+2r]$ and $G[i,i+2r] \models \psi^{(r)}(v)$. Decide whether $\psi' := \exists x_1 \cdots \exists x_s \left(\bigwedge_{1 \leq i < j \leq s} d(x_i, x_j) > 2r \land \bigwedge_i P(x_i) \right)$ holds over *G* or not

Distributed computation of FO over planar networks

- Transform the centralized algorithm into a distributed one while ensuring frugality
- The most difficult part is to evaluate distributively $\psi^{(r)}(x)$ over G[i,i+2r]

Distributively Evaluate $\psi^{(r)}(x)$ over G[i,i+2r]

- $\psi^{(r)}(x)$ is a local formula, so $\psi^{(r)}(x)$ can be evaluated over each connected component of G[i,i+2r]
- Still use automata-theoretic technique
 - Construct an automaton **A** from $\psi^{(r)}(x)$
 - Construct and store distributively a tree decomposition for each connected component of *G*[*i*,*i*+2*r*]
 - Evaluate $\psi^{(r)}(x)$ by distributively running **A** over the tree decomposition.

Construct a tree decomposition for C_i

- Let C_i be a connected component of G[i,i+2r] and w_1^i, \dots, w_l^i be the nodes of C_i with distance *i* from the requesting node.
 - Let C'_i be the graph obtained from C_i by including all ancestors of w_1^i, \dots, w_l^i in the BFS tree.
 - □ Let C_i^* be the graph obtained from C_i by contracting all the ancestors of w_1^i, \dots, w_l^i into one vertex v^*

 C_i^* is a planar graph with bounded diameter

Construct a tree decomposition for C_i (continued)

 A tree decomposition of planar networks with bounded diameter can be computed frugally [Grumbach & Wu, manuscript]

• Construct a tree decomposition for C_i

Construct distributively a tree decomposition for C_i^* , while doing special treatments for the virtual vertex, and get a tree decomposition for C_i .

Outline

- Locality of first order logic (FO)
- Frugal distributed computation
- Frugality of FO over bounded degree networks
- Frugality of FO over planar networks
- Frugality beyond FO properties

Frugality beyond FO properties

FO unary queries: FO formulas φ(x) with one free variable x

- □ Example: "Vertices of degree *d*" $\xi_d(x) := \exists y_1 ... \exists y_d (\land_{i \neq j} y_i \neq y_j \land \land_i E(x, y_i) \land \forall z (E(x, z) \to \lor_i z = y_i))$
- Frugally computed over bounded degree and planar networks
- FO(#): Extension of FO with unary counting
 - Example: "the same number of vertices of degree 2 and 3" $\#x.\xi_2(x) = \#x.\xi_3(x)$

Frugally computed over bounded degree and planar networks

Fixpoint, MSO, ...

Conclusion

Logical locality implies low distributed complexity

- BFS tree assumption
 - Can be replaced by a pre-computed tree 2-spanner, independently of the choice of the requesting node
 - Best distributed message complexity:

 $O(\Delta)$ messages sent over each link

- Open question: Does a BFS tree can be frugally computed?
- Open question: Does NP-complete problems like Hamiltonicity, can be frugally computed?

Thanks!