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Introduction
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Classical logics

 First order logic (FO)
 Fixpoint logics
 Monadic second order logic (MSO)
 …

The starting point: FO
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First Order Logic

 Foundation of mathematics and theoretical 
computer science
 Used in databases: relational query languages

 Expressive power
 Locality

 Local areas of the graphs sufficient to evaluate FO 
formulas

 Expressive power limited
 Connectivity, parity (whether a set is of even size) are 

non-local properties, thus not expressible in FO
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Complexity of FO

 Sequential complexity
 Linear time over classes of locally tree 

decomposable graphs (including bounded degree 
graphs, planar graphs, etc)

 Parallel complexity
 Evaluated in AC0, constant time over Boolean 

circuits with unbounded fan-in
 Distributed complexity?
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Local distributed computation

 Message passing model
 Constant distributed time

 Compute with information only from a bounded 
neighborhood

Solve global problems 
by local distributed computations around each node
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Does logical locality imply 
local distributed computation?

 The answer is “NO”
Simple properties cannot be checked by local 

computations

“There are at least two distinct triangles”

Non-local communication is necessary 
to check the distinctness of the two triangles
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Frugal distributed computations

 A bounded number of messages 
of size O(log n) 

sent over each link
 Frugal computations resemble 

local computations 
over bounded degree networks

 Each node receives only 
a bounded number of messages

 Though the messages can come from 
remote nodes
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Outline

 Locality of first order logic (FO)
 Frugal distributed computation
 Frugality of FO over bounded degree 

networks
 Frugality of FO over planar networks
 Frugality beyond FO properties
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Locality of FO: Intuition
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Neighborhood 

 First order logic over graphs
FO with vocabulary “E(x,y)”

 k-neighborhood of v (Nk(v))
Vertices with distance from v no more than k

 Let    be a list of vertices, then

 “The distance between   and z is no more than k” 
Expressed by an FO formula 
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Local Formula

 Local formula                
(    is a list of variables not occurring in       ) 

The quantifiers of          are bounded to the k-
neighborhood of 

 Example, if                         , then 
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Gaifman theorem

 Each FO formula         (                   ) 
can be written into a Boolean combination 
of sentences of the form

and formulae of the form          , 
where                  and
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Outline

 Locality of first order logic (FO)
 Frugal distributed computation
 Frugality of FO over bounded degree 

networks
 Frugality of FO over planar networks
 Frugality beyond FO properties
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Distributed computation model

 Message passing model
 Asynchronous system
 Network topology modeled by a graph 

G=(V,E)
 Unique identifier for each node
 A breath-first-search (BFS) tree 

rooted at a distinguished node (requesting 
node) distributively stored
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Frugal distributed algorithms

Only a constant number of messages 
  of size O(log n) 

  sent over each link
during its computation
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Frugal computation of FO sentences 

 Let C be a class of graphs, and ϕ be an FO 
sentence. ϕ can be frugally computed over C 
if
 ∃ a frugal distributed algorithm such that 
 ∀ G ∈ C and any requesting node in G, 
 after the algorithm terminates, the requesting 
node is in the accepting state iff G |= ϕ
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Outline

 Locality of first order logic (FO)
 Frugal distributed computation
 Frugality of FO over bounded degree 

networks
 Frugality of FO over planar networks
 Frugality beyond FO properties
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Locality of FO 
over bounded degree networks
 r-type of v

Isomorphic type of (〈Nr(v)〉G,v)

 G1 and G2 are (r,m)-equivalent
For every r-type τ, 
either G1and G2 have the same number of vertices 
with r-type τ, 
or both have at least m vertices with r-type τ.
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Locality of FO 
over bounded degree networks 
(continued)
 Theorem. Fagin-Stockmeyer-Vardi

∀k,d, ∃r=f(k), m=g(k,d), s.t. 
 For all G1 and G2 with degree at most d, 
   if G1 and G2 are (r,m)-equivalent, then 

G1 and G2 satisfy the same 
FO sentences with quantifier rank at most k. 
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Frugal algorithm for FO 
over bounded degree networks
 The requesting node ask each node to collect 

  the topology information of its r-
neighborhood.

 The r-types of the nodes are 
  aggregated through the BFS tree 
    to the requesting node 
      up to the threshold m for each r-type. 

 Finally the requesting node 
  decides whether G |=ϕ 
    by using the information about the r-types.



07/22/09 WG 2009 22

Complexity

 The total number of distinct r-types of 
  graphs with degree bounded by d 
  depends only on r and d

 Each r-type is counted up to the threshold m
 Over each link, 

only O(1) messages are sent during the 
computation
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Outline

 Locality of first order logic (FO)
 Frugal distributed computation
 Frugality of FO over bounded degree 

networks
 Frugality of FO over planar networks
 Frugality beyond FO properties
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Frugality of FO
over planar networks

 Idea
Transform 
  the linear time centralized evaluation algorithm
 into 
        the frugal distributed evaluation algorithm
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Linear time centralized computation of 
FO over planar graphs
 Sufficient to consider FO sentences of the form

 Centralized algorithm
 Select a distinguished vertex v0, decompose G=(V,E) into 

subgraphs G[i,i+2r]:={v | i ≤ dist(v0,v) ≤ i+2r}.
 Evaluate ψ(r)(x) over G[i,i+2r] 

 Each G[i,i+2r] is a graph with bounded tree width
 Construct from ψ(r)(x) an automaton A and run it over a tree 

decomposition obtained from G[i,i+2r]
 Let P be the set of vertices v such that ∃i, Nr(v) ⊆G[i,i+2r] and 

G[i,i+2r] |= ψ(r)(v).
     Decide whether                                                              holds over G or 

not
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Distributed computation of FO over 
planar networks
 Transform the centralized algorithm 

  into a distributed one 
    while ensuring frugality

 The most difficult part is 
  to evaluate distributively ψ(r)(x) over G[i,i+2r]
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Distributively Evaluate ψ(r)(x) over 
G[i,i+2r]
 ψ (r) (x) is a local formula, so 

ψ (r) (x)  can be evaluated over each connected 
component of G[i,i+2r]

 Still use automata-theoretic technique
 Construct an automaton A from ψ (r) (x)
 Construct and store distributively a tree 

decomposition for each connected component of 
G[i,i+2r]

 Evaluate ψ (r) (x) by distributively running A over the 
tree decomposition.
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Construct a tree decomposition for Ci

 Let Ci be a connected component 
of G[i,i+2r] and                be the 
nodes of Ci with distance i from the 
requesting node. 
 Let      be the graph obtained from Ci by 

including all ancestors of                 in 
the BFS tree.

 Let     be the graph obtained from Ci by 
contracting all the ancestors of          
into one vertex v* 
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Construct a tree decomposition for Ci 

(continued)
 A tree decomposition of 

  planar networks with bounded diameter 
    can be computed frugally
    [Grumbach & Wu, manuscript]

 Construct a tree decomposition for Ci

    Construct distributively a tree decomposition for     , 
while doing special treatments for the virtual vertex, 
and get  a tree decomposition for Ci .

*
iC
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Outline

 Locality of first order logic (FO)
 Frugal distributed computation
 Frugality of FO over bounded degree 

networks
 Frugality of FO over planar networks
 Frugality beyond FO properties
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Frugality beyond FO properties

 FO unary queries: FO formulas ϕ(x) with one free 
variable x 
 Example: “Vertices of degree d” 

 ξd(x) := ∃y1…∃ yd (∧i≠j yi≠yj ∧ ∧i E(x, yi) ∧ ∀z (E(x,z) → ∨i z=yi))
 Frugally computed over 

  bounded degree and planar networks
 FO(#): Extension of FO with unary counting

 Example: “the same number of vertices of degree 2 and 3” 
#x.ξ2(x) = #x.ξ3(x)

 Frugally computed over 
  bounded degree and planar networks 

 Fixpoint, MSO, …
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Conclusion

 Logical locality implies low distributed complexity
 BFS tree assumption

 Can be replaced by 
  a pre-computed tree 2-spanner, 
    independently of the choice of the requesting node

 Best distributed message complexity: 
  O(∆) messages sent over each link

 Open question: 
  Does a BFS tree can be frugally computed?

 Open question: Does NP-complete problems like 
Hamiltonicity, can be frugally computed?
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Thanks!
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