An algorithmic study of switch graphs

Bastian Katz¹

Ignaz Rutter¹ Gerhard J. Woeginger²

¹ Algorithmics Group Faculty of Informatics Universität Karlsruhe (TH), KIT ² Department of Mathematics and **Computer Science** TU Eindhoven

June 26. WG 2009

What is a switch?

Definition (Switch)

A switch on a vertex set V is a pair (p_s, T_s) .

- $\gg p_s \in V$ is the *pivot* vertex
- $\gg \emptyset \neq T_s \subseteq V$ is the set of *target* vertices

We may enable exactly one of the edges $\{\{p_s, t_s\} \mid t_s \in T_s\}$

Algorithmic Group Faculty of Informatics < □ ▶ < ☐ ▶</p>

What is a switch?

Definition (Switch)

A switch on a vertex set V is a pair (p_s, T_s) .

- $\gg p_s \in V$ is the *pivot* vertex
- $\gg \emptyset \neq T_s \subseteq V$ is the set of *target* vertices

We may enable exactly one of the edges $\{\{p_s, t_s\} \mid t_s \in T_s\}$

Algorithmic Group Faculty of Informatics • • • • • • • • • •

What is a switch?

Definition (Switch)

A switch on a vertex set V is a pair (p_s, T_s) .

- $\gg p_s \in V$ is the *pivot* vertex
- $\gg \emptyset \neq T_s \subseteq V$ is the set of *target* vertices

We may enable exactly one of the edges $\{\{p_s, t_s\} \mid t_s \in T_s\}$

< □ ▶ < ⊡ ▶</p>

Switch graph G = (V, S): S set of switches on vertex set V.

Algorithmic Group Faculty of Informatics < □ ▶ < ^[]/^[] ▶

Switch graph G = (V, S): S set of switches on vertex set V.

• • • • • • • • • •

Switch graph G = (V, S): S set of switches on vertex set V.

A configuration is a mapping $c: S \to V$ s.t. $c(s) \in T_s$ $\forall s \in S$.

I □ ▶ I □ ▶

Switch graph G = (V, S): S set of switches on vertex set V.

A configuration is a mapping $c: S \to V$ s.t. $c(s) \in T_s \quad \forall s \in S$.

- $\gg c$ picks exactly one edge $e_c(s) := \{p_s, c(s)\}$ for every switch s.
- ≫ Yields multigraph $G_c = (V, E_c)$ with $E_c = \{e_c(s) : s \in S\}$.

Algorithmic Group

Faculty of Informatics

Switch graph G = (V, S): S set of switches on vertex set V.

A configuration is a mapping $c: S \to V$ s.t. $c(s) \in T_s$ $\forall s \in S$.

- $\gg c$ picks exactly one edge $e_c(s) := \{p_s, c(s)\}$ for every switch s.
- ≫ Yields multigraph $G_c = (V, E_c)$ with $E_c = \{e_c(s) : s \in S\}$.

A switch graph represents a population of graphs, a configuration describes a concrete member of that family.

Image: A matrix and a matrix

Problems on switch graphs

Every graph property \mathcal{P} yields problem on switch graphs:

Problem SWITCH- \mathcal{P}

Input: Switch graph G = (V, S) with n := |V|, m := |S| and fan-out $k := \max_{s \in S} |T_s|$. Question: Does G have a configuration c such that G_c has property \mathcal{P} ?

- \gg Bipartiteness
- ≫ Global Connectivity
- \gg Local Connectivity (given vertices a, b are connected)
- ≫ Biconnectivity
- ≫ Planarity
- \gg Eulerianness
- \gg Acyclicity

Related work

Cook introduced switch graphs to study certain stable configurations of Rule 101: [Cook '03]

 $\gg O(n^2)$ algorithm detecting a configuration containing a cycle.

 \gg binary switches, only vertices with degree 3 may have a switch

Groote and Ploeger study complexity of certain graph properties on switch graphs with binary switches: [Groote, Ploeger '08]

- \gg mostly *forward directed* switch graphs (pivot ightarrow target)
- $\gg O(n)$ algorithm for finding configuration with a directed *a*-*b* path, for given *a*, *b*.

>> Several open questions, our work is heavily inspired by these. Reinhardt gives $O(n^4)$ algorithm for finding a configuration with an *a*-*b* path in a model similar to Cook's. [Reinhardt '09]

Our results.

The following problems are NP-hard for switch graphs:

- \gg SwitchBipartite
- \gg SwitchTriangleFree
- \gg SwitchPlanar
- \gg SwitchBiconnected
- \gg SWITCHEULERIAN (directed and undirected)
- » SwitchStronglyConnected
- \gg SwitchMinCycles
- We give efficient algorithms for the following problems:
 - \gg SWITCHDIRECTEDACYCLIC: O(n + km) time
 - \gg Global connectivity: $O(km + kn^2)$ time
 - \gg Local connectivity: O(km + nlpha(n)) time

• • • • • • • • • •

Our results.

The following problems are NP-hard for switch graphs:

- \gg SwitchBipartite
- \gg SwitchTriangleFree
- \gg SwitchPlanar
- \gg SwitchBiconnected
- \gg SWITCHEULERIAN (directed and undirected)
- » SwitchStronglyConnected
- \gg SwitchMinCycles
- We give efficient algorithms for the following problems:
 - \gg SwitchDirectedAcyclic: O(n + km) time
 - \gg Global connectivity: $O(km + kn^2)$ time
 - \gg Local connectivity: $O(km + n\alpha(n))$ time

• • • • • • • • • •

SWITCHPLANAR

Theorem

Given a switch graph G = (V, S) it is NP-hard to decide whether there exists a configuration c such that G_c is planar.

Proof: Gadget proof, reduction from a variant of Planar 3SAT.

I □ ► I □ ►

Hardness of SWITCHPLANAR

Gadget proof:

< □ ▶ < ☐ ▶</p>

Hardness of SWITCHPLANAR

Gadget proof:

Algorithmic Group

Faculty of Informatics

Monotone Planar 3SAT

Planar 3SAT:

Algorithmic Group Faculty of Informatics

Monotone Planar 3SAT

Planar 3SAT:

Monotone:

- $\gg\,$ literals of each clause are either all positive or all negative
- $\gg\,$ clauses with positive literals drawn above x-axis, negative clauses below

Algorithmic Group Faculty of Informatics I □ ▶ I □ ▶

Monotone Planar 3SAT

Planar 3SAT:

Monotone:

- $\gg\,$ literals of each clause are either all positive or all negative
- >>> clauses with positive literals drawn above x-axis, negative clauses below

Theorem (de Berg, Koshravi, submitted)

MONOTONE PLANAR 3SAT is NP-hard.

SWITCHPLANAR (example)

Global Connectivity

Definition (SWITCHCONNECT)

Given a switch graph G = (V, S). Is there a configuration c of the switches such that G_c is connected?

Switch graph G = (V, S),

E := all multi-edges on V possibly resulting from S.

Switch graph G = (V, S), E := all multi-edges on V possibly resulting from S.

Connectivity via matroid intersection

Define two matroids (E, \mathcal{I}_1) , (E, \mathcal{I}_2) :

 $\gg E' \in \mathcal{I}_1 \Leftrightarrow E'$ is acyclic

$$\gg~E'\in \mathcal{I}_2 \Leftrightarrow E'$$
 contains ≤ 1 edge per switch

Algorithmic Group Faculty of Informatics • • • • • • • • •

Switch graph G = (V, S), E := all multi-edges on V possibly resulting from S.

Connectivity via matroid intersection

Define two matroids
$$(E, \mathcal{I}_1)$$
, (E, \mathcal{I}_2) :

$$\gg~E'\in \mathcal{I}_1 \Leftrightarrow E'$$
 is acyclic

$$\gg E' \in \mathcal{I}_2 \Leftrightarrow E'$$
 contains ≤ 1 edge per switch

G has connected configuration \Leftrightarrow

ex.
$$E' \in \mathcal{I}_1 \cap \mathcal{I}_2$$

with $|E'| = n - 1$.

Algorithmic Group

< □ > < ⊡ >

Switch graph G = (V, S), E := all multi-edges on V possibly resulting from S.

Connectivity via matroid intersection

Define two matroids
$$(E, \mathcal{I}_1)$$
, (E, \mathcal{I}_2) :

$$\gg \ E' \in \mathcal{I}_1 \Leftrightarrow E'$$
 is acyclic

$$\gg E' \in \mathcal{I}_2 \Leftrightarrow E'$$
 contains ≤ 1 edge per switch

G has connected configuration \Leftrightarrow

ex.
$$E' \in \mathcal{I}_1 \cap \mathcal{I}_2$$

with $|E'| = n - 1$.

 \rightsquigarrow polynomial algorithm $\approx O(n^4)$

Image: A matrix and a matrix

A new matroid

A matroid of switches

Define new matroid (S, \mathcal{I}_3) : $S' \in \mathcal{I}_3 \Leftrightarrow \text{ex. configuration } c \text{ with } G_c(S') \text{ acyclic.}$

A new matroid

A matroid of switches

Define new matroid (S, \mathcal{I}_3) : $S' \in \mathcal{I}_3 \Leftrightarrow \text{ex. configuration } c \text{ with } G_c(S') \text{ acyclic.}$

 $\begin{array}{lll} G & {\rm YES}\text{-Instance of} & \\ {\rm SWITCHCONNECT} & \Leftrightarrow & (S,\mathcal{I}_3) \text{ has independent} \\ & {\rm set of size } n-1 \end{array}$

<u>A new matroid</u>

A matroid of switches

Define new matroid (S, \mathcal{I}_3) : $S' \in \mathcal{I}_3 \Leftrightarrow \text{ex. configuration } c \text{ with } G_c(S') \text{ acyclic.}$

To solve $\operatorname{SwitchConnect}$ we need to steps:

- Show that (S, \mathcal{I}_3) is a matroid.
- Give a fast independence test for (S, \mathcal{I}_3) .

< □ ▶ < ⊡ ▶

<u>A new matroid</u>

Theorem

 (S, \mathcal{I}_3) is a matroid.

Proof:

- $\gg \emptyset \in \mathcal{I}_3.$
- $\gg A \in \mathcal{I}_3, B \subseteq A \Rightarrow B \in \mathcal{I}_3.$

Remains to show: $A, B \in \mathcal{I}_3$, $|A| < |B| \Rightarrow \exists x \in B \setminus A : A \cup \{x\} \in \mathcal{I}_3$.

< □ ▶ < ⊡ ▶

<u>A new matroid</u>

Theorem

 (S, \mathcal{I}_3) is a matroid.

Algorithmic Group

Faculty of Informatics

Proof:

$$\gg \emptyset \in \mathcal{I}_3$$

$$\gg A \in \mathcal{I}_3, B \subseteq A \Rightarrow B \in \mathcal{I}_3.$$

Remains to show: $A, B \in \mathcal{I}_3$, $|A| < |B| \Rightarrow \exists x \in B \setminus A : A \cup \{x\} \in \mathcal{I}_3$.

- ≫ Let c_A, c_B acyclic configurations of A, B with max. similarity, i.e., $|\{s \in A \cap B \mid c_A(s) = c_B(s)\}|$ maximum. Let E_A, E_B be the corresponding acyclic edge sets.
- $\gg |E_A| < |E_B| \Rightarrow ex. e_b \in E_B \setminus E_A$ with $E_A \cup \{e_b\}$ acyclic. Let $x \in B$ the corresponding switch.
- ≫ Now $A \cup \{x\}$ is independent and $x \notin A$, otherwise could make _ c_A, c_B more similar.

Lemma

Let $S' \subseteq S$. Then $S' \in \mathcal{I}_3 \implies \forall S'' \subseteq S' : |S''| < |V(S'')|$.

<**□** < **⊡** < **⊡** < </l>

Lemma

Let $S' \subseteq S$. Then $S' \in \mathcal{I}_3 \implies \forall S'' \subseteq S' \colon |S''| < |V(S'')|$.

• • • • • • • • • •

Lemma

Let $S' \subseteq S$. Then $S' \in \mathcal{I}_3 \iff \forall S'' \subseteq S' \colon |S''| < |V(S'')|$.

<□ > < @ >

Lemma

Let $S' \subseteq S$. Then $S' \in \mathcal{I}_3 \iff \forall S'' \subseteq S' : |S''| < |V(S'')|$.

Proof: " \Rightarrow ": \checkmark

• • • • • • • • •

Lemma

Let $S' \subseteq S$. Then $S' \in \mathcal{I}_3 \iff \forall S'' \subseteq S' : |S''| < |V(S'')|$.

Proof: " \Rightarrow ": $\sqrt{}$ " \Leftarrow ": Let S' be minimal dependent set of switches. $\Rightarrow \exists$ configuration of S with exactly one cycle

Lemma

Let $S' \subseteq S$. Then $S' \in \mathcal{I}_3 \iff \forall S'' \subseteq S' : |S''| < |V(S'')|$.

Proof: " \Rightarrow ": $\sqrt{}$ " \Leftarrow ": Let S' be minimal dependent set of switches. $\Rightarrow \exists$ configuration of S with exactly one cycle

We show that S' contains a subset with few vertices.

Algorithmic Group Faculty of Informatics • • • • • • • • •

Image: Image:

Continue picking switches until

● $!\exists$ selectable switch

• • • • • • • • •

Continue picking switches until

() $!\exists$ selectable switch \Rightarrow set of vertices with too many switches

Continue picking switches until

- **(**) $!\exists$ selectable switch \Rightarrow set of vertices with too many switches
- After removal of s_1, \ldots, s_k remaining graph is acyclic

• • • • • • • • • • •

Continue picking switches until

- **(**) $!\exists$ selectable switch \Rightarrow set of vertices with too many switches
- After removal of s_1, \ldots, s_k remaining graph is acyclic

Image: A matrix A

Continue picking switches until

- $\textcircled{\ } \exists \ selectable \ switch \Rightarrow set \ of \ vertices \ with \ too \ many \ switches }$
- After removal of s_1, \ldots, s_k remaining graph is acyclic

• • • • • • • • • • •

Continue picking switches until

- $\textcircled{\ } \exists \ selectable \ switch \Rightarrow set \ of \ vertices \ with \ too \ many \ switches }$
- After removal of s_1, \ldots, s_k remaining graph is acyclic

• • • • • • • • • • •

Continue picking switches until

- **(**) $!\exists$ selectable switch \Rightarrow set of vertices with too many switches
- After removal of s_1, \ldots, s_k remaining graph is acyclic

• • • • • • • • • • •

Continue picking switches until

- **(**) $!\exists$ selectable switch \Rightarrow set of vertices with too many switches
- After removal of s_1, \ldots, s_k remaining graph is acyclic

• • • • • • • • • • •

- **(**) $!\exists$ selectable switch \Rightarrow set of vertices with too many switches
- After removal of s_1, \ldots, s_k remaining graph is acyclic

• • • • • • • • • • •

- **(**) $!\exists$ selectable switch \Rightarrow set of vertices with too many switches
- After removal of s_1, \ldots, s_k remaining graph is acyclic

• • • • • • • • • • •

- **(**) $!\exists$ selectable switch \Rightarrow set of vertices with too many switches
- After removal of s_1, \ldots, s_k remaining graph is acyclic

• • • • • • • • • •

- **(**) $!\exists$ selectable switch \Rightarrow set of vertices with too many switches
- After removal of s_1, \ldots, s_k remaining graph is acyclic

< • > < • • > <

Algorithmic Group

Faculty of Informatics

Faculty of Informatics

Faculty of Informatics

Testing independence

Lemma (Independence Test)

Given independent set of switches S' with acyclic configuration and an additional switch s we can compute in O(kn) time either

$$\gg S'' \subseteq S' \cup \{s\}$$
 with $|S''| >= |V(S'')|$ or

 \gg acyclic configuration of $S' \cup \{s\}$.

I □ ▶ I □ ▶

Testing independence

Lemma (Independence Test)

Given independent set of switches S' with acyclic configuration and an additional switch s we can compute in O(kn) time either

$$\gg S'' \subseteq S' \cup \{s\}$$
 with $|S''| >= |V(S'')|$ or

≫ acyclic configuration of $S' \cup \{s\}$.

Theorem

Given switch graph G = (V, S) can compute in $O(m \cdot kn)$ time a maximal independent set of switches with an acyclic configuration.

• • • • • • • • • •

Testing independence

Lemma (Independence Test)

Given independent set of switches S' with acyclic configuration and an additional switch s we can compute in O(kn) time either

$$\gg S'' \subseteq S' \cup \{s\}$$
 with $|S''| >= |V(S'')|$ or

≫ acyclic configuration of $S' \cup \{s\}$.

Theorem

Algorithmic Group

Faculty of Informatics

Given switch graph G = (V, S) can compute in $O(m \cdot kn)$ time a maximal independent set of switches with an acyclic configuration.

Running time can be improved to $O(km + kn^2)$.

Image: A matrix and a matrix

Local Connectivity

Definition (*a*-*b*-Connectivity)

Given a switch graph G = (V, S) and $a, b \in V$.

Is there a configuration c such that a, b are connected in $G_c(S)$?

Bastian Katz, Ignaz Rutter, Gerhard Woeginger – Switch Graphs

< <p>I > < </p>

Algorithmic Group Faculty of Informatics

Bastian Ratz, Ignaz Rutter, Gernard Woegniger - Switt

 \gg Build search tree with root a

Algorithmic Group

Faculty of Informatics

- Edges used from target to pivot block the switch.
- Edges from pivot to target may all be explored.

- \gg Build search tree with root a
 - \gg Edges used from target to pivot block the switch.
 - Edges from pivot to target may all be explored.

- \gg Build search tree with root a
 - \gg Edges used from target to pivot block the switch.
 - Edges from pivot to target may all be explored.
- \gg Does not find all paths!
 - Direction of traversal is important for cycles of switches.
 - \gg Idea: contract cycles.

- \gg Build search tree with root a
 - \gg Edges used from target to pivot block the switch.
 - Edges from pivot to target may all be explored.
- \gg Does not find all paths!
 - Direction of traversal is important for cycles of switches.
 - $\gg\,$ Idea: contract cycles.
- ≫ Correctness? Running time?

Algorithmic Group

Faculty of Informatics

Bastian Katz, Ignaz Rutter, Gerhard Woeginger - Switch Graphs

Lemma

Let $x \in V$ with an x-a path P s.t. all switches of P are used "forward". Contracting switches with pivot xthat are not on P does not change the vertices reachable from a.

Lemma

Let $x \in V$ with an x-a path P s.t. all switches of P are used "forward". Contracting switches with pivot xthat are not on P does not change the vertices reachable from a.

Lemma

Let $x \in V$ with an x-a path P s.t. all switches of P are used "forward". Contracting switches with pivot xthat are not on P does not change the vertices reachable from a.

 \gg preserves reachability from a

Image: A matrix and a matrix

Lemma

Let $x \in V$ with an x-a path P s.t. all switches of P are used "forward". Contracting switches with pivot xthat are not on P does not change the vertices reachable from a.

 \gg preserves reachability from a

Image: A matrix and a matrix

Lemma

Let $x \in V$ with an x-a path P s.t. all switches of P are used "forward". Contracting switches with pivot xthat are not on P does not change the vertices reachable from a.

 \gg preserves reachability from a

Image: A matrix and a matrix

Lemma

Let $x \in V$ with an x-a path P s.t. all switches of P are used "forward". Contracting switches with pivot xthat are not on P does not change the vertices reachable from a.

 \gg preserves reachability from a

Lemma

Let $x \in V$ with an x-a path P s.t. all switches of P are used "forward". Contracting switches with pivot xthat are not on P does not change the vertices reachable from a.

preserves reachability from a
 contracts cycles of switches

Lemma

Let $x \in V$ with an x-a path P s.t. all switches of P are used "forward". Contracting switches with pivot xthat are not on P does not change the vertices reachable from a.

preserves reachability from a
 contracts cycles of switches

Algorithmic Group

Faculty of Informatics

Lemma

Let $x \in V$ with an x-a path P s.t. all switches of P are used "forward". Contracting switches with pivot xthat are not on P does not change the vertices reachable from a.

preserves reachability from a
 contracts cycles of switches

Lemma

Let $x \in V$ with an x-a path P s.t. all switches of P are used "forward". Contracting switches with pivot xthat are not on P does not change the vertices reachable from a.

preserves reachability from a
 contracts cycles of switches

Lemma

Let $x \in V$ with an x-a path P s.t. all switches of P are used "forward". Contracting switches with pivot xthat are not on P does not change the vertices reachable from a.

- >> preserves reachability from a>> contracts cycles of switches >> b reachable from a iff b has
- forward path from b to a
- $\gg O(n^2 + nmk)$ algorithm!

- \gg Pivot receives label:
 - \gg Mark tree edge blue
 - \gg Mark blocked edges red

- \gg Pivot receives label:
 - \gg Mark tree edge blue
 - \gg Mark blocked edges red

- \gg Pivot receives label:
 - \gg Mark tree edge blue
 - \gg Mark blocked edges red

- Pivot receives label:
 Mark tree edge blue
 Mark blocked edges red
 Target receives label:
 - \gg Contract edge

- Pivot receives label:
 Mark tree edge blue
 Mark blocked edges red
 Target receives label:
 - \gg Contract edge

- Pivot receives label:
 Mark tree edge blue
 Mark blocked edges red
 Target receives label:
 Contract edge
- \gg Both already labeled:
 - \gg mark edge green

- Pivot receives label:
 Mark tree edge blue
 Mark blocked edges red
 Target receives label:
 Contract edge
- \gg Both already labeled:
 - \gg mark edge green

- Pivot receives label:
 Mark tree edge blue
 Mark blocked edges red
 Target receives label:
 Contract edge
- \gg Both already labeled:
 - \gg mark edge green

- Pivot receives label:
 Mark tree edge blue
 Mark blocked edges red
 Target receives label:
 Contract edge
- \gg Both already labeled:
 - \gg mark edge green

- Pivot receives label:

 Mark tree edge blue
 Mark blocked edges red

 Target receives label:

 Contract edge

 Both already labeled:
 - \gg mark edge green

- \gg Pivot receives label:
 - Mark tree edge blue
 Mark blocked edges red
- \gg Target receives label:
 - \gg Contract edge
- \gg Both already labeled:

Algorithmic Group

Faculty of Informatics

- \gg mark edge green
- Screen edges may be contracted: node with bigger label changes marking of its incident edges:
 - $\gg~$ blue $\rightarrow~$ green, red $\rightarrow~$ black

- \gg Pivot receives label:
 - Mark tree edge blue
 Mark blocked edges red
- \gg Target receives label:
 - \gg Contract edge
- \gg Both already labeled:

Algorithmic Group

Faculty of Informatics

- \gg mark edge green
- Screen edges may be contracted: node with bigger label changes marking of its incident edges:
 - $\gg~$ blue $\rightarrow~$ green, red $\rightarrow~$ black

- \gg Pivot receives label:
 - Mark tree edge blue
 Mark blocked edges red
- \gg Target receives label:
 - \gg Contract edge
- \gg Both already labeled:

Algorithmic Group

Faculty of Informatics

- \gg mark edge green
- Screen edges may be contracted: node with bigger label changes marking of its incident edges:
 - $\gg~$ blue $\rightarrow~$ green, red $\rightarrow~$ black

- \gg Pivot receives label:
 - Mark tree edge blue
 Mark blocked edges red
- \gg Target receives label:
 - \gg Contract edge
- \gg Both already labeled:

Algorithmic Group

Faculty of Informatics

- \gg mark edge green
- Green edges may be contracted: node with bigger label changes marking of its incident edges:
 - $\gg~$ blue $\rightarrow~$ green, red $\rightarrow~$ black

- \gg Pivot receives label:
 - Mark tree edge blue
 Mark blocked edges red
- ≫ Target receives label:
 - ≫ Contract edge
- \gg Both already labeled:
 - \gg mark edge green
- Screen edges may be contracted: node with bigger label changes marking of its incident edges:
 - $\gg~$ blue $\rightarrow~$ green, red $\rightarrow~$ black

SKI

- \gg Pivot receives label:
 - Mark tree edge blue
 Mark blocked edges red
- \gg Target receives label:
 - \gg Contract edge
- \gg Both already labeled:
 - \gg mark edge green
- Screen edges may be contracted: node with bigger label changes marking of its incident edges:
 - $\gg~$ blue $\rightarrow~$ green, red $\rightarrow~$ black

- >>> Pivot receives label:
 - Mark tree edge blue
 Mark blocked edges red
- \gg Target receives label:
 - \gg Contract edge
- \gg Both already labeled:
 - \gg mark edge green
- Screen edges may be contracted: node with bigger label changes marking of its incident edges:
 - $\gg~$ blue $\rightarrow~$ green, red $\rightarrow~$ black

Bastian Katz, Ignaz Rutter, Gerhard Woeginger - Switch Graphs

- \gg Pivot receives label:
 - Mark tree edge blue
 Mark blocked edges red
- \gg Target receives label:
 - \gg Contract edge
- \gg Both already labeled:

Algorithmic Group

Faculty of Informatics

- \gg mark edge green
- Screen edges may be contracted: node with bigger label changes marking of its incident edges:
 - $\gg~$ blue $\rightarrow~$ green, red $\rightarrow~$ black

Bastian Katz, Ignaz Rutter, Gerhard Woeginger - Switch Graphs

- >> Pivot receives label:
 - Mark tree edge blue
 Mark blocked edges red
- \gg Target receives label:
 - \gg Contract edge
- \gg Both already labeled:

Algorithmic Group

Faculty of Informatics

- \gg mark edge green
- Green edges may be contracted: node with bigger label changes marking of its incident edges:
 - $\gg~$ blue $\rightarrow~$ green, red $\rightarrow~$ black
- \gg Running time: $O(km + n\alpha(n))$

Bastian Katz, Ignaz Rutter, Gerhard Woeginger - Switch Graphs

Conclusion and Open Problems

Known: Finding configurations with the following properties is NP-hard: Bipartite, triangle-free, Eulerian, biconnected, strongly connected, planar, minimum number of directed cycles

Problem (SWITCHCONNECT-T)

Input: Given a switch graph G = (V, S) and a set $T \subseteq V$.

Question: Is there a configuration c such that in G_c all vertices in T are in the same connected component.

Results:

- \gg Efficient algorithms for |T| = 2 and T = V.
- \gg NP-hard for arbitrary T.

Open: What about |T| = 3? FPT with parameter |T|?

• • • • • • • • • •

Bastian Katz, Ignaz Rutter, Gerhard Woeginger - Switch Graphs

