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Introduction SwitchPlanar Global Connectivity Local Connectivitiy

What is a switch?

Definition (Switch)

A switch on a vertex set V is a pair (ps ,Ts).

� ps ∈ V is the pivot vertex

� ∅ 6= Ts ⊆ V is the set of target vertices

We may enable exactly one of the edges {{ps , ts} | ts ∈ Ts}

ps
Ts
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Introduction SwitchPlanar Global Connectivity Local Connectivitiy

What is a switch graph?

Switch graph G = (V ,S): S set of switches on vertex set V .

s1

s2

s3

s4

s5

s6

A configuration is a mapping c : S → V s.t. c(s) ∈ Ts ∀s ∈ S .

� c picks exactly one edge ec(s) := {ps , c(s)} for every switch s.

� Yields multigraph Gc = (V ,Ec) with Ec = {ec(s) : s ∈ S}.

A switch graph represents a population of graphs, a configuration
describes a concrete member of that family.
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Problems on switch graphs

Every graph property P yields problem on switch graphs:

Problem Switch-P
Input: Switch graph G = (V , S) with n := |V |,m := |S | and fan-out
k := maxs∈S |Ts |.
Question: Does G have a configuration c such that Gc has property P?

� Bipartiteness
� Global Connectivity
� Local Connectivity (given vertices a, b are connected)
� Biconnectivity
� Planarity
� Eulerianness
� Acyclicity
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Related work

Cook introduced switch graphs to study certain stable configurations of
Rule 101: [Cook ’03]

� O(n2) algorithm detecting a configuration containing a cycle.

� binary switches, only vertices with degree 3 may have a switch

Groote and Ploeger study complexity of certain graph properties on
switch graphs with binary switches: [Groote, Ploeger ’08]

� mostly forward directed switch graphs (pivot → target)

� O(n) algorithm for finding configuration with a directed a–b path,
for given a, b.

� Several open questions, our work is heavily inspired by these.

Reinhardt gives O(n4) algorithm for finding a configuration with an a–b
path in a model similar to Cook’s. [Reinhardt ’09]
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Our results.

The following problems are NP-hard for switch graphs:

� SwitchBipartite

� SwitchTriangleFree

� SwitchPlanar

� SwitchBiconnected

� SwitchEulerian (directed and undirected)

� SwitchStronglyConnected

� SwitchMinCycles

We give efficient algorithms for the following problems:

� SwitchDirectedAcyclic: O(n + km) time

� Global connectivity: O(km + kn2) time

� Local connectivity: O(km + nα(n)) time
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SwitchPlanar

Theorem

Given a switch graph G = (V , S) it is NP-hard to decide whether there
exists a configuration c such that Gc is planar.

Proof: Gadget proof, reduction from a variant of Planar 3Sat.
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Hardness of SwitchPlanar

Gadget proof:

x

x

x?

`1x `2x `...
x

`1x `2x `...
x

sx

Variable

`·
x

`·
y

`·
z

Clause
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Monotone Planar 3Sat

Planar 3Sat:

. . .x1 x2 x3 x4 xnx5

c1
c2

c3

c4

c5
c6

c7

Monotone:

� literals of each clause are either all positive or all negative
� clauses with positive literals drawn above x-axis,

negative clauses below

Theorem (de Berg, Koshravi, submitted)

Monotone Planar 3Sat is NP-hard.
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SwitchPlanar (example)

(x1 ∨ x4 ∨ x5) ∧ (x2 ∨ x3 ∨ x4)∧
(x1 ∨ x2 ∨ x3) ∧ (x3 ∨ x4 ∨ x5)

x1 x2 x3 x4 x5
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Global Connectivity

Definition (SwitchConnect)

Given a switch graph G = (V , S). Is there a configuration c of the
switches such that Gc is connected?
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A polynomial-time algorithm

Switch graph G = (V ,S),
E := all multi-edges on V possibly resulting from S .

Connectivity via matroid intersection

Define two matroids (E , I1), (E , I2):

� E ′ ∈ I1 ⇔ E ′ is acyclic

� E ′ ∈ I2 ⇔ E ′ contains ≤ 1 edge per switch

G has connected configuration ⇔ ex. E ′ ∈ I1 ∩ I2
with |E ′| = n − 1.

 polynomial algorithm ≈ O(n4)
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A new matroid

A matroid of switches

Define new matroid (S , I3):
S ′ ∈ I3 ⇔ ex. configuration c with Gc(S ′) acyclic.

G Yes-Instance of
SwitchConnect

⇔ (S , I3) has independent
set of size n − 1

To solve SwitchConnect we need to steps:

1 Show that (S , I3) is a matroid.

2 Give a fast independence test for (S , I3).
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A new matroid

Theorem

(S , I3) is a matroid.

Proof:

� ∅ ∈ I3.
� A ∈ I3, B ⊆ A⇒ B ∈ I3.

Remains to show: A,B ∈ I3 , |A| < |B| ⇒ ∃x ∈ B \ A : A ∪ {x} ∈ I3.

� Let cA, cB acyclic configurations of A,B with max. similarity, i.e.,
|{s ∈ A ∩ B | cA(s) = cB(s)}| maximum.
Let EA,EB be the corresponding acyclic edge sets.

� |EA| < |EB | ⇒ ex. eb ∈ EB \ EA with EA ∪ {eb} acyclic. Let x ∈ B
the corresponding switch.

� Now A ∪ {x} is independent and x /∈ A, otherwise could make
cA, cB more similar.
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Charaterization and Test of Independence

Lemma

Let S ′ ⊆ S. Then S ′ ∈ I3 ⇒ ∀S ′′ ⊆ S ′: |S ′′| < |V (S ′′)|.

Proof: “⇒”:
√

“⇐”: Let S ′ be minimal dependent set of switches.
⇒ ∃ configuration of S with exactly one cycle

We show that S ′ contains a subset with few vertices.
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Connectivity

Vi := nodes
with label i

i
> i

< isi
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Connectivity

0

1

Vi := nodes
with label i

i
> i

< isi

Continue picking switches until

1 !∃ selectable switch

2 After removal of s1, . . . , sk remaining graph is acyclic
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Introduction SwitchPlanar Global Connectivity Local Connectivitiy

Testing independence

Lemma (Independence Test)

Given independent set of switches S ′ with acyclic configuration and an
additional switch s we can compute in O(kn) time either

� S ′′ ⊆ S ′ ∪ {s} with |S ′′| >= |V (S ′′)| or

� acyclic configuration of S ′ ∪ {s}.

Theorem

Given switch graph G = (V , S) can compute in O(m · kn) time a
maximal independent set of switches with an acyclic configuration.

Running time can be improved to O(km + kn2).
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Introduction SwitchPlanar Global Connectivity Local Connectivitiy

Local Connectivity

Definition (a–b-Connectivity)

Given a switch graph G = (V , S) and a, b ∈ V .
Is there a configuration c such that a, b are connected in Gc(S)?
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a-b-Connectivity (examples)
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Introduction SwitchPlanar Global Connectivity Local Connectivitiy

Searching along a tree

� Build search tree with root a

� Edges used from target to
pivot block the switch.

� Edges from pivot to target
may all be explored.

� Does not find all paths!

� Direction of traversal is
important for cycles of
switches.

� Idea: contract cycles.

� Correctness? Running time?

a
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Introduction SwitchPlanar Global Connectivity Local Connectivitiy

A contraction lemma

Lemma

Let x ∈ V with an x–a path P s.t.
all switches of P are used “forward”.
Contracting switches with pivot x
that are not on P does not change
the vertices reachable from a.

� preserves reachability from a

� contracts cycles of switches

� b reachable from a iff b has
forward path from b to a

� O(n2 + nmk) algorithm!

a

x
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Introduction SwitchPlanar Global Connectivity Local Connectivitiy

Near linear time: search tree

� Pivot receives label:

� Mark tree edge blue
� Mark blocked edges red

� Target receives label:

� Contract edge

� Both already labeled:

� mark edge green

� Green edges may be contracted:
node with bigger label changes
marking of its incident edges:

� blue → green, red → black

� Running time: O(km + nα(n))

a
0
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Introduction SwitchPlanar Global Connectivity Local Connectivitiy

Conclusion and Open Problems

Known: Finding configurations with the following properties is NP-hard:
Bipartite, triangle-free, Eulerian, biconnected, strongly connected, planar,
minimum number of directed cycles

Problem (SwitchConnect-T)

Input: Given a switch graph G = (V ,S) and a set T ⊆ V .
Question: Is there a configuration c such that in Gc all vertices in T are
in the same connected component.

Results:

� Efficient algorithms for |T | = 2 and T = V .

� NP-hard for arbitrary T .

Open: What about |T | = 3? FPT with parameter |T |?

Bastian Katz, Ignaz Rutter, Gerhard Woeginger – Switch Graphs

Algorithmic Group
Faculty of Informatics

Karlsruhe Institute of Technology
Universität Karlsruhe

23/ 23


	Introduction
	SwitchPlanar
	Global Connectivity
	Local Connectivitiy

