Injective oriented colourings

Gary MacGillivray
Mathematics and Statistics
University of Victoria
Victoria, British Columbia, Canada
omacgill@math.uvic.ca

Joint work with Andre Raspaud (Bordeaux)
and Jacobus Swarts (Victoria)



Motivation

* Bring together
— 1Injective colourings

[Fiala, Hahn, Hell, Fertin, Kratochvil, Por, Rizzi, Siran, Sotteau,
Stacho, Vialette, ...]

— oriented colourings

[Klostermeyer, Kostochka, M, Nesetril, Ochem, Pinlou, Raspaud,
Sopena, Wood, ...]

e Build on earlier work Courcelle, and Raspaud and
Sopena



Some issues in the study of a colouring parameter

Is there a homomorphism model? Where does it lead?
What 1s the complexity of the decision problem?

Can obstructions be found algorithmically in polynomial
cases? What are the critical graphs?

What bounds are available? Is there a Brooks’ Theorem?

Are there special bounds and / or algorithms for restricted
graph classes?

Can the colourings that use k colours be counted?



Some issues in the study of a colouring parameter

Is there a homomorphism model? Where does it lead?
What is the complexity of the decision problem?

Can obstructions be found algorithmically in polynomial
cases? What are the critical graphs?

What bounds are available? Is there a Brooks’ Theorem?

Are there special bounds and / or algorithms for restricted
graph classes? (oriented trees)

Can the colourings that use k colours be counted?



Injective oriented colourings

An injective oriented k-colouring of a digraph D is an assignment
of k colours to the vertices of D so that:

e no @ —@
eif @—@ then @ /@
*no @ —0O«—@




Injective oriented colourings

An 1njective oriented k-colouring of a digraph D is an assignment
of k colours to the vertices of D so that:

e no @ —@
¢ if @—@ then @/—@
*no @ —O—@

Equivalently, an injective oriented k-colouring is an injective
homomorphism to an oriented graph on k vertices (where injective

1s ““on 1in-neighbourhoods™).




Injective oriented colourings

An 1njective oriented k-colouring of a digraph D is an assignment
of k colours to the vertices of D so that:

e no @ —@
¢ if @—@ then @/—@
*no @ —O—@

Equivalently, an injective oriented k-colouring is an injective
homomorphism to a tournament on k vertices (where injective 1s
“on in-neighbourhoods™).




Complexity of Injective Oriented k-Colouring

For k =1, 2 and 3 injective oriented k-colouring 1s Polynomial.

(reduction to 2-SAT, or direct colouring algorithm)

For each fixed k = 4, injective oriented k-colouring 1s NP-
complete.

(ultimately a transformation from 3-colouring)



The injective oriented chromatic number of D ...

... 1s the smallest k for which there exists an injective oriented k-
colouring of D. (Notation Y, (D).)

There exist 10-cliques: oriented graphs D for which ¥, (D) = IVI.

W

Proposition. An oriented graph D is an 10-clique if and only if
any two non-adjacent vertices have a common out-neighbour or
are joined by a directed path of length two.

Any oriented graph 1s an induced subgraph of an 10-clique.



A Brooks’ Theorem for Y,

Theorem. If D is not an 10-clique then ), < 2'-1, where
t=A+ (A-1)A* + (A*)?, and A is the maximum degree of the
underlying simple graph.

Exponential is best possible

* D: disjoint union of all tournaments on (d+1) vertices.

e A=A =A=d, and

® X, 1s at least the size of a (d+1)-universal tournament
(at least 292, [Moon, 1968])



A better bound for trees
Xio < 2k + 1, where kK = max{A*, A’}.

Idea: T has an injective homomorphism to vertex-transitive
k-regular tournament.

Best possible:

k=2-2+1=5



A better bound for trees
Xio < 2k + 1, where kK = max{A*, A’}.

Idea: T has an injective homomorphism to vertex-transitive
k-regular tournament.

Best possible:

k=22+1=5

Examples are complete k-ary trees like this.



Simple linear algorithm for trees

e For the decision problem only. Test for the existence of a
homomorphism to each tournament on k vertices, ex. |1 2

4 3

k fixed = number of tournaments on k vertices 1s a constant

e Main ideas:

give each vertex a list of available colours

start at the lowest level and work upwards at first
reduce lists using consistency checks

colour downwards

« same algorithm works for any target digraph

« Courcelle’s theorem also gives an algorithm



Example: simple linear algorithm for trees

1

Test for the existence of a homomorphism to

give each vertex a list of available colours (respect in-degrees)
start at the lowest level and work upwards at first

reduce lists using consistency checks

colour downwards

234

4 123

1234 O 234
1234



Example: simple linear algorithm for trees

1 2

Test for the existence of a homomorphism to

give each vertex a list of available colours

start at the lowest level and work upwards at first
reduce lists using consistency checks

colour downwards

1234

234

1234

123

O 234

Condition: If ¢ 1s in L(u) after u
1s processed, then if u 1s
coloured with ¢, the colouring
extends to the next level

e no further restrictions



Example: simple linear algorithm for trees

1 2

Test for the existence of a homomorphism to

give each vertex a list of available colours

start at the lowest level and work upwards at first
reduce lists using consistency checks

colour downwards

1234

234

1234

123

O 234

Condition: If ¢ 1s in L(u) after u
1s processed, then if u 1s
coloured with ¢, the colouring
extends to the next level

e orientation of the arc to the
lower level = SDR of lists of

in-nbrs 1s computed at a later
step



Example: simple linear algorithm for trees

1 2

Test for the existence of a homomorphism to

give each vertex a list of available colours

4 3

start at the lowest level and work upwards at first
reduce lists using consistency checks

colour downwards

1234

234

1234

123

O 234

Condition: If ¢ 1s in L(u) after u
1s processed, then if u 1s
coloured with ¢, the colouring
extends to the next level

e 4 can’t be used

e keep 2 (3) if there 1s a SDR
of lists of in-nbrs of n
which 2 (3) represent@



Example: simple linear algorithm for trees

1 2

Test for the existence of a homomorphism to

give each vertex a list of available colours

start at the lowest level and work upwards at first
reduce lists using consistency checks

colour downwards

1234

23

1234

123

O 234

Condition: If ¢ 1s in L(u) after u
1s processed, then if u 1s
coloured with ¢, the colouring
extends to the next level



Example: simple linear algorithm for trees

1 2

Test for the existence of a homomorphism to

give each vertex a list of available colours

4 3

start at the lowest level and work upwards at first
reduce lists using consistency checks

colour downwards

Use SDR 4

1234

23

1234

123

O 234

Condition: If ¢ 1s in L(u) after u
1s processed, then if u 1s
coloured with ¢, the colouring
extends to the next level



Example: simple linear algorithm for trees

1 2

Test for the existence of a homomorphism to

give each vertex a list of available colours

4 3

start at the lowest level and work upwards at first
reduce lists using consistency checks

colour downwards

1234

23

1234

123

O 234

Condition: If ¢ 1s in L(u) after u
1s processed, then if u 1s
coloured with ¢, the colouring
extends to the next level



Example: simple linear algorithm for trees

1 2

Test for the existence of a homomorphism to

give each vertex a list of available colours

4 3

start at the lowest level and work upwards at first
reduce lists using consistency checks

colour downwards

1234

23

1234

123

O 234

Condition: If ¢ 1s in L(u) after u
1s processed, then if u 1s
coloured with ¢, the colouring
extends to the next level



Example: simple linear algorithm for trees

1 2

Test for the existence of a homomorphism to

give each vertex a list of available colours

4 3

start at the lowest level and work upwards at first
reduce lists using consistency checks

colour downwards

1234

23

1234

12

O 123

Linear: Each vertex processed
twice; list sizes bounded by
IV(T)|, as 1s number of sets in
each SDR check



Some things we do / don’t know

e Fork =1, 2, 3 there is an algorithm that either produces an
injective oriented k-colouring, or produces an obstruction.

* A similar but not identical theory exists when the colourings
need not be proper

e We have no results and bounds for most well-studied classes
of graphs, ex. k-trees, planar.

 We have no results on enumeration of these colourings.



ou for listening




