
Injective oriented colourings

Gary MacGillivray
Mathematics and Statistics

University of Victoria
Victoria, British Columbia, Canada

gmacgill@math.uvic.ca

Joint work with Andre Raspaud (Bordeaux)
and Jacobus Swarts (Victoria)

Motivation

• Bring together
– injective colourings

[Fiala, Hahn, Hell, Fertin, Kratochvil, Por, Rizzi, Siran, Sotteau,
Stacho, Vialette, …]

– oriented colourings
[Klostermeyer, Kostochka, M, Nesetril, Ochem, Pinlou, Raspaud,

Sopena, Wood, …]

• Build on earlier work Courcelle, and Raspaud and
Sopena

Some issues in the study of a colouring parameter

• Is there a homomorphism model? Where does it lead?
• What is the complexity of the decision problem?
• Can obstructions be found algorithmically in polynomial

cases? What are the critical graphs?
• What bounds are available? Is there a Brooks’ Theorem?
• Are there special bounds and / or algorithms for restricted

graph classes?
• Can the colourings that use k colours be counted?

Some issues in the study of a colouring parameter

• Is there a homomorphism model? Where does it lead?
• What is the complexity of the decision problem?
• Can obstructions be found algorithmically in polynomial

cases? What are the critical graphs?
• What bounds are available? Is there a Brooks’ Theorem?
• Are there special bounds and / or algorithms for restricted

graph classes? (oriented trees)
• Can the colourings that use k colours be counted?

An injective oriented k-colouring of a digraph D is an assignment
of k colours to the vertices of D so that:

• no

• if then

• no

Injective oriented colourings

/

An injective oriented k-colouring of a digraph D is an assignment
of k colours to the vertices of D so that:

• no

• if then

• no

Equivalently, an injective oriented k-colouring is an injective
homomorphism to an oriented graph on k vertices (where injective
is “on in-neighbourhoods”).

Injective oriented colourings

/

An injective oriented k-colouring of a digraph D is an assignment
of k colours to the vertices of D so that:

• no

• if then

• no

Equivalently, an injective oriented k-colouring is an injective
homomorphism to a tournament on k vertices (where injective is
“on in-neighbourhoods”).

Injective oriented colourings

/

Complexity of Injective Oriented k-Colouring

For k = 1, 2 and 3 injective oriented k-colouring is Polynomial.

(reduction to 2-SAT, or direct colouring algorithm)

For each fixed k ≥ 4, injective oriented k-colouring is NP-
complete.

(ultimately a transformation from 3-colouring)

The injective oriented chromatic number of D …
… is the smallest k for which there exists an injective oriented k-
colouring of D. (Notation χio(D).)

There exist io-cliques: oriented graphs D for which χio(D) = |V|.

Proposition. An oriented graph D is an io-clique if and only if
any two non-adjacent vertices have a common out-neighbour or
are joined by a directed path of length two.

Any oriented graph is an induced subgraph of an io-clique.

A Brooks’ Theorem for χio

Theorem. If D is not an io-clique then χio ≤ 2t-1, where
t = Δ + (Δ--1)Δ+ + (Δ+)2, and Δ is the maximum degree of the
underlying simple graph.

Exponential is best possible

• D: disjoint union of all tournaments on (d+1) vertices.
• Δ+ = Δ- = Δ = d, and
• χio is at least the size of a (d+1)-universal tournament

 (at least 2d/2, [Moon, 1968])

A better bound for trees

χio ≤ 2k + 1, where k = max{Δ+, Δ-}.

Idea: T has an injective homomorphism to vertex-transitive
k-regular tournament.

Best possible:

k = 2· 2 + 1 = 5

A better bound for trees

χio ≤ 2k + 1, where k = max{Δ+, Δ-}.

Idea: T has an injective homomorphism to vertex-transitive
k-regular tournament.

Best possible:

k = 2· 2 + 1 = 5

Examples are complete k-ary trees like this.

Simple linear algorithm for trees

• For the decision problem only. Test for the existence of a
homomorphism to each tournament on k vertices, ex.

k fixed ⇒ number of tournaments on k vertices is a constant

• Main ideas:
• give each vertex a list of available colours
• start at the lowest level and work upwards at first
• reduce lists using consistency checks
• colour downwards

• same algorithm works for any target digraph

• Courcelle’s theorem also gives an algorithm

2

4 3

1

Example: simple linear algorithm for trees

Test for the existence of a homomorphism to

• give each vertex a list of available colours (respect in-degrees)
• start at the lowest level and work upwards at first
• reduce lists using consistency checks
• colour downwards

1 2 3 4
1 2 3 4

4

 2 3 4

1 2 3

2 3 4

2

4 3

1

Example: simple linear algorithm for trees

Test for the existence of a homomorphism to

• give each vertex a list of available colours
• start at the lowest level and work upwards at first
• reduce lists using consistency checks
• colour downwards

1 2 3 4
1 2 3 4

4

 2 3 4

1 2 3

2 3 4

2

4 3

1

Condition: If c is in L(u) after u
is processed, then if u is
coloured with c, the colouring
extends to the next level

• no further restrictions

Example: simple linear algorithm for trees

Test for the existence of a homomorphism to

• give each vertex a list of available colours
• start at the lowest level and work upwards at first
• reduce lists using consistency checks
• colour downwards

1 2 3 4
1 2 3 4

4

 2 3 4

1 2 3

2 3 4

2

4 3

1

Condition: If c is in L(u) after u
is processed, then if u is
coloured with c, the colouring
extends to the next level

• orientation of the arc to the
lower level ⇒ SDR of lists of
in-nbrs is computed at a later
step

Example: simple linear algorithm for trees

Test for the existence of a homomorphism to

• give each vertex a list of available colours
• start at the lowest level and work upwards at first
• reduce lists using consistency checks
• colour downwards

1 2 3 4
1 2 3 4

4

 2 3 4

1 2 3

2 3 4

2

4 3

1

Condition: If c is in L(u) after u
is processed, then if u is
coloured with c, the colouring
extends to the next level

• 4 can’t be used

• keep 2 (3) if there is a SDR
of lists of in-nbrs of in
which 2 (3) represents

Example: simple linear algorithm for trees

Test for the existence of a homomorphism to

• give each vertex a list of available colours
• start at the lowest level and work upwards at first
• reduce lists using consistency checks
• colour downwards

1 2 3 4
1 2 3 4

4

 2 3

1 2 3

2 3 4

2

4 3

1

Condition: If c is in L(u) after u
is processed, then if u is
coloured with c, the colouring
extends to the next level

Example: simple linear algorithm for trees

Test for the existence of a homomorphism to

• give each vertex a list of available colours
• start at the lowest level and work upwards at first
• reduce lists using consistency checks
• colour downwards

1 2 3 4
1 2 3 4

4

 2 3

1 2 3

2 3 4

2

4 3

1

Condition: If c is in L(u) after u
is processed, then if u is
coloured with c, the colouring
extends to the next levelUse SDR

Example: simple linear algorithm for trees

Test for the existence of a homomorphism to

• give each vertex a list of available colours
• start at the lowest level and work upwards at first
• reduce lists using consistency checks
• colour downwards

1 2 3 4
1 2 3 4

4

 2 3

1 2 3

2 3 4

2

4 3

1

Condition: If c is in L(u) after u
is processed, then if u is
coloured with c, the colouring
extends to the next level

Example: simple linear algorithm for trees

Test for the existence of a homomorphism to

• give each vertex a list of available colours
• start at the lowest level and work upwards at first
• reduce lists using consistency checks
• colour downwards

1 2 3 4
1 2 3 4

4

 2 3

1 2 3

2 3 4

2

4 3

1

Condition: If c is in L(u) after u
is processed, then if u is
coloured with c, the colouring
extends to the next level

Example: simple linear algorithm for trees

Test for the existence of a homomorphism to

• give each vertex a list of available colours
• start at the lowest level and work upwards at first
• reduce lists using consistency checks
• colour downwards

1 2 3 4
1 2 3 4

4

 2 3

1 2

1 2 3

2

4 3

1

Linear: Each vertex processed
twice; list sizes bounded by
|V(T)|, as is number of sets in
each SDR check

Some things we do / don’t know

• For k = 1, 2, 3 there is an algorithm that either produces an
injective oriented k-colouring, or produces an obstruction.

• A similar but not identical theory exists when the colourings
need not be proper

• We have no results and bounds for most well-studied classes
of graphs, ex. k-trees, planar.

• We have no results on enumeration of these colourings.

Thank you for listening

