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Motivation

• Bring together
–  injective colourings

[Fiala, Hahn, Hell, Fertin, Kratochvil, Por, Rizzi, Siran, Sotteau,
Stacho, Vialette, …]

– oriented colourings
[Klostermeyer, Kostochka, M, Nesetril, Ochem, Pinlou, Raspaud,

Sopena, Wood, …]

• Build on earlier work Courcelle, and Raspaud and
Sopena



Some issues in the study of a colouring parameter

• Is there a homomorphism model?  Where does it lead?
• What is the complexity of the decision problem?
• Can obstructions be found algorithmically in polynomial

cases?  What are the critical graphs?
• What bounds are available?  Is there a Brooks’ Theorem?
• Are there special bounds and / or algorithms for restricted

graph classes?
• Can the colourings that use k colours be counted?
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• What is the complexity of the decision problem?
• Can obstructions be found algorithmically in polynomial

cases?  What are the critical graphs?
• What bounds are available?  Is there a Brooks’ Theorem?
• Are there special bounds and / or algorithms for restricted
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• Can the colourings that use k colours be counted?



An injective oriented k-colouring of a digraph D is an assignment
of k colours to the vertices of D so that:

•  no

•  if        then

•  no
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An injective oriented k-colouring of a digraph D is an assignment
of k colours to the vertices of D so that:

•  no

•  if        then

•  no

Equivalently, an injective oriented k-colouring is an injective
homomorphism to a tournament on k vertices (where injective is
“on in-neighbourhoods”).
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Complexity of Injective Oriented k-Colouring

For k = 1, 2 and 3 injective oriented k-colouring is Polynomial.

(reduction to 2-SAT, or direct colouring algorithm)

For each fixed k ≥ 4, injective oriented k-colouring is NP-
complete.

(ultimately a transformation from 3-colouring)



The injective oriented chromatic number of D …
… is the smallest k for which there exists an injective oriented k-
colouring of D.   (Notation χio(D).)

There exist io-cliques: oriented graphs D for which χio(D) = |V|.

Proposition.  An oriented graph D is an io-clique if and only if
any two non-adjacent vertices have a common out-neighbour or
are joined by a directed path of length two.

Any oriented graph is an induced subgraph of an io-clique.



A Brooks’ Theorem for χio

Theorem.  If D is not an io-clique then χio ≤ 2t-1, where                
t = Δ + (Δ--1)Δ+ + (Δ+)2, and Δ is the maximum degree of the
underlying simple graph.

Exponential is best possible

•  D: disjoint union of all tournaments on (d+1) vertices.
•  Δ+ = Δ- = Δ = d, and
•  χio is at least the size of a (d+1)-universal tournament

        (at least 2d/2, [Moon, 1968])



A better bound for trees

χio ≤ 2k + 1, where k = max{Δ+, Δ-}.

Idea:  T has an injective homomorphism to vertex-transitive
k-regular tournament.

Best possible:

k = 2· 2 + 1 = 5



A better bound for trees

χio ≤ 2k + 1, where k = max{Δ+, Δ-}.

Idea:  T has an injective homomorphism to vertex-transitive
k-regular tournament.

Best possible:

k = 2· 2 + 1 = 5

Examples are complete k-ary trees like this.



Simple linear algorithm for trees

•  For the decision problem only. Test for the existence of a
homomorphism to each tournament on k vertices, ex.

k fixed ⇒ number of tournaments on k vertices is a constant

•  Main ideas:
•  give each vertex a list of available colours
•  start at the lowest level and work upwards at first
•  reduce lists using consistency checks
•  colour downwards

•  same algorithm works for any target digraph

•  Courcelle’s theorem also gives an algorithm
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Example: simple linear algorithm for trees

Test for the existence of a homomorphism to

•  give each vertex a list of available colours  (respect in-degrees)
•  start at the lowest level and work upwards at first
•  reduce lists using consistency checks
•  colour downwards

1 2 3 4
1 2 3 4
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Example: simple linear algorithm for trees

Test for the existence of a homomorphism to

•  give each vertex a list of available colours
•  start at the lowest level and work upwards at first
•  reduce lists using consistency checks
•  colour downwards
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Condition: If c is in L(u) after u
is processed, then if u is
coloured with c, the colouring
extends to the next level

•  no further restrictions



Example: simple linear algorithm for trees

Test for the existence of a homomorphism to

•  give each vertex a list of available colours
•  start at the lowest level and work upwards at first
•  reduce lists using consistency checks
•  colour downwards
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Condition: If c is in L(u) after u
is processed, then if u is
coloured with c, the colouring
extends to the next level

•  orientation of the arc to the
lower level  ⇒  SDR of lists of
in-nbrs is computed at a later
step



Example: simple linear algorithm for trees

Test for the existence of a homomorphism to

•  give each vertex a list of available colours
•  start at the lowest level and work upwards at first
•  reduce lists using consistency checks
•  colour downwards
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Condition: If c is in L(u) after u
is processed, then if u is
coloured with c, the colouring
extends to the next level

•  4 can’t be used

•  keep 2 (3) if there is a SDR
of lists of in-nbrs of           in
which 2 (3) represents
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Condition: If c is in L(u) after u
is processed, then if u is
coloured with c, the colouring
extends to the next levelUse SDR
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Example: simple linear algorithm for trees

Test for the existence of a homomorphism to

•  give each vertex a list of available colours
•  start at the lowest level and work upwards at first
•  reduce lists using consistency checks
•  colour downwards

1 2 3 4
1 2 3 4

4
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Linear:  Each vertex processed
twice;  list sizes bounded by
|V(T)|, as is number of sets in
each SDR check



Some things we do / don’t know

•   For k = 1, 2, 3 there is an algorithm that either produces an
injective oriented k-colouring, or produces an obstruction.

•  A similar but not identical theory exists when the colourings
need not be proper

•  We have no results and bounds for most well-studied classes
of graphs, ex. k-trees, planar.

•  We have no results on enumeration of these colourings.



Thank you for listening


