Gary MacGillivray Mathematics and Statistics University of Victoria Victoria, British Columbia, Canada <u>gmacgill@math.uvic.ca</u>

Joint work with Andre Raspaud (Bordeaux) and Jacobus Swarts (Victoria)

Motivation

- Bring together
 - injective colourings

[Fiala, Hahn, Hell, Fertin, Kratochvil, Por, Rizzi, Siran, Sotteau, Stacho, Vialette, ...]

oriented colourings

[Klostermeyer, Kostochka, M, Nesetril, Ochem, Pinlou, Raspaud, Sopena, Wood, ...]

• Build on earlier work Courcelle, and Raspaud and Sopena

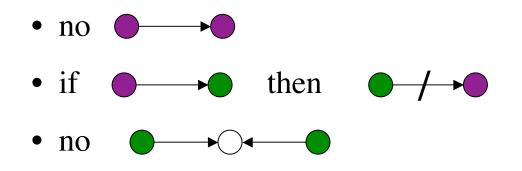
Some issues in the study of a colouring parameter

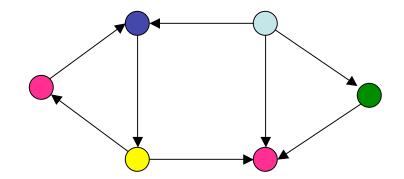
- Is there a homomorphism model? Where does it lead?
- What is the complexity of the decision problem?
- Can obstructions be found algorithmically in polynomial cases? What are the critical graphs?
- What bounds are available? Is there a Brooks' Theorem?
- Are there special bounds and / or algorithms for restricted graph classes?
- Can the colourings that use *k* colours be counted?

Some issues in the study of a colouring parameter

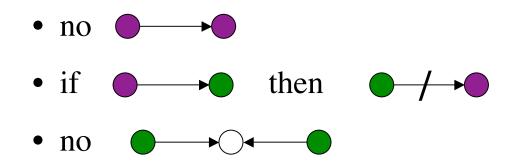
- Is there a homomorphism model? Where does it lead?
- What is the complexity of the decision problem?
- Can obstructions be found algorithmically in polynomial cases? What are the critical graphs?
- What bounds are available? Is there a Brooks' Theorem?
- Are there special bounds and / or algorithms for restricted graph classes? (oriented trees)
- Can the colourings that use *k* colours be counted?

An injective oriented *k*-colouring of a digraph *D* is an assignment of *k* colours to the vertices of *D* so that:

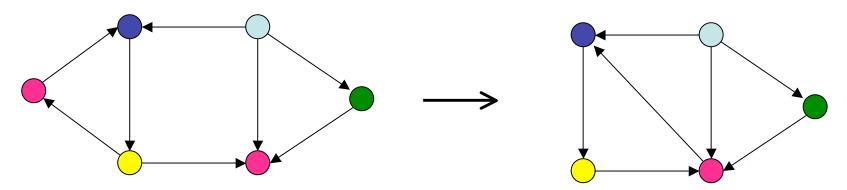




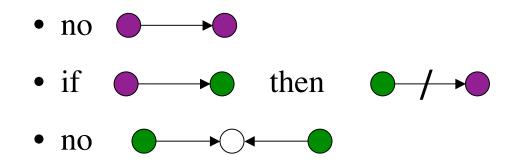
An injective oriented *k*-colouring of a digraph *D* is an assignment of *k* colours to the vertices of *D* so that:



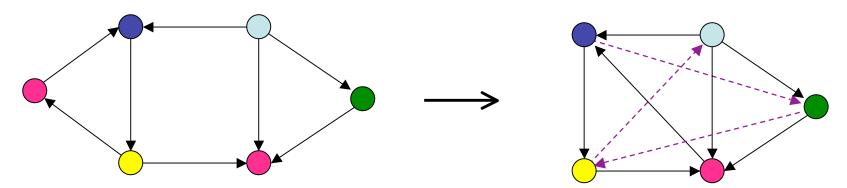
Equivalently, an injective oriented *k*-colouring is an injective homomorphism to an oriented graph on *k* vertices (where injective is "on in-neighbourhoods").



An injective oriented *k*-colouring of a digraph *D* is an assignment of *k* colours to the vertices of *D* so that:



Equivalently, an injective oriented *k*-colouring is an injective homomorphism to a tournament on *k* vertices (where injective is "on in-neighbourhoods").



Complexity of Injective Oriented *k***-Colouring**

For k = 1, 2 and 3 injective oriented *k*-colouring is Polynomial. (reduction to 2-SAT, or direct colouring algorithm)

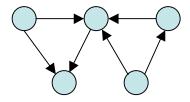
For each fixed $k \ge 4$, injective oriented *k*-colouring is NP-complete.

(ultimately a transformation from 3-colouring)

The injective oriented chromatic number of D ...

... is the smallest k for which there exists an injective oriented k-colouring of D. (Notation $\chi_{io}(D)$.)

There exist io-cliques: oriented graphs *D* for which $\chi_{io}(D) = |V|$.



Proposition. An oriented graph D is an io-clique if and only if any two non-adjacent vertices have a common out-neighbour or are joined by a directed path of length two.

Any oriented graph is an induced subgraph of an io-clique.

A Brooks' Theorem for χ_{io}

Theorem. If *D* is not an io-clique then $\chi_{io} \leq 2^t \cdot 1$, where $t = \Delta + (\Delta^- \cdot 1)\Delta^+ + (\Delta^+)^2$, and Δ is the maximum degree of the underlying simple graph.

Exponential is best possible

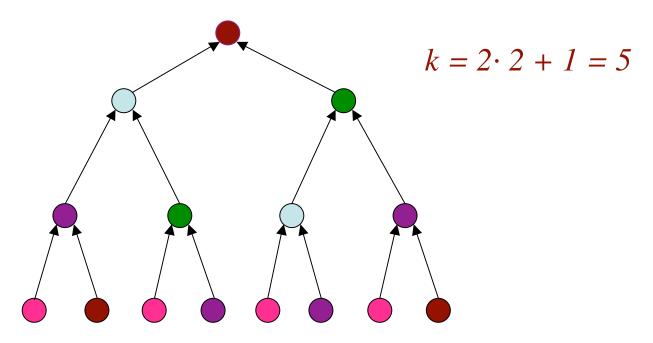
- D: disjoint union of all tournaments on (d+1) vertices.
- $\Delta^+ = \Delta^- = \Delta = d$, and
- χ_{io} is at least the size of a (d+1)-universal tournament (at least 2^{d/2}, [Moon, 1968])

A better bound for trees

 $\chi_{io} \leq 2k + 1$, where $k = \max{\Delta^+, \Delta^-}$.

Idea: *T* has an injective homomorphism to vertex-transitive *k*-regular tournament.

Best possible:

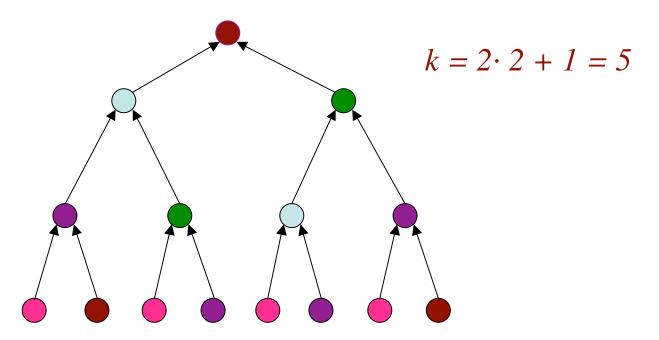


A better bound for trees

 $\chi_{io} \leq 2k + 1$, where $k = \max{\Delta^+, \Delta^-}$.

Idea: *T* has an injective homomorphism to vertex-transitive *k*-regular tournament.

Best possible:



Examples are complete *k*-ary trees like this.

Simple linear algorithm for trees

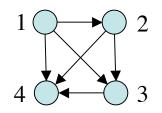
• For the decision problem only. Test for the existence of a homomorphism to each tournament on *k* vertices, ex. $1 \bigcirc -1$

2

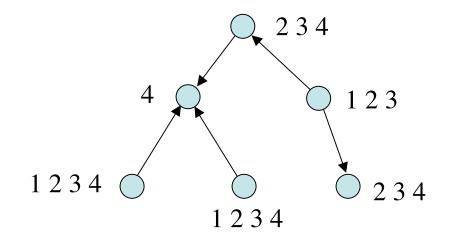
 $k \text{ fixed} \Rightarrow \text{number of tournaments on } k \text{ vertices is a constant}$

- Main ideas:
 - give each vertex a list of available colours
 - start at the lowest level and work upwards at first
 - reduce lists using consistency checks
 - colour downwards
- same algorithm works for any target digraph
- Courcelle's theorem also gives an algorithm

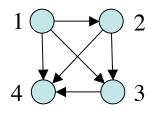
Test for the existence of a homomorphism to



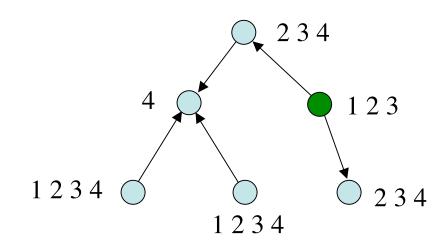
- give each vertex a list of available colours (respect in-degrees)
- start at the lowest level and work upwards at first
- reduce lists using consistency checks
- colour downwards



Test for the existence of a homomorphism to



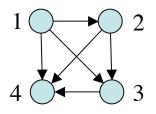
- give each vertex a list of available colours
- start at the lowest level and work upwards at first
- reduce lists using consistency checks
- colour downwards



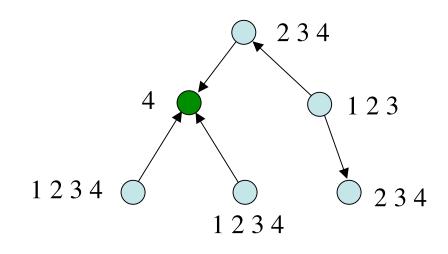
Condition: If c is in L(u) after u is processed, then if u is coloured with c, the colouring extends to the next level

• no further restrictions

Test for the existence of a homomorphism to



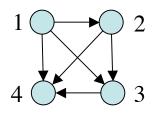
- give each vertex a list of available colours
- start at the lowest level and work upwards at first
- reduce lists using consistency checks
- colour downwards



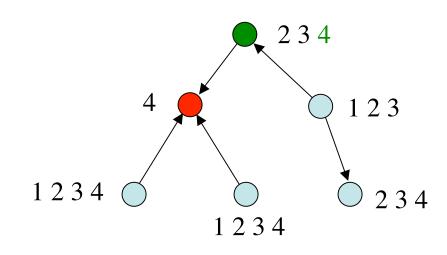
Condition: If c is in L(u) after u is processed, then if u is coloured with c, the colouring extends to the next level

 orientation of the arc to the lower level ⇒ SDR of lists of in-nbrs is computed at a later step

Test for the existence of a homomorphism to

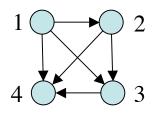


- give each vertex a list of available colours
- start at the lowest level and work upwards at first
- reduce lists using consistency checks
- colour downwards

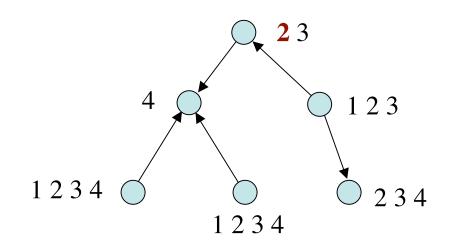


- 4 can't be used
- keep 2 (3) if there is a SDR of lists of in-nbrs of in which 2 (3) represents

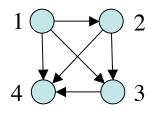
Test for the existence of a homomorphism to



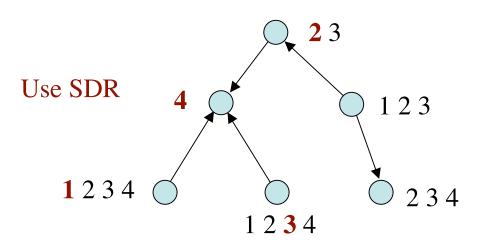
- give each vertex a list of available colours
- start at the lowest level and work upwards at first
- reduce lists using consistency checks
- colour downwards



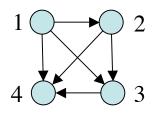
Test for the existence of a homomorphism to



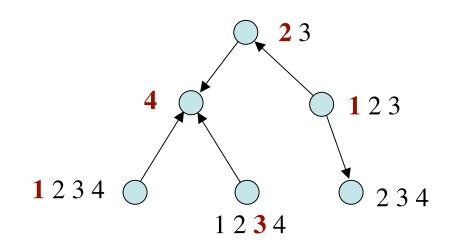
- give each vertex a list of available colours
- start at the lowest level and work upwards at first
- reduce lists using consistency checks
- colour downwards



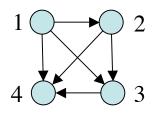
Test for the existence of a homomorphism to



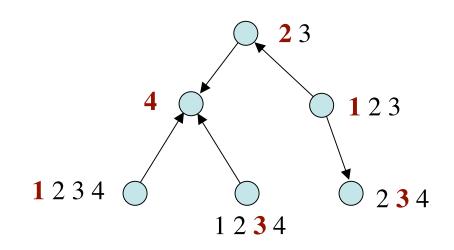
- give each vertex a list of available colours
- start at the lowest level and work upwards at first
- reduce lists using consistency checks
- colour downwards



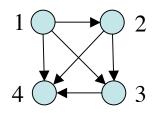
Test for the existence of a homomorphism to



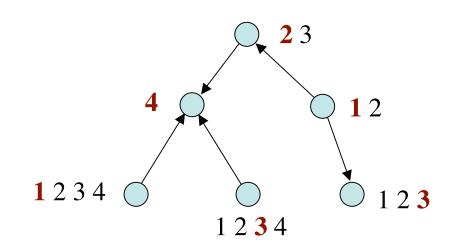
- give each vertex a list of available colours
- start at the lowest level and work upwards at first
- reduce lists using consistency checks
- colour downwards



Test for the existence of a homomorphism to



- give each vertex a list of available colours
- start at the lowest level and work upwards at first
- reduce lists using consistency checks
- colour downwards



Linear: Each vertex processed twice; list sizes bounded by |V(T)|, as is number of sets in each SDR check

Some things we do / don't know

- For k = 1, 2, 3 there is an algorithm that either produces an injective oriented k-colouring, or produces an obstruction.
- A similar but not identical theory exists when the colourings need not be proper
- We have no results and bounds for most well-studied classes of graphs, ex. *k*-trees, planar.
- We have no results on enumeration of these colourings.

