Parameterized Complexity of Generalized Domination Problems

Petr A. Golovach¹, Jan Kratochvíl² a Ondřej Suchý²

¹Department of Informatics, University of Bergen, Norway email: petrg@ii.uib.no,

²Department of Applied Mathematics and Institute for Theoretical Computer Science (ITI), Charles University, Prague, Czech Republic email: {honza|suchy}@kam.mff.cuni.cz

> 35th International Workshop on Graph-Theoretic Concepts in Computer Science, Montpellier, France 25th June 2009

```
(\sigma, \rho)-domination - definition
```

Given two sets σ,ρ of nonnegative integers

Definice (Telle 94)

A set S of vertices of a graph G is (σ, ρ) -dominating iff

- for each vertex $v \in S$ is $|S \cap N(v)| \in \sigma$, and
- for each vertex $v \notin S$ is $|S \cap N(v)| \in \rho$.

(σ, ρ) -domination - examples

σ	ho	Problem	
$\{0,1,2,\ldots\}$	$\{1,2,\ldots\}$	Dominating Set	
$\{1,2,\ldots\}$	$\{1,2,\ldots\}$	Total Dominating Set	
$\{0,1,2,\ldots\}$	$\{1\}$	Efective Dominating Set	
{0}	$\{1,2,\ldots\}$	Indep. Dominating Set	
{0}	$\{0,1,2,\ldots\}$	Independent Set	
{0}	$\{1\}$	Perfect Code	
{ <i>r</i> }	$\{0,1,2,\ldots\}$	Induced <i>r</i> -Regular subgraph	

(日) (周) (三) (三)

3

(σ, ρ) -domination - examples - Complexity

σ	ho	Problem	Complexity
$\{0,1,2,\ldots$	$\{1, 2, \ldots\}$	Dominating Set	NP-complete
$\{1,2,\ldots\}$	$\cdot \{1,2,\ldots\}$	Total Dominating Set	NP-complete
$\{0,1,2,\ldots\}$.} {1}	Efective Dominating Set	NP-complete
{0}	$\{1,2,\ldots\}$	Indep. Dominating Set	NP-complete
{0}	$\{0,1,2,\ldots\}$	Independent Set	NP-complete
{0}	$\{1\}$	Perfect Code	NP-complete
{ <i>r</i> }	$\{0,1,2,\ldots\}$	Induced <i>r</i> -Regular subgraph	NP-complete

3

- 4 同 6 4 日 6 4 日 6

(σ, ρ) -domination - examples - Complexity

σ	ho	Problem	Complexity
$\{0,1,2,\ldots\}$	$\{1,2,\ldots\}$	Dominating Set	NP-complete
$\{1,2,\ldots\}$	$\{1,2,\ldots\}$	Total Dominating Set	NP-complete
$\{0,1,2,\ldots\}$	$\{1\}$	Efective Dominating Set	NP-complete
{0}	$\{1,2,\ldots\}$	Indep. Dominating Set	NP-complete
{0}	$\{0,1,2,\ldots\}$	Independent Set	NP-complete
{0}	$\{1\}$	Perfect Code	NP-complete
{ <i>r</i> }	$\{0,1,2,\ldots\}$	Induced <i>r</i> -Regular subgraph	NP-complete
	•		

Theorem(Telle 1994)

 (σ, ρ) -DOMINATING SET is NP-complete for any σ and ρ finite, $0 \notin \rho$.

(σ, ρ) -domination - examples - Complexity				
σ	ρ	ρ Problem		
$\{0,1,2,\ldots\}$	$\{1,2,\ldots\}$	Dominating Set	NP-complete	
$\{1,2,\ldots\}$	$\{1,2,\ldots\}$	Total Dominating Set	NP-complete	
$\{0,1,2,\ldots\}$	$\{1\}$	Efective Dominating Set	NP-complete	
{0}	$\{1,2,\ldots\}$	Indep. Dominating Set	NP-complete	
{0}	$\{0,1,2,\ldots\}$	Independent Set	NP-complete	
{0}	$\{1\}$	Perfect Code	NP-complete	
{ <i>r</i> }	$\{0,1,2,\ldots\}$	Induced <i>r</i> -Regular subgraph	NP-complete	

Theorem(Telle 1994)

 (σ, ρ) -DOMINATING SET is NP-complete for any σ and ρ finite, $0 \notin \rho$.

- on interval graphs in P for any σ, ρ finite [Kratochvíl, Manuel, Miller 1995]
- Chordal graphs, Degenerated graphs P/NP-c. dichotomy [Golovach, Kratochvíl WG 2007, TAMC 2008]

(σ, ρ) -domination - examples - Parameterized complexity

σ	ρ	Problem	Par. Compl.
$\{0,1,2,\ldots\}$	$\{1,2,\ldots\}$	Dominating Set	W[2]-complete
$\{1,2,\ldots\}$	$\{1,2,\ldots\}$	Total Dominating Set	W[2]-hard
$\{0,1,2,\ldots\}$	$\{1\}$	Efective Dominating Set	W[1]-hard
{0}	$\{1,2,\ldots\}$	Indep. Dominating Set	W[2]-complete
{0}	$\{0,1,2,\ldots\}$	Independent Set	W[1]-complete
{0}	$\{1\}$	Perfect Code	W[1]-complete
$\{r\}$	$\{0,1,2,\ldots\}$	Induced <i>r</i> -Regular subgraph	W[1]-hard

Theorem(Telle 1994)

 (σ, ρ) -DOMINATING SET is NP-complete for any σ and ρ finite, $0 \notin \rho$.

(σ, ρ) -domination - examples - Parameterized complexity

σ	ρ	Problem	Par. Compl.
$\{0,1,2,\ldots\}$	$\{1,2,\ldots\}$	Dominating Set	W[2]-complete
$\{1,2,\ldots\}$	$\{1,2,\ldots\}$	Total Dominating Set	W[2]-hard
$\{0,1,2,\ldots\}$	$\{1\}$	Efective Dominating Set	W[1]-hard
{0}	$\{1,2,\ldots\}$	Indep. Dominating Set	W[2]-complete
{0}	$\{0,1,2,\ldots\}$	Independent Set	W[1]-complete
{0}	$\{1\}$	Perfect Code	W[1]-complete
$\{r\}$	$\{0,1,2,\ldots\}$	Induced <i>r</i> -Regular subgraph	W[1]-hard

Theorem(Telle 1994)

 (σ, ρ) -DOMINATING SET is NP-complete for any σ and ρ finite, $0 \notin \rho$.

Theorem

 (σ, ρ) -DOMINATING SET OF SIZE *k* is W[1]-complete for any σ and ρ finite, $0 \notin \rho$.

Overview of our results

σ	ho	size	graphs	parameterized
				complexity
finite	finite, 0∉	$= k, \leq k$		W[1]-hard
recursive	finite	$= k, \leq k$		in W[1]
finite or	finite or	$\geq n-k$		FPT
co-finite	co-finite			
EVEN or	EVEN or	= n-k,		W[1]-hard
ODD	ODD	$\geq n-k$		
finite or	finite or	$= k, \leq k$	locally minor	FPT
co-finite	co-finite		excluding	
$\max \sigma <$	$< \min ho$	$= k, \leq k$	degenerated	FPT

EVEN/ODD SET OF SIZE (AT LEAST) |R| - k is W[1]-hard

・ 同 ト ・ ヨ ト ・ ヨ ト

W[1]-hardness - starting problem

EXACT SATISFIABILITY

Instance: A Boolean formula ϕ in conjunctive normal form, without negations.

Parameter: k.

Question: Does ϕ allow a satisfying truth assignment such that at most k variables have value *true*, and

each clause of ϕ contains exactly one variable which evaluate to *true*?

 $\label{eq:statistical} {\rm Exact \ Satisafiability \ is \ known \ W[1]-complete \ problem}.$

W[1]-hardness - starting problem

At Most α -Exact Satisfiability

Instance: A Boolean formula ϕ in conjunctive normal form, without negations.

Parameter: k.

Question: Does ϕ allow a satisfying truth assignment such that at most k variables have value *true*, and each clause of ϕ contains at most α variables which evaluate to *true*?

EXACT SATISAFIABILITY is known W[1]-complete problem.

Lemma

For any fixed α : At Most α -Exact Satisfiability is W[1]-hard.

Proof

Easy reduction from $\ensuremath{\operatorname{ExaCT}}$ Satisafiability.

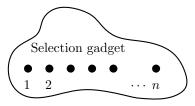
イロト 不得下 イヨト イヨト

W[1]-hardness - idea of the reduction I

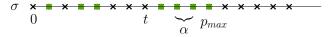
Denote
$$p_{max} := \max \sigma$$
, $q_{max} := \max \rho$,
 $t := \max\{i \mid i \notin \sigma, i+1 \in \sigma\}, \alpha := p_{max} - t$
 $\sigma \times \bullet \times \bullet \times \star \star \bullet \bullet \bullet \star \star \star \star \star \bullet$
 $0 \qquad t \qquad \overbrace{\alpha} p_{max}$

We reduce AT MOST α -EXACT SATISFIABILITY with *n* variables to (σ, ρ) -DOMINATING SET using two gadgets:

- Selection gadget is a graph with *n* roots such that
 - in each (σ, ρ) -dominating set is exactly one root, and
 - for each root there is a (σ, ρ) -dominating set containing it.

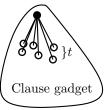


W[1]-hardness - idea of the reduction II



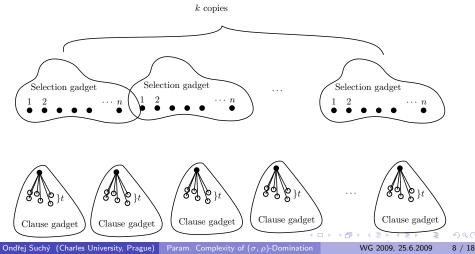
• Clause gadget is a graph with one root, which

- is in any (σ, ρ)-dominating set, and
- has exactly t neighbors in any (σ, ρ) -dominating set, and hence
- needs at least one, but at most α further neighbors.



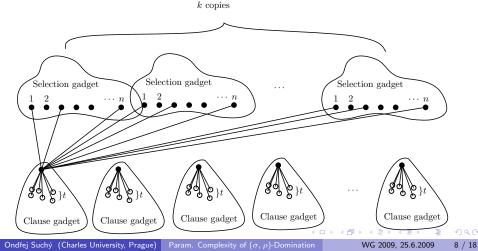
W[1]-hardness - idea of the reduction III

- take k copies of the selection gadget and
- a copy of the clause gadget for each clause and
- connect the root of the clause gadget to the roots of selection gadget corresponding to the variables that appear in the clause



W[1]-hardness - idea of the reduction III

- take k copies of the selection gadget and
- a copy of the clause gadget for each clause and
- connect the root of the clause gadget to the roots of selection gadget corresponding to the variables that appear in the clause



W[1]-membership - machine characterisation

Non-deterministic RAM (NRAM) is RAM with a single non-deterministic instruction "GUESS(n)" added, which guesses a number between 1 and n.

Definition

An NRAM program \mathbb{P} is *tail-nondeterministic k-restricted* if there are computable functions f and g and a polynomial p such that on every run with input $(x, k) \in \Sigma^* \times \mathbb{N}, n := |x|$ the program \mathbb{P}

- performs at most $f(k) \cdot p(n)$ steps;
- uses at most the first $f(k) \cdot p(n)$ registers;
- contains numbers $\leq f(k) \cdot p(n)$ in any register at any time; and
- all nondeterministic steps are among the last g(k) steps of the computation.

W[1]-membership - machine characterisation

Non-deterministic RAM (NRAM) is RAM with a single non-deterministic instruction "GUESS(n)" added, which guesses a number between 1 and n.

Definition

An NRAM program \mathbb{P} is *tail-nondeterministic k-restricted* if there are computable functions f and g and a polynomial p such that on every run with input $(x, k) \in \Sigma^* \times \mathbb{N}, n := |x|$ the program \mathbb{P}

- performs at most $f(k) \cdot p(n)$ steps;
- uses at most the first $f(k) \cdot p(n)$ registers;
- contains numbers $\leq f(k) \cdot p(n)$ in any register at any time; and
- all nondeterministic steps are among the last g(k) steps of the computation.

Theorem (Flum and Grohe 2006)

A parameterized problem P is in W[1] if and only if there is a tail-nondeterministic k-restricted NRAM program deciding P.

• For
$$r := 1$$
 To $q_{max} + 1$ do ForAll $R \in \binom{V}{r}$ do

$$B(R) := |\bigcap_{u \in R} N_G(u)| = |\{v | v \in V, \forall u \in R : uv \in E\}|;$$

<ロ> (日) (日) (日) (日) (日)

3

• For
$$r := 1$$
 To $q_{max} + 1$ do ForAll $R \in \binom{V}{r}$ do
 $B(R) := |\bigcap_{u \in R} N_G(u)| = |\{v | v \in V, \forall u \in R : uv \in E\}|;$

2 Guess k (distinct) vertices v_1, \ldots, v_k , denote $S = \{v_1, \ldots, v_k\}$;

③ For *i* := 1 To *k* do If $|\{v_j | v_i v_j \in E\}| \notin \sigma$ then REJECT;

くほと くほと くほと

- 32

• For
$$r := 1$$
 To $q_{max} + 1$ do ForAll $R \in \binom{V}{r}$ do
 $B(R) := |\bigcap_{u \in R} N_G(u)| = |\{v | v \in V, \forall u \in R : uv \in E\}|;$

2 Guess k (distinct) vertices v_1, \ldots, v_k , denote $S = \{v_1, \ldots, v_k\}$;

③ For *i* := 1 To *k* do If
$$|\{v_j | v_i v_j \in E\}| \notin \sigma$$
 then REJECT;

• For
$$r := q_{max} + 1$$
 Downto 1 do

$$D(r) := \sum_{R \in \binom{S}{r}} (B(R) - |\bigcap_{u \in R} N_G(u) \cap S|) = \sum_{R \in \binom{S}{r}} |\{v \in V \setminus S \mid R \subseteq N_G(v)\}|$$

∃ ⇒

- 一司

3

• For
$$r := 1$$
 To $q_{max} + 1$ do ForAll $R \in \binom{V}{r}$ do
 $B(R) := |\bigcap_{u \in R} N_G(u)| = |\{v | v \in V, \forall u \in R : uv \in E\}|;$

Quess k (distinct) vertices v_1, \ldots, v_k , denote $S = \{v_1, \ldots, v_k\}$;
For i := 1 To k do If $|\{v_j | v_i v_j \in E\}| \notin \sigma$ then REJECT;
For $r := q_{max} + 1$ Downto 1 do $D(r) := \sum_{R \in \binom{S}{r}} (B(R) - |\bigcap_{u \in R} N_G(u) \cap S|) = \sum_{R \in \binom{S}{r}} |\{v \in V \setminus S \mid R \subseteq N_G(v)\}|$ $C(r) := D(r) - \sum_{t=r+1}^{q_{max}} \left(\binom{t}{r} \cdot C(t)\right)$

If $r \notin \rho$ and $C(r) \neq 0$ then REJECT;

• For
$$r := 1$$
 To $q_{max} + 1$ do ForAll $R \in \binom{V}{r}$ do
 $B(R) := |\bigcap_{u \in R} N_G(u)| = |\{v | v \in V, \forall u \in R : uv \in E\}|;$

Quess k (distinct) vertices v_1, \ldots, v_k , denote $S = \{v_1, \ldots, v_k\}$;
For i := 1 To k do If $|\{v_j | v_i v_j \in E\}| \notin \sigma$ then REJECT;
For $r := q_{max} + 1$ Downto 1 do $D(r) := \sum_{R \in \binom{S}{r}} (B(R) - |\bigcap_{u \in R} N_G(u) \cap S|) = \sum_{R \in \binom{S}{r}} |\{v \in V \setminus S \mid R \subseteq N_G(v)\}|$

$$\mathcal{C}(r) := \mathcal{D}(r) - \sum_{t=r+1}^{rmax} \left(inom{t}{r} \cdot \mathcal{C}(t)
ight)$$

If $r \notin \rho$ and $C(r) \neq 0$ then REJECT;

• If $\sum_{r \in \rho} C(r) = n - k$ then ACCEPT; Else REJECT;

Ondřej Suchý (Charles University, Prague) Param. Complexity of (σ, ρ) -Domination

Question: Is there a (σ, ρ) -dominating set of size at least n - k?

Dual parameterization

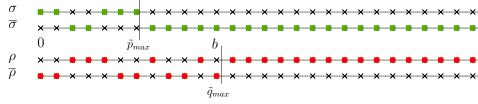
Question: Is there a (σ, ρ) -dominating set of size at least n - k? For $X \subset \mathbb{N}_0$ denote $\overline{X} := \mathbb{N}_0 \setminus X$ the complement of X.

Theorem

Let either σ or $\overline{\sigma}$ be finite, and similarly either ρ or $\overline{\rho}$ finite. Then (σ, ρ) -DOMINATING SET OF SIZE AT LEAST n - k is FPT.

Dual in FPT - proof I

Denote \tilde{p}_{max} the maximum of σ or $\overline{\sigma}$ (of the finite one of them). Similarly denote \tilde{q}_{max} the maximum of ρ or $\overline{\rho}$. Finally *b* is max{ $\tilde{p}_{max}, \tilde{q}_{max}$ }.

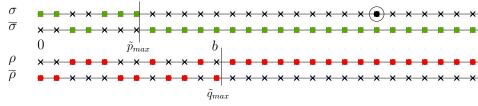


We say that a vertex is

- Unsatisfied if it has a wrong number of neighbors in S
- Big if it is of degree at least b + k
- Small, Satisfied ...

Dual in FPT - proof I

Denote \tilde{p}_{max} the maximum of σ or $\overline{\sigma}$ (of the finite one of them). Similarly denote \tilde{q}_{max} the maximum of ρ or $\overline{\rho}$. Finally *b* is max{ $\tilde{p}_{max}, \tilde{q}_{max}$ }.



We say that a vertex is

- Unsatisfied if it has a wrong number of neighbors in S
- Big if it is of degree at least b + k
- Small, Satisfied ...

Algorithm for Dual

Procedure Exclude(S)

- If all vertices satisfied then Return(S);Exit;
- If |S| = n k then Halt;
- Let v be an unsatisfied vertex;
- If v big then
 - If $v \in S$ and ρ infinite then $Exclude(S \setminus v)$;
 - Else Halt;

Else

If v ∈ S then Exclude(S \ v);
Let {u₁,..., u_r} = S ∩ N(v) be the neighbors of v in S;
If r = 0 then Halt;
For i := 1 to min{b + 1, r} do Exclude(S \ {u_i});

Usage: Call Exclude(V);

- 3

Parity sets

Denote **EVEN** the set of even nonnegative integers and **ODD** the set of odd nonnegative integers The following is a well-known W[1]-hard problem

ODD SET

```
Input: Red-Blue bipartite graph G = (R, B, E)
Parameter: k.
Question: Is there a set of S \subseteq R of exactly k red vertices, in which every blue vertex has odd number of neighbors?
```

Parity sets

Denote **EVEN** the set of even nonnegative integers and **ODD** the set of odd nonnegative integers The following is a well-known W[1]-hard problem

ODD SET

```
Input: Red-Blue bipartite graph G = (R, B, E)
Parameter: k.
Question: Is there a set of S \subseteq R of exactly k red vertices, in which every blue vertex has odd number of neighbors?
```

Lemma

 $\mathrm{ODD}\ \mathrm{Set}$ is W[1]-hard, even if every blue vertex has odd degree.

Parity sets

Denote **EVEN** the set of even nonnegative integers and **ODD** the set of odd nonnegative integers The following is a well-known W[1]-hard problem

ODD SET

Input: Red-Blue bipartite graph G = (R, B, E)

Parameter: k.

Question: Is there a set of $S \subseteq R$ of exactly k red vertices,

in which every blue vertex has odd number of neighbors?

Lemma

 $\mathrm{ODD}\ \mathrm{Set}$ is W[1]-hard, even if every blue vertex has odd degree.

Theorem

ODD SET OF SIZE (AT LEAST) |R| - k, and EVEN SET OF SIZE (AT LEAST) |R| - k are W[1]-hard problems.

$\sigma, \rho \in \{ \mathsf{EVEN}, \mathsf{ODD} \}$

Theorem

Let $\sigma, \rho \in \{\text{EVEN}, \text{ODD}\}$. Then (σ, ρ) -DOMINATING SET OF SIZE (AT LEAST) n - k is W[1]-hard problem.

3

$\sigma, \rho \in \{ \mathsf{EVEN}, \mathsf{ODD} \}$

Theorem

Let $\sigma, \rho \in \{\text{EVEN}, \text{ODD}\}$. Then (σ, ρ) -DOMINATING SET OF SIZE (AT LEAST) n - k is W[1]-hard problem.

Lemma

EVEN SET OF SIZE |R| - k is W[1]-hard, even if all red vertices have even degree.

Proof of Lemma

Replace each vertex in B by two copies with the same neighborhood.

$\sigma, \rho \in \{ \mathsf{EVEN}, \mathsf{ODD} \}$

Theorem

Let $\sigma, \rho \in \{\text{EVEN}, \text{ODD}\}$. Then (σ, ρ) -Dominating Set of Size (at least) n - k is W[1]-hard problem.

Lemma

EVEN SET OF SIZE |R| - k is W[1]-hard, even if all red vertices have even degree.

Proof of Lemma

Replace each vertex in B by two copies with the same neighborhood.

Proof of Theorem for the case $\sigma = \rho = \mathbf{EVEN}$

If S is an even set of size |R| - k and all the degrees in R are even, then $S \cup B$ is (**EVEN**,**EVEN**)-dominating set of size n - k.

イロト 不得下 イヨト イヨト 二日

Overview of our results

σ	ho	size	graphs	parameterized
				complexity
finite	finite, 0∉	$= k, \leq k$		W[1]-hard
recursive	finite	$= k, \leq k$		in W[1]
finite or	finite or	$\geq n-k$		FPT
co-finite	co-finite			
EVEN or	EVEN or	= n - k,		W[1]-hard
ODD	ODD	$\geq n-k$		
finite or	finite or	$= k, \leq k$	locally minor	FPT
co-finite	co-finite		excluding	
$\max \sigma <$	$< \min ho$	$= k, \leq k$	degenerated	FPT

EVEN/ODD SET OF SIZE (AT LEAST) |R| - k is W[1]-hard

Open problems / Research directions

- Clasification of (reasonable) infinite σ, ρ
- *r*-REGULAR INDUCED SUBGRAPH OF SIZE n khas a kernel of size $O(kr(r + k)^2)$ [Moser and Thilikos 2006]. Do our FPT problems admit polynomial kernel?
- Restricted graph classes

...

Thank you for your attention!