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Introduction

Graph Complexity Measures

@ Tree-width, clique-width or rank-width are interesting.
» They yield Fixed Parameter Tractable algorithms.
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» They yield Fixed Parameter Tractable algorithms.
» They give structural informations on graphs.

@ Rank-width is particularly interesting.
» It is equivalent to clique-width (OS, 06).

» Recognition of RWD(< k) in cubic-time (HO, 07).
Characterization by a finite list of graphs to exclude as vertex-minors (O, 05).

v
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Algebraic characterization (CK, 07).
Rank-width is related to split decomposition (O, 05).
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Introduction

Rank-Width and Split Decomposition
Split decomposition generalizes modular decomposition.
@ A split in an undirected graph.

» AUB = V.
~ AL.1B] > 2.

@ Prime graph = no split. A B

rwd(G) = max{rwd(H) | H induced prime wrt to split decomposition} J

L1
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Introduction

Nice Characterization of RWD(= 1)

u

@ y is a pendant vertex.

@ zand t are twins.

The following are equivalent

@ G has rank-width 1.

@ G is obtained by creating twins or adding pendant vertices.
@ G s a distance-hereditary graph.

@ G is completely decomposable by the split decomposition.

@ Gis (I:I:I @ O -&)-free.

distance hereditary: du(x, y) = dg(x, y) for any connected subgraph H. I:I
)
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Introduction
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Introduction

Limits

Rank-width is defined only for undirected graphs.

But

@ There exist several generalizations of rank-width to directed graphs. [Kanté]
» GF(4)-rank-width and bi-rank-width.

@ GF(4)-rank-width has also good combinatorial properties.

» Some of the known properties of undirected rank-width can be generalized
to GF(4)-rank-width.

Goal: A characterization of GF(4)-RWD(< 1) similar to the one of RWD(< 1).
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Introduction

Outline

@ Directed Rank-Width
e Displit Decomposition

© Digraphs of Rank-Width 1
@ The Theorem
@ Proof of Theorem
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Directed Rank-Width

Representation of a digraph over GF(4)

@ 4 elements {0,1,0,0?} in GF(4).

» 1+o+0®=0.
» o’ =1.

» a+a=0foralla e {0,1,0,c?}.

Xq Xo X3 X4 X5 Xe X7 X8

X4 0 ®] alcf|O o | & 1

x| a|]O0O]O0O]O0O|]0]O0]oO

x3 | ®] 0 0olc®] 0 o |c®] 0
Me=|x | oa|lO0O|a|O0]O0O]O0O]|c2]O
xs | 0la|O]O]o0o]O]O]|c?

xs || 0] 0]o]o]lo]oO

X7 | @ 0 a a 0 0 0 0

x| 10|00 a|0]O0]O




Directed Rank-Width

Cut-Rank Function

cutrkg(X) = rk </\/IG[X., VG\X]>

X1 Xo X3 X4 X5 Xe X7 X3 T T8

X4 0 c®]| alcf|O o | @ 1
x| a|]O0O]O0O]O|P2]0o]O0]oO
x| ] 0 02| 0 o | 2] 0 7

M=% 6 0o |0]0]0 |0 " \
xs | 0] a|]O0O]O]O]O][|O]d? )
xs |2 | 0200000 /
X7 | @ 0 a a 0 0 0 0
xs| 1] 0]0]0|a|0O0]O0]O

@ o(0) =c?, o(c®) =0: o is an automorphism

o Mg[Va\X, X] = U(MG[X, VG\X])

o = cutrkg is symmetric and submodular.
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Directed Rank-Width

Directed Rank-Width

@ Alayout is a pair (T, £).

» T is a sub-cubic tree.
» L: Vg — Ly is a bijection.
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Directed Rank-Width

Directed Rank-Width

@ Alayout is a pair (T, £).
» T is a sub-cubic tree.
» L: Vs — Lris abijection.
@ einduces a bipartition (Xe, V5\Xe) of Vi.

@ wd(e) = cutrkg(Xe) = cutrkg(Ve\Xe).

® wd(T, £) = max{wd(e)}-

rwd(G) = min{rwd(T, L) | (T, £) layout of G}

)

p. 9/22



Directed Rank-Width

Some Properties

@ Directed rank-width is equivalent to clique-width.
> rwd(G) < CWd(G) <2. 4™d(C) _ o

@ Directed RWD(< k) recognizable in cubic-time.
@ Characterization by a finite list of excluded configurations.

@ Algebraic operations for solving MS-definable problems exist.
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Directed Rank-Width

Some Properties

@ Directed rank-width is equivalent to clique-width.
> rwd(G) < CWd(G) <2. 4™d(C) _ o

@ Directed RWD(< k) recognizable in cubic-time.
@ Characterization by a finite list of excluded configurations.
@ Algebraic operations for solving MS-definable problems exist.

@ |t is not related to split decomposition but to displit decomposition.

L1
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Displit Decomposition

Plan

e Displit Decomposition

L1
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Displit Decomposition
Displit Decomposition

A displit in a graph is a bipartition {X, Y} (with | X| > 2 < |Y]) such that
cutrkg(X) = cutrkg(Y) =1
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Displit Decomposition
Displit Decomposition

A displit in a graph is a bipartition {X, Y} (with | X| > 2 < |Y]) such that
cutrkg(X) = cutrkg(Y) =1

@ Generalize undirected split.
@ If a graph has a displit, then it can be decomposed.

@ The displit decomposition is the recursive decomposition of a graph by simple
displit decompositions, until every graph is prime (i.e. has no displit).
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Displit Decomposition

Displit Decomposition Tree

Displit decomposition respects the decomposition frame of Cunningham and Edmonds
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Displit Decomposition

Displit Decomposition Tree

Displit decomposition respects the decomposition frame of Cunningham and Edmonds

Thus it can be represented by a unique undirected tree.

This tree is called the Displit decomposition tree.

Displit decomposition tree can be computed in O(nm)-time.

rwd(G) = max{rwd(H) | H induced prime wrt to displit decomposition}

L1

p. 13/22



Digraphs of Rank-Width 1

Plan

© Digraphs of Rank-Width 1

L1

p. 14/22



Digraphs of Rank-Width 1 The Theorem

Dtwins

x and y are dtwins if (A = Nf_,(x), B = Ng_,(x))

@ N; ,(y)=A Ng ,(y)=B
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Digraphs of Rank-Width 1 The Theorem

Dtwins

x and y are dtwins if (A = N;_,(x), B= Ng_(x))

g

i

NW‘

@ Ni ,(y)=A Nz ,(y)=8B
® N, (¥)=B. Ng_,(y) = (B\A) U (A\B)

26
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Digraphs of Rank-Width 1 The Theorem

Dtwins
x and y are dtwins if (A = N;_,(x), B= Ng_,(x))
o Ni  (y)=A N5 (y)=B R EEE—Y N
° Ng,X(Y) =B, Ngfx(y) = (B\A) U (A\B) ) \ o
® Ng ,(¥) = (A\B)U(B\A), Ng_,(y)=A B
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Digraphs of Rank-Width 1 The Theorem

Dtwins
x and y are dtwins if (A = Ngfy(x), B= Ng_y(x))

@ N;_(v)=A Ng_,(y)=B

T
«— 000
) \
ol
T3

® Ng .(¥) =B, Ng_,(y) = (B\A)U(A\B) -
@ Ng_,(y) = (A\B)U(B\A), Ng_,(y) = A h

L6

Proposition

{{x,y},—} is adisplitif and only if x and y are dtwins or x is pendant to y or y
is pendant to x.
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Digraphs of Rank-Width 1 The Theorem

The Main Theorem

Let G be a connected digraph with at least 2 vertices. Then the following conditions
are equivalent:

1. G is completely decomposable by the displit decomposition.

2. G can be obtained from a single vertex by creating diwins or adding pendant
vertices.

3. G has rank-width 1.
4. For every W C V with |W| > 4, G[W] has a non-trivial displit.

o

u(G) is distance-hereditary and for every W C V with |W| < 5, rwd(G[W]) < 1.

u(@G) = G without directions on arcs.
completely decomposable = no prime nodes.
Condition 1 gives an O(nm)-time algorithm.

Condition 5 gives a characterization by forbidden induced subgraphs.
g
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Digraphs of Rank-Width 1 Proof of Theorem

1 = 2: By Induction

Completely Decomposable = sum of dtwins and pendant vertices

L

@ Let (T, L) adisplit decomposition of G.

@ uis degenerated (or linear).
@ x> and xg are diwins.

Inductive hypothesis: G — x> sum of dtwins and pendant vertices.

— (G also. L'1
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Digraphs of Rank-Width 1 Proof of Theorem

2 — 3: By Induction

Sum of dtwins and pendant vertices = rwd(G) = 1
@ xg is the last added vertex.
@ Inductive hypothesis: G — xg has rank-width 1.
@ — G has rank-width 1 since x; and xg forms a dtwin.
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Digraphs of Rank-Width 1 Proof of Theorem

3—4

rwd(G) = 1 = G[W] has a displit, |W| > 4
@ G[W] has rank-width at most 1.
@ {{Xx3,Xs},{Xs, x1}} is a displit.

L1
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Digraphs of Rank-Width 1 Proof of Theorem

3—4,4—1

rwd(G) = 1 = G[W] has a displit, |W| > 4
@ G[W] has rank-width at most 1.
@ {{Xx3,Xs},{Xs, x1}} is a displit.

— completely decomposable = 3 G[W] prime, |W| > 4
@ G not completely decomposable =—- 3 a prime node u.
@ v adjacent with at least 4 vertices of G (otherwise u is degenerated).
@ —> 3 aninduced subgraph of G which is prime. I_J.I
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Digraphs of Rank-Width 1 Proof of Theorem

3«5

rwd(G) =1 = u(G) distance hereditary and rwd(G[W]) <1, |[W| <5
@ rwd(G) =1 = rwd(«(G)) = 1.
@ — u(G) is distance-hereditary graph.

u(G) distance hereditary and rwd(G[W]) <1, |[W| <5 = rwd(G) =1
@ rwd(G) > 1 and »(G) is distance hereditary.
@ Let W st rwd(G[W]) > 1 be minimal (wrt this property).
@ One can prove the following (working on the split decomposition tree of u(G)):

» u(G[W]) has no pendant vertex,

» if u(G[W]) has a false twin, then G[W] has at most 4 vertices,

» if u(G[W]) has no false twin and no pendant vertex, then »(G) is complete,
» if u(G[W]) is complete, then G[W] has at most 5 vertices.

@ — I W strwd(G[W]) > 1 with |[W]| < 5.

L1
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Conclusion and Perspectives

Conclusion and Perspectives

Conclusion

@ Nice characterization of digraphs of rank-width 1.

@ Extends to digraphs with labels (from fields) on the arcs.

Remarks
@ A notion of directed split by Cunningham.

@ bi-rank-width 2 = completely decomposable by directed split decomposition.

Perspectives
@ Similar characterization for bi-rank-width 2.

@ A better combinatorial characterization of digraphs of rank-width 1.

L1
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