
Fast exact algorithms for hamiltonicity
in claw-free graphs

Hajo Broersma1

Fedor Fomin2

Pim van ’t Hof1

Daniël Paulusma1

Durham University1

University of Bergen2

WG 2009

Introduction

G = (V ,E) is finite, undirected graph, no loops, no multiple edges.

G is claw-free if G does not contain an induced claw, which is a

K1,3 = ({u, a, b, c}, {ua, ub, uc}).

Goal: find a hamiltonian cycle of a claw-free graph.

Theorem (Li, Corneil & Mendelsohn, 2000)

Deciding if a graph has a hamiltonian cycle is NP-complete even
for the class of 3-connected 3-regular claw-free planar graphs.

We aim for an exact algorithm.

Known Results

Theorem (Karp, 1982)

Hamiltonian Cycle can be solved using O∗(2n) time and
polynomial space for any n-vertex graph.

Here, O∗-notation suppresses factors of polynomial order.

Major open problem:

Can Hamiltonian Cycle be solved in O∗(αn) time for α < 2?

Even unknown if polynomial space is dropped.

For the following graph classes, faster exact algorithms are known
for solving Hamiltonian Cycle:

O∗(c
√

n) time for some constant c for planar graphs
[Deineko, Klinz & Woeginger, 2006]

O∗(1.251n) time for cubic graphs
[Iwama & Nakashima, 2007]

O∗(1.733n) time for graphs with maximum degree 4
[Gebauer, 2008]

O∗((2− ε)n) time with ε > 0 for graphs with bounded degree
[Björklund, Husfeldt, Kaski & Koivisto, 2008]

The last three results are valid for the more general
Traveling Salesman problem.

What about claw-free graphs?

We present two algorithms for Hamiltonian Cycle on n-vertex
claw-free input graphs:

an algorithm that uses O∗(1.6818n) time and exponential
space

an algorithm that uses O∗(1.8878n) time and polynomial
space

Our Approach

We use the same approach for both algorithms:

1. Translate a (claw-free) instance of Hamiltonian Cycle to
an instance of Dominating Closed Trail.

2. Solve Dominating Closed Trail.

3. Translate a solution of Dominating Closed Trail to a
solution of Hamiltonian Cycle.

Performing 1 and 3 can be done in polynomial time; this is known
already.

Performing 2 costs us exponential time; this is the new part and in
this part the two algorithms are different from each other.

Outline of the Algorithms

Input: a claw-free graph G

Output: Yes if G has a hamiltonian cycle, NO otherwise.

Step 1: compute the closure cl(G) of G

For each x ∈ VG , the subgraph G [N(x)] of G induced by N(x) has
at most two components.

If G [N(x)] has two components, both of them must be
cliques. Do nothing.

If G [N(x)] is connected, add edges between all pairs of
nonadjacent vertices in N(x).

The closure cl(G) of G is obtained by recursively repeating this
operation, as long as this is possible.

Observe that cl(G) is obtained in polynomial time.

Example

G

Ryjáček [1997]:
cl(G) is uniquely determined.

Example

G

Ryjáček [1997]:
cl(G) is uniquely determined.

Example

G

Ryjáček [1997]:
cl(G) is uniquely determined.

Example

Ryjáček [1997]:
cl(G) is uniquely determined.

Example

Ryjáček [1997]:
cl(G) is uniquely determined.

Example

Ryjáček [1997]:
cl(G) is uniquely determined.

Example

cl(G) = K6

Ryjáček [1997]:
cl(G) is uniquely determined.

Step 2: compute the triangle-free graph H with L(H) = cl(G).

The line graph of a graph H with edges e1, . . . , en is the graph
L(H) with vertices u1, . . . , un such that

uiuj ∈ EL(H) ⇔ ei and ej share an end vertex in H.

Ryjáček [1999]:
for a claw-free graph G, there is a triangle-free graph H such that
L(H) = cl(G).

We call H the preimage graph of G .

Due to Roussopolous [1973]:
H is unique and can be computed in polynomial time.

Step 3: detect a DCT of H

A graph is even if all its vertices have even degree.

A graph is a closed trail (or eulerian) if it is connected and even.

A closed trail T dominates H if VH \ VT is independent set in H.

Then every edge of H has at least one vertex in T , so here:

dominating means edge-dominating.

In that case T is a dominating closed trail (DCT).

Due to Harary & Nash-Williams [1965]:
cl(G) has a hamiltonian cycle if and only if H has a DCT.

How to detect a DCT of H will be explained later.

Step 4: translate DCT of H back into hamiltonian cycle of cl(G)

Traverse T using the polynomial-time algorithm that finds a
eulerian tour in an even connected graph (cf. [Diestel, 2000]).

This way pick up edges (= vertices in cl(G)) one by one and
insert dominated edges as soon as an end vertex of a dominated
edge is encountered.

Step 5: translate hamiltonian cycle in cl(G) to one in G

Use the polynomial time algorithm of Broersma & P. [2008].

Example.

G

Example.

G

Example.

G cl(G) = L(H)

Example.

G cl(G) = L(H) H

Example.

G cl(G) = L(H) H

Example.

G cl(G) = L(H) H

Example.

G cl(G) = L(H) H

Remaining Task

We need to find the DCT of a preimage graph H in Step 3 in

O∗(1.6818n) time and exponential space (algorithm 1)

O∗(1.8878n) time and polynomial space (algorithm 2)

Recall that n = |EH | = |VG |.

We obtain such algorithms by making use of

a structural result by which we only have to search for a DCT
with relatively few edges.

Structural Result on Closed Trails

For k ≥ 1, a graph H is k-degenerate if every non-empty subgraph
of H has a vertex of degree at most k .

H is k-ordered if H allows a vertex ordering π = v1, . . . , v|VH | such
that for 1 ≤ i ≤ |VH |:

H[{v1, . . . , vi}] is connected

vi has at most k neighbors in H[{v1 . . . , vi}].

Theorem

Every graph with a spanning closed trail contains a 2-degenerate
3-ordered spanning closed trail.

So if such a graph has p vertices, it contains a spanning closed
trail with at most 2p edges (due to the 2-degeneracy).

Algorithm 1 for detecting DCT in H

Phase 1. As long as H contains a vertex v with d(v) ≤ 4:

1. Guess the set of DCT edges incident with v .

2. Adjust the parities of the neighbors of v .

3. Remove v .

This leads to a phase-2 tuple (H ′,W (H ′), `), where

H ′ is the remaining graph (with minimum degree at least 5).

W (H ′) is the total set of guessed DCT edges

` is the parity labeling of the vertices in V (H ′).

With each phase-2 tuple (H ′,W (H ′), `) enter Phase 2.

Phase 2. Use dynamic programming:

Given a pair (S , `), how can v ∈ V (H ′) be connected to S ⊂ VH′

with DCT edges?

Lemma

Phase 1 creates O∗(1.6818n1) phase-2 tuples (H ′,W (H ′), `), where

n1 is the total number of deleted edges, and |VH′ | ≤ 2(n−n1)
5 .

Lemma

We may assume that in Phase 2 a vertex v ∈ V (H ′) will be
connected to a set S ⊂ VH′ with at most three edges.

The last lemma follows from our 3-ordered result on closed trails.

Together they ensure that Algorithm 1 uses O∗(1.6818n) time.

Due to Phase 2, Algorithm 1 may use exponential space.

Algorithm 2 for detecting DCT in H

Phase 1. As long as H contains a vertex v with d(v) ≤ 12:

1. Guess the set of DCT edges incident with v .

2. Adjust the parities of the neighbors of v .

3. Remove v .

This leads to a phase-2 tuple (H ′,W (H ′), `), where

H ′ is the remaining graph (with minimum degree at least 13).

W (H ′) is the total set of guessed DCT edges

` is the parity labeling of the vertices in V (H ′).

With each phase-2 tuple (H ′,W (H ′), `) enter Phase 2.

Phase 2. Guess the remaining edges of a DCT.

Lemma

Phase 1 creates O∗(1.8878n1) phase-2 tuples (H ′,W (H ′), `), where

n1 is the total number of deleted edges, and |VH′ | ≤ 2(n−n1)
13 .

Lemma

We may assume that the set of guessed edges in Phase 2 has size
at most 2|VH′ |.

The last lemma follows from our 2-degenerate result on closed
trails.

Together they ensure that Algorithm 2 uses O∗(1.8878n) time and
polynomial space.

Open problems

1. Can we speed up the algorithms by making use of the
triangle-freeness of the preimage graph H?

2. Can Traveling Salesman be solved for claw-free graphs in
O∗(αn) time for some constant α < 2?

3. Can Hamiltonian Cycle be solved in O∗(αn) time for
some constant α < 2 for

chordal bipartite graphs?
K1,4-free graphs?

