The complexity of Domination Games

Sebastian Ordyniak joint work with Stephan Kreutzer Oxford University Computing Laboratory

> WG 2009 Montpellier, June 25, 2009

Variant of graph searching introduced in FominKratschMüller'03, where it was shown that:

- Domination Games generalise cops and robber games (path-width and tree-width)
- Domination Games are not monotone
- close resemblence to Domination Target Number
- give lower bounds for the domination search number on various classes of graphs (such as *k*-dimensional cubes, asteroidal-triple free graphs, claw-free graphs and

graphs with certain types of spanning trees and caterpillars)

Here we will show that Domination Games

- generalise Robber and Marshall Game (hypertree-width)
- have arbitrary monotonicity costs
- are **PSPACE**-complete
- are not FPT, in fact most variants of Domination Games are not even in XP

Graph Searching Games

SEBASTIAN ORDYNIAK

Motivation

Two player games played on graph-like structures

- originally motivated by the problem of finding an explorer in a complicated system of dark caves
- provide intuitive definition for many interesting decomposition parameters on graphs (tree-width), hyper-graphs (hyper-treewidth) and directed graphs (directed tree-width)
- close resemblence to several important graph-invariants, e.g. vertex separation number (VLSI-design), black and white pebble games (sequential computation), domination target number

SEBASTIAN ORDYNIAK

Motivation

Two player games played on graph-like structures

- originally motivated by the problem of finding an explorer in a complicated system of dark caves
- provide intuitive definition for many interesting decomposition parameters on graphs (tree-width), hyper-graphs (hyper-treewidth) and directed graphs (directed tree-width)
- close resemblence to several important graph-invariants, e.g. vertex separation number (VLSI-design), black and white pebble games (sequential computation), domination target number

SEBASTIAN ORDYNIAK

Motivation

Two player games played on graph-like structures

- originally motivated by the problem of finding an explorer in a complicated system of dark caves
- provide intuitive definition for many interesting decomposition parameters on graphs (tree-width), hyper-graphs (hyper-treewidth) and directed graphs (directed tree-width)
- close resemblence to several important graph-invariants, e.g. vertex separation number (VLSI-design), black and white pebble games (sequential computation), domination target number

SEBASTIAN ORDYNIAK

played by two players on the vertices of a graph, i.e the cop- and the robber-player

- the cop player can use an arbitrary amount of tokens to capture the robber, who is hiding in the vertices of the graph
- the robber tries to avoid capture by moving along paths in the graph that are not occupied by a cop
- variants of this game are defined by adjusting the abilities for both players
- the number of cops needed to catch the robber defines the variant we are interested in

SEBASTIAN ORDYNIAK

played by two players on the vertices of a graph, i.e the cop- and the robber-player

- the cop player can use an arbitrary amount of tokens to capture the robber, who is hiding in the vertices of the graph
- the robber tries to avoid capture by moving along paths in the graph that are not occupied by a cop
- variants of this game are defined by adjusting the abilities for both players
- the number of cops needed to catch the robber defines the variant we are interested in

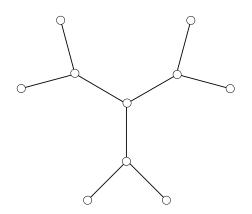
SEBASTIAN ORDYNIAK

played by two players on the vertices of a graph, i.e the cop- and the robber-player

- the cop player can use an arbitrary amount of tokens to capture the robber, who is hiding in the vertices of the graph
- the robber tries to avoid capture by moving along paths in the graph that are not occupied by a cop
- variants of this game are defined by adjusting the abilities for both players
- the number of cops needed to catch the robber defines the variant we are interested in

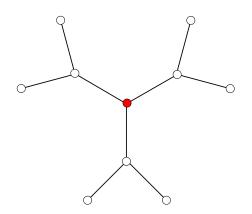
SEBASTIAN ORDYNIAK

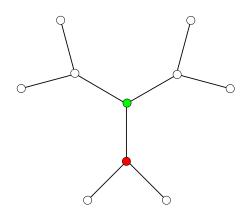
played by two players on the vertices of a graph, i.e the cop- and the robber-player


- the cop player can use an arbitrary amount of tokens to capture the robber, who is hiding in the vertices of the graph
- the robber tries to avoid capture by moving along paths in the graph that are not occupied by a cop
- variants of this game are defined by adjusting the abilities for both players
- the number of cops needed to catch the robber defines the variant we are interested in

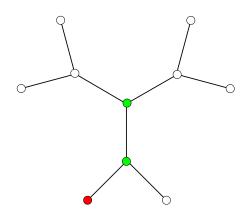
SEBASTIAN ORDYNIAK

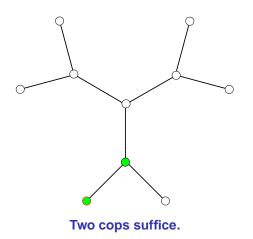
played by two players on the vertices of a graph, i.e the cop- and the robber-player


- the cop player can use an arbitrary amount of tokens to capture the robber, who is hiding in the vertices of the graph
- the robber tries to avoid capture by moving along paths in the graph that are not occupied by a cop
- variants of this game are defined by adjusting the abilities for both players
- the number of cops needed to catch the robber defines the variant we are interested in



SEBASTIAN ORDYNIAK





SEBASTIAN ORDYNIAK

Monotonicity

In general strategies (for the cops) can be arbitrary awkward and long. Monotonicity is a way of defining nice and short strategies.

Definition

A strategy for the cop is monotone, if it does not allow the robber to revisit vertices from which he has previously been expelled.

Definition

A game variant is monotone, if for every winning non-monotone strategy for the cop there exists a monotone winning strategy for the cop that uses the same number of cops.

Here we are interested in the following two variants:

invisible robber (iv)

Characterises path-width

visible robber (v)

Characterises tree-width

These variants are NP-complete, monotone and fixed parameter tractable.

SEBASTIAN ORDYNIAK

Here we are interested in the following two variants:

invisible robber (iv)

Characterises path-width

visible robber (v)

Characterises tree-width

These variants are NP-complete, monotone and fixed parameter tractable.

SEBASTIAN ORDYNIAK

Here we are interested in the following two variants:

invisible robber (iv)

Characterises path-width

visible robber (v)

Characterises tree-width

These variants are NP-complete, monotone and fixed parameter tractable.

SEBASTIAN ORDYNIAK

Here we are interested in the following two variants:

invisible robber (iv)

Characterises path-width

visible robber (v)

Characterises tree-width

These variants are NP-complete, monotone and fixed parameter tractable.

SEBASTIAN ORDYNIAK

Domination Games are a variant of cops and robber games, where the cop player not only guards the vertices he occupies but also all their neighbours.

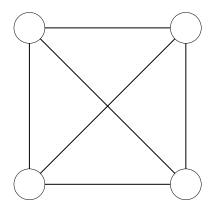
It is known that, DG:

FKM03

- generalise cops and robber games, and thus are at least NP-hard
- are not monotone (invisible case, difference one)

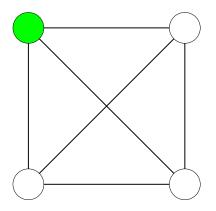
SEBASTIAN ORDYNIAK

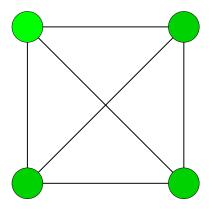
Domination Games are a variant of cops and robber games, where the cop player not only guards the vertices he occupies but also all their neighbours.

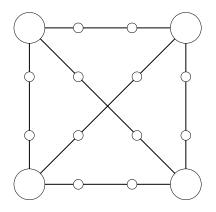

It is known that, DG:

FKM03

- generalise cops and robber games, and thus are at least NP-hard
- are not monotone (invisible case, difference one)


SEBASTIAN ORDYNIAK


SEBASTIAN ORDYNIAK


SEBASTIAN ORDYNIAK

SEBASTIAN ORDYNIAK

CR(G)=DS(G').

SEBASTIAN ORDYNIAK

Domination Games - complexity

Theorem:

Kreutzer, O. 08

The following problem is W[2]-hard:

DOMINATION SEARCH		
Input:	Graph G, integer k.	
Parameter:	<i>k</i> .	
Problem:	Decide whether <i>k</i> cops have a (in-)visible (non-)monotone domination search strategy on <i>G</i> .	

Domination Games - complexity

Theorem:

Kreutzer, O. 08

The following problem is NP-complete:

COP-MONOTONE INVISIBLE DOMINATION SEARCH *Input:* Graph *G Problem:* Decide whether 2 cops have an invisible copmonotone domination search strategy

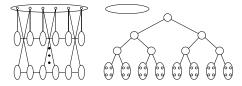
Domination Games - complexity

Theorem:

Kreutzer, O. 08

The following problem is fixed parameter tractable:

DOMINATION SEARCH		
Input:	Graph G of maximum degree d, integer k.	
Parameter:	k + d.	
Problem:	Decide whether k cops have a (in-)visible	
	cop-monotone domination search strategy on	
	G.	


Domination Games - monotonicity

Theorem:

Kreutzer, O. 08

For every $k \ge 1$ there exists a graph G_k , such that

- 2 cops have a non-monotone strategy on G_p.
- k cops are needed to search the graph with a monotone strategy.

Even the length of non-monotone strategies is bounded by the size of the graph.

 \rightsquigarrow Non-monotonicity does not tell us much about the complexity of the game.

The reason for non-monotonicity is that the cops accidentally dominate parts of the graph that are not needed to search the graph.

→ Define a new variant Selective Domination Search of the game in which the cops can choose which vertices to dominate.

Even the length of non-monotone strategies is bounded by the size of the graph.

 \rightsquigarrow Non-monotonicity does not tell us much about the complexity of the game.

The reason for non-monotonicity is that the cops accidentally dominate parts of the graph that are not needed to search the graph.

→ Define a new variant Selective Domination Search of the game in which the cops can choose which vertices to dominate.

In the selective domination search all previous examples are monotone, but:

Theorem:

Kreutzer, O. 09

There exists a graph, such that:

- 2 cops have a non-monotone strategy.
- 3 cops are needed to search the graph with a selective monotone strategy.

Open Problem:

- How large are the cost of monotonicity in the selective game?
- Is there a bound on the length of selective non-monotone strategies?

SEBASTIAN ORDYNIAK

In the selective domination search all previous examples are monotone, but:

Theorem:

Kreutzer, O. 09

There exists a graph, such that:

- 2 cops have a non-monotone strategy.
- 3 cops are needed to search the graph with a selective monotone strategy.

Open Problem:

- How large are the cost of monotonicity in the selective game?
- Is there a bound on the length of selective non-monotone strategies?

SEBASTIAN ORDYNIAK

Domination Games - complexity

Theorem:

Kreutzer, O. 08

The following problem is **PSPACE**-complete:

DOMINATION SEARCH	
Input:	Graph G
Problem:	Decide whether 2 cops have an invisible dom-
	ination search strategy on G

→ Strategies can have up to exponentiell length

SEBASTIAN ORDYNIAK

Domination Games - complexity

Theorem:

Kreutzer, O. 08

The following problem is **PSPACE**-complete:

DOMINATIO	ON SEARCH
Input:	Graph G
Problem:	Decide whether 2 cops have an invisible dom- ination search strategy on <i>G</i>

~ Strategies can have up to exponentiell length

Robber and Marshall Games

SEBASTIAN ORDYNIAK

Robber and Marshall Games

Robber and Marshall Games are a variant of Graph Searching that define hypertree-width.

- Are played on hypergraphs instead of graphs.
- The cops (Marshalls) are occupying edges instead of vertices.
- The robber can move along hyperedges that are not currently occupied by a Marshall.

INTRODUCTION

ROBBER AND MARSHALL GAMES

Robber and Marshall Games

Theorem:

Kreutzer, O. 09

For every hypergraph *H* there exists a graph D(H), such that RM(H) = DS(D(H)).

SEBASTIAN ORDYNIAK

Robber and Marshall Games

As selective monotone domination search generalises generalised hypertree-width, it follows that:

Theorem:

Kreutzer, O. 09

The following problem is NP-complete:

SELECTIVE	MONOTONE (IN-)VISIBLE DOMINATION SEARCH
Input:	Graph G
Problem:	Decide whether 3 cops have an (in-)visible selective monotone domination search strategy on G

Conclusion and Open Problems

Domination Search Games generalise cops and robber and Robber and Marshall Games, but behave very differently, i.e. DG:

- have no bound on the monotonicity cost.
- DG are not fixed parameter tractable.
- most variants are not even in XP.
- Are **PSPACE**-complete

Open Problems:

• What is the complexity of the visible variant of this game?

SEBASTIAN ORDYNIAK

Conclusion and Open Problems

Domination Search Games generalise cops and robber and Robber and Marshall Games, but behave very differently, i.e. DG:

- have no bound on the monotonicity cost.
- DG are not fixed parameter tractable.
- most variants are not even in XP.
- Are **PSPACE**-complete

Open Problems:

• What is the complexity of the visible variant of this game?

SEBASTIAN ORDYNIAK