Low Distortion Embeddings Into The Line

Fedor Fomin, Daniel Lokshtanov, Saket Saurabh. WG 2009

Intuition and Motivation

 Have a complicated object that is hard to work with.Want to approximate our object as good as possible with some "simple sketch"

Low Distortion Embeddings

- A metric M is a universe V together with a distance function D: V * V → N.
- An embedding of M into the the line is a function f: V → N.

Problem definition

- An embedding is non-contracting if
 D(u,v) ≤ |f(u) f(v)|
- The distortion d of a non-contracting embedding is max[|f(u) - f(v)| / D(u,v)].

Problem Considered

- Low distortion means the original metric is well approximated by the new metric.
- We consider the shortest path distance metrics of unweighted graphs.

In: Graph G and integer d

Q: Is there a non-contracting embedding of G into the real line with distortion at most d?

Previous results

- Hard to approximate within a constant factor even for metrics generated by trees.
- Several approximation results (with approximation rations like $n^{1/2}$ and $n^{1/3}$ for special cases like trees.
- Exact algorithm with running time O(n^{4d}).

Our results

Exact algorithm with running time 5^{n+o(n)}.

An Observation

• **Observation:** Let f be an embedding of G=(V,E) into the line that orders V into $v_1 \dots v_n$ from left to right. Then f is non-contracting if and only if it does not contract any consecutive pair in this ordering.

$$f(v_4) - f(v_3) \ge D(v_3, v_4)$$

 $f(v_3) - f(v_2) \ge D(v_2, v_3)$ \longrightarrow $f(v_4) - f(v_2) \ge D(v_2, v_4)$

Another Observation

 The distortion of f is at most d if and only if f streches every edge by at most d.

- Divide the line into subintervals, "buckets", of length d. Notice that neighbours of the graph must go to neighbouring buckets.
- Branch on all possible ways to distribute vertices to buckets. There are 3ⁿ possible ways.

- Given a distribution into buckets we want to find a good embedding that has the same distribution.
- For b buckets we do it in n^{6b}2ⁿ time.
- Order the positions as shown in the figure:

 We first decide which vertex (if any) goes into the first position, then the second position etc.

When a vertex is placed, we need to make sure that no edge is streched more than d and that no pair is contracted.

No long stretch: Let A be the set of already picked, and let a_L be the vertex at position 5 (if any). Knowing A and a_L is sufficient to decide which vertices can be placed at position 6 without stretching an edge more than d.

- We can now do Dynamic Programming, keeping track of the set A of vertices already placed, and which vertex a_L was placed at the last position.
- But, but... hey! Did we forget about noncontraction?

- To enforce non-contraction guess the first and the last vertex in every bucket and the positions of the first and last vertex in each bucket.
- Make sure the DP is consistent with your guesses.
- Total running time: 2ⁿn^{6b}.

- Combining Part I and Part II yields an algorithm with running time 6ⁿn^{6b}. The number of buckets can be n, so this is still not cⁿ.
- Need an extra trick to get the number of buckets to be sufficiently small.

- If the number of buckets, b ≥ n / log²n, then the average number of vertices in a bucket is log²n.
- Take the "middle half" of the buckets. The average number of vertices in one of these buckets is at most 2log²n.

- At least one of the buckets contains at most the average number, log²n of vertices.
 Branching on the postion of these vertices splits the left and the right part into two independent subproblems.
- A recurrence bounding branching:

```
T(n,b) < d^{2\log(n)^2} * 2T(n, 3b/4)
< (2d^{2\log(n)^2})^{2\log(\log(n))} T(n, b / \log^2(n))
< 2^{o(n)}T(n, n/\log^2(n))
```

Tally up The Time

- Part I contributes a factor 3ⁿ to the running time.
- Part III reduces the number of buckets to n / log²n at a cost of a factor 2^{o(n)} to the running time.
- Part II solves each subproblem in time $2^n n^n / (\log(n))^2 = 2^{n+o(n)}$
- Total running time becomes 6^{n+o(n)}.
- With some work this can be improved to a 5^{n+o}
 (n) algorithm..

Open Problem

 For general finite metrics with integer distances, nothing better than an n! algorithm is known. Can a cⁿ algorithm be obtained for this more general version?

