Low Distortion Embeddings Into
The Line

Intuition and Motivation

 Have a complicated object that is hard to work
with.Want to approximate our object as good

as possible with some “simple sketch”

\‘V

Low Distortion Embeddings

2TV LA

* A metric M is a universe V together with a
distance function D :V *V = N.

 An embedding of M into the the line is a
functionf:V = N.

Problem definition

 An embedding is non-contracting if
D(u,v) < [f(u) —f(v)]|

* The distortion d of a non-contracting embedding
is max[|f(u) —f(v)| / D(u,v)].

Problem Considered

* Low distortion means the original metric is
well approximated by the new metric.

* We consider the shortest path distance
metrics of unweighted graphs.

In: Graph G and integer d
Q: Isthere a non-contracting embedding of

G into the real line with distortion at most d?

Previous results

* Hard to approximate within a constant factor
even for metrics generated by trees.

» Several approximation results (with
approximation rations like n¥/2 and n'/3 for special
cases like trees.

* Exact algorithm with running time O(n*9).

Our results

* Exact algorithm with running time 5n+o(n),

An Observation

* Observation: Let f be an embedding of G=(V,E)
into the line that orders Vinto v, ... v, from left
to right. Then f is non-contracting if and only if
it does not contract any consecutive pair in
this ordering.

+ f
f(v,) - f(v3) 2 D(v3, v,) | o
f(vy) - f(v,) = D(v,, v3)

~—> f(v,)-f(v,) 2 D(v,, v,)

Another Observation

 The distortion of f is at most d if and only if f
streches every edge by at most d.

Algorithm, part |

 Divide the line into subintervals, “buckets”, of
length d. Notice that neighbours of the graph
must go to neighbouring buckets.

* Branch on all possible ways to distribute
vertices to buckets. There are 3" possible

ways.

Algorithm, Part Il

 Given a distribution into buckets we want to
find a good embedding that has the same
distribution.

* For b buckets we do it in n®°2" time.
* Order the positions as shown in the figure:

c g9 1312 6 1014’ 7 11 15) 4 8 12 16‘
11\ 1 [1 3f . | 1 1

\'t§|lij"‘ \\\\
\ 1 — \

e

Algorithm, Part Il

* We first decide which vertex (if any) goes into
the first position, then the second position etc.

]

| 91312 61014’3 1115)481216‘

1) e b W\

When a vertex is placed, we need to make sure
that no edge is streched more than d and that
no pair is contracted.

Algorithm, Part Il

* No long stretch: Let A be the set of already
picked, and let a, be the vertex at position 5 (if
any). Knowing A and a, is sufficient to decide
which vertices can be placed at position 6
without stretching an edge more than d.

9 1312 6 10 14| 3 7]11 15)4 8 12 16‘
| 1 9

I W AR C —
3% %+ |/
J

Algorithm, Part Il

 We can now do Dynamic Programming,
keeping track of the set A of vertices already

placed, and which vertex a, was placed at the
last position.

e But, but... hey! Did we forget about non-
contraction?

Algorithm, Part Il

* To enforce non-contraction guess the first and
the last vertex in every bucket and the

positions of the first and last vertex in each
bucket.

 Make sure the DP is consistent with your
guesses.

* Total running time: 2"n®®,

Algorithm, Part Il

 Combining Part | and Part Il yields an
algorithm with running time 6"n®°. The
number of buckets can be n, so this is still not
c".

* Need an extra trick to get the number of
buckets to be sufficiently small.

Algorithm, Part Il

* If the number of buckets, b > n / log?n, then
the average number of vertices in a bucket is

log?n.

e Take the “middle half” of the buckets. The
average number of vertices in one of these
buckets is at most 2log’n.

Algorithm, Part Il

* At least one of the buckets contains at most
the average number, log?n of vertices.
Branching on the postion of these vertices
splits the left and the right part into two
independent subproblems.

* A recurrence bounding branching:
T(n,b) < d28n?*2* 2T(n 3b/4)
< (2d2|og(n)"2)2|og(|og(n)) T(n, b / Iogz(n))
< 2°MT(n, n/log?(n))

Tally up The Time

Part | contributes a factor 3" to the running
time.

Part Il reduces the number of buckets to
n /logZn at a cost of a factor 2°" to the
running time.

Part Il solves each subproblem in time
2NN / (log(n))"2 — 2n+o(n)
Total running time becomes 6"+,

With some work this can be improved to a 5"
() algorithm..

Open Problem

* For general finite metrics with integer
distances, nothing better than an n! algorithm
is known. Can a c" algorithm be obtained for

this more general version?

Thank youl!

