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Introduction

Graph powers

k-th power and k-th root of graph.
• Let H = (V, E) be a graph. Let k be a positive integer. The graph 

G = (V, Ek ) is the k-th power of H, and H is called a k-th root of G,
where  Ek = { xy | 1 ≤ dH(x,y) ≤ k }.

The graph H Square of H
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Introduction

Graph powers

k-th power and k-th root of graph.
• Let H = (V, E) be a graph. Let k be a positive integer. The graph 

G = (V, Ek ) is the k-th power of H, and H is called a k-th root of G,
where  Ek = { xy | 1 ≤ dH(x,y) ≤ k }.

The graph H Square of H Cube of H



5

Introduction

Problems on graph powers

k-TH POWER OF GRAPH 
Instance:  A graph G = (V, E).
Question: Is there a graph H such that G = Hk ? 

For a given graph class C : 
k-TH POWER OF C GRAPH 
Instance:  A graph G = (V, E).
Question: Is there a graph H in C such that G = Hk ? 

k= 2: SQUARE OF GRAPH  and SQUARE OF C GRAPH  

k= 3: CUBE OF GRAPH  and CUBE OF C GRAPH
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Introduction

Related work
In 1960 Ross and Harary [The  square of a tree, Bell System Tech. J.39] first 
studied the concept of the square of a graph.

The computational complexity of k-TH POWER OF GRAPH was unresolved 
until 1994 when Motwani and Sudan proved that SQUARE OF GRAPH is 
NP-complete [Computing roots of graphs is hard, Discrete Applied Math 54 (1994)].

In 2006, Lau proved the NP-completeness of CUBE OF GRAPH
[Bipartite roots of graphs, ACM Transactions on Algorithm 2 (2006)].

For k ≥ 4, the computational complexity of k-TH POWER OF GRAPH
remains open.
Conjecture 1 [Lau, 2006]:

For all fixed k ≥ 4, k-TH POWER OF GRAPH is NP-complete.
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Related Works

Tree powers
In 1995, Lin and Skiena gave an algorithm that solves SQUARE OF TREE
in linear time.

In 1998, Kearney and Corneil solved k-TH POWER OF TREE in cubic time 
for all fixed k.

In 2006, Chang et al. gave O(n+m)-time algorithms for k-TH POWER OF 
TREE.

New and simpler linear-time algorithms for SQUARE OF TREE
are given by Brandstädt et al.(2006)
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Related Works

Powers of bipartite and chordal graphs
In 2006, Lau showed that SQUARE OF BIPARTITE GRAPH is 
polynomially solvable, while CUBE OF BIPARTITE GRAPH is NP-C

Conjecture 2 [Lau, 2006]:
For all fixed k ≥ 3, k-TH POWER OF BIPARTITE GRAPH is NP-C

In 2004, Lau and Corneil proved NP-completeness for SQUARE OF
CHORDAL GRAPH and SQUARE OF SPLIT GRAPH, while SQUARE OF
PROPER INTERVAL GRAPH can be recognized efficiently.

For k ≥ 3, the computational complexity of k-TH POWER OF CHORDAL 
GRAPH was unknown so far.
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Related Works

Powers versus girth
The girth of a (connected) graph G, girth(G), is the smallest length of a cycle 
in G. In case G has no cycles, girth(G)= ∞ .

Very recently, square roots with girth conditions have been considered by 
Farzad et al.[Computing graph roots without short cycles, STACS 2009]. 

SQUARE OF GRAPH WITH GIRTH ≤ 4 is NP-complete, while 
SQUARE OF GRAPH WITH GIRTH ≥ 6 is polynomially solvable.

Conjecture 3 [ Farzad et al. STACS 2009 ]: k-TH POWER OF GRAPH WITH 
GIRTH ≥ 3k -1 is polynomially solvable.
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Motivation

Conjectures of Lau

The following problems are NP-complete.

k-TH POWER OF BIPARTITE GRAPH
Instance : A graph G = (V, E ).
Question: Is there a bipartite graph H such that G = Hk ?

k-TH POWER OF GRAPH
Instance : A graph G = (V, E ).
Question: Is there a graph H such that G = Hk ?  
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NP-completeness Results

Set splitting

SET SPLITTING [ Garey and Johnson, Problem SP4 ]
Instance : Collection D of subsets of a finite set S .
Question: Is there a partition of S into two disjoint subsets S1 and S2 such 

that each subset in D intersects both S1 and S2 ? 

Given S = {u1 , . . ., u7} and D = {d1, d2, d3} with d1 = {u2 , u3 , u4}, d2 = {u1 , u5}, 
d3 = {u3 , u4 , u6 , u7}.  

We will reduce SET SPLITTING to k-TH POWER OF BIPARTITE GRAPH
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NP-completeness ResultsGiven S = {u1, . . ., u7} and D = {d1, d2, d3} with 
d1 = {u2, u3, u4}, d2 = {u1, u5}, d3 = {u3, u4, u6, u7}.

An instance G = G(D,S) for 4-TH POWER OF BIPARTITE GRAPH
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NP-completeness ResultsGiven S = {u1, . . ., u7} and D = {d1, d2, d3} with 
d1 = {u2, u3, u4}, d2 = {u1, u5}, d3 = {u3, u4, u6, u7}.

An instance G = G(D,S) for 4-TH POWER OF BIPARTITE GRAPH

Each ‘element 
vertex’ Ui

corresponds to the 
element ui in S.
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NP-completeness ResultsGiven S = {u1, . . ., u7} and D = {d1, d2, d3} with 
d1 = {u2, u3, u4}, d2 = {u1, u5}, d3 = {u3, u4, u6, u7}.

An instance G = G(D,S) for 4-TH POWER OF BIPARTITE GRAPH

Each ‘subset 
vertex’ Dj

corresponds to the 
subset dj in D.
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NP-completeness ResultsGiven S = {u1, . . ., u7} and D = {d1, d2, d3} with 
d1 = {u2, u3, u4}, d2 = {u1, u5}, d3 = {u3, u4, u6, u7}.

An instance G = G(D,S) for 4-TH POWER OF BIPARTITE GRAPH

‘tail vertices’ Dj
1, 

Dj
2, Dj

3, Dj
4 of the 

subset vertex Dj . 
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NP-completeness ResultsGiven S = {u1, . . ., u7} and D = {d1, d2, d3} with 
d1 = {u2, u3, u4}, d2 = {u1, u5}, d3 = {u3, u4, u6, u7}.

An instance G = G(D,S) for 4-TH POWER OF BIPARTITE GRAPH

This is k-2 pairs of 
‘partition vertices’
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NP-completeness ResultsGiven S = {u1, . . ., u7} and D = {d1, d2, d3} with 
d1 = {u2, u3, u4}, d2 = {u1, u5}, d3 = {u3, u4, u6, u7}.

An instance G = G(D,S) for 4-TH POWER OF BIPARTITE GRAPH
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NP-completeness ResultsGiven S = {u1, . . ., u7} and D = {d1, d2, d3} with 
d1 = {u2, u3, u4}, d2 = {u1, u5}, d3 = {u3, u4, u6, u7}.

The bipartite k-th root H of G to the solution S1, S2

• S1={u1, u2, u3} , S2={u4, u5, u6, u7} is a 
solution of SET SPLITTING.

• Lemma 1: If there exists a partition of S into 
two disjoint subsets S1 and S2 such that 
each subset in D intersects both S1 and S2, 
then there exists a bipartite graph H such 
that G=Hk . 

• Lemma 2: If H is a k-th root of G, then there 
exists a partition of S into two disjoint 
subsets S1 and S2 such that each subset in 
D intersects both S1 and S2 .

• Theorem: k-TH POWER OF BIPARTITE GRAPH is NP-C  for fixed k ≥ 3.
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NP-completeness Results

Hardness results
Theorem 1: k-TH POWER OF BIPARTITE GRAPH is NP-complete for all 

fixed k ≥ 3.

Theorem 2: k-TH POWER OF GRAPH is NP-complete for all fixed k ≥ 2. 

Theorem 3: k-TH POWER OF CHORDAL GRAPH is NP-complete for all 
fixed k ≥ 2. 
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Motivation

Squares of subclasses of chordal graphs 

What is the complexity of squares of 
strongly chordal graphs ? 
interval graphs ? 
strongly chordal split graphs ?

Proper interval
P 

Interval graphs
?

Chordal graphs
NP-C

Strongly chordal graphs

Split graphs
NP-C

?Recognizing 
squares of…
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Efficient Algorithms

Squares of strongly chordal split graphs

There exists a good characterization for squares of strongly chordal
split graphs that gives a recognition algorithm in time 
O(min{n2, mlogn}) for such squares.

Proper interval
P 

Interval graphs
?

Chordal graphs
NP-C

Strongly chordal graphs
Split 

graphs
NP-C ?

Strongly 
chordal

split 
graphs

P

Recognizing 
squares of…
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Efficient Algorithms

Squares of strongly chordal split graphs 

Graph G is chordal if it is Ck-free for k ≥ 4.
An ℓ -sun, ℓ ≥ 3, consists of a stable set {u1 ,..., uℓ } and a clique
{v1,..., vℓ } such that for i ∈ {1,..., ℓ } , ui is adjacent to exactly vi and 
vi+1 (index arithmetic modulo ℓ ).

3-sun S3 4-sun S4 5-sun S5
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Efficient Algorithms

Squares of strongly chordal split graphs 

Graph G is chordal if it is Ck-free for k ≥ 4.

A graph is strongly chordal if it is chordal and Sℓ -free for all ℓ ≥ 3.

Theorem [Lubiw 1982; Dahlhaus, Duchet 1987; Raychaudhuri 1992]

For every k ≥ 2, G is strongly chordal ⇒ Gk is strongly chordal. 

A split graph is one whose vertex set can be partitioned into a clique
and a stable set.
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Efficient Algorithms

Squares of strongly chordal split graphs 

A graph G is strongly chordal split graph if it is strongly chordal and 
split graph .

Proper interval
P 

Interval graphs
?

Strongly chordal graphs
Split 

graphs
NP-C ?

Strongly 
chordal

split 
graphs

P

u

vw

In a graph, a vertex is maximal if its closed neighborhood is maximal.

C(G) denotes the set of all maximal cliques of G. 

For split graphs H = (VH , EH ) we write H = (C∪S, EH ), meaning VH =C∪S
is a partition of the vertex set of H into a clique C and  a stable set S. 
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Efficient Algorithms

Squares of strongly chordal split graphs 

Key Lemma: Let H = (C∪S, EH ) be a connected split graph without 
3-sun. Then Q is a maximal clique in G= H2 if and only if Q =NH[v]  
for some maximal vertex v ∈ C of H. 

u

vw

u

vw

Theorem 4: G is the square of a strongly chordal split graph if and 
only if G is strongly chordal and  |∩Q∈C(G) Q | ≥ |C (G)|.
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Efficient Algorithms

Recognizing if G is the square of some s.c.s.g H

Testing if G is strongly chordal can be done in time O(min{n2, mlogn }).
Computing all maximal cliques of chordal G in linear time.
Compute  C= ∩Q∈C(G) Q ,  for Q∈C(G).
If |C| ≥ |C(G)| then we construct H as follows:
Put the clique C into H. For each Q, choose a unique vertex vQ∈C such that vQ ≠ vQ’ if 
and only if Q ≠ Q’.

H:= C

vQ

vQ’

G
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Efficient Algorithms

Recognizing if G is the square of some s.c.s.g H

Testing if G is strongly chordal can be done in time O(min{n2, mlogn }).
Computing all maximal cliques of chordal G in linear time.
Compute  C= ∩Q∈C(G) Q ,  for Q∈C(G).
If |C| ≥ |C(G)| then we construct H as follows:
Put the clique C into H. For each Q choose a unique vertex vQ∈C such that vQ ≠ vQ’ if 
and only if Q ≠ Q’.
For each maximal clique Q of G, put the edges vQv, v∈Q\ C, into H.

G H is strongly 
chordal split 
square root of G

H:= C

vQ

vQ’

vQ

vQ’
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Efficient Algorithms

Recognizing if G is the square of some s.c.s.g H 

Theorem 5: Given an n-vertex and m-edge graph G=(VG, EG ), recognizing if G 
is the square of some strongly chordal split graph can be done in time 
O(min{n2, mlogn }), and if any, such a square root H of G can be 
constructed in the same time.

Algorithm:
1. If G is strongly chordal then
2. compute all maximal cliques Q1,…, Qq of G
3. compute C= ∩1≤i≤q Qi
4. If |C| ≥ q then 
5. VH := VG ;  EH := { xy | x,y ∈ C }
6. for i:= 1  to   q do
7. choose a vertex vi ∈C with vi ≠ vj for i≠ j
8. for i:= 1  to  q  do
9. EH := EH ∪ { viv | v ∈ Qi \ C } 
10. return H
11. else return ‘ NO’
12. else return ‘NO’



29

Motivation

Cube of graphs with girth conditions

Square roots with girth conditions have been considered by Farzad et al. 
[Computing graph roots without short cycles, STACS 2009]. 

SQUARE OF GRAPH WITH GIRTH ≤ 4 is NP-complete, while 
SQUARE OF GRAPH WITH GIRTH ≥ 6 is polynomially solvable.

Conjecture 3 [ Farzad et al. STACS 2009 ]: k-TH POWER OF GRAPH WITH 
GIRTH ≥ 3k -1 is polynomially solvable.

We show that CUBE OF GRAPH WITH GIRTH ≥ 10 is polynomially
solvable. 

Provide a good characterization of graphs that are cubes of a graph having girth at 
least 10. 
Give  a recognition algorithm in time O(nm2 ) for cubes of graphs with girth ≥ 10.
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Efficient Algorithms

Maximal cliques in G=H3

Key Lemma: Let G = (V, EG) be a connected, non-complete graph such that 
G=H3 for some graph H= (V, EH) with girth at least 10. Then Q ⊆ V is a 
maximal clique in G iff Q = NH [u,v]  for some edge uv ∈ EH with degH(u) ≥ 2
and degH(v) ≥ 2.

a b

G=H3

1

2 3

4 5

6

c

7

8

d

Q1=1234a = NH[a,4]

Q2=2345a = NH[3,4]

Q3=3456b = NH[3,5]

Q4=3568bc = NH[5,6]

Q5=5678cd = NH[6,8]

Corollary: If G= (VG, EG ) is the cube of some graph with girth at least 
10, then G has at most |EG|  maximal cliques. 
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Efficient Algorithms

Forced edges in G

Definition: Let G be an arbitrary graph. An edge e of G is called forced if e is 
the intersection of two distinct maximal cliques in G.

Observation: Let G=H3 for some graph H with girth at least 10. Then, an 
edge of G is forced iff it is the mid-edge of a P6 in H.

a b Q1=1234a, Q2=2345a

Q3=3456b, Q4=3568bc

Q5=5678cd

34 = Q1 ∩ Q3

35 = Q2 ∩ Q4

56 = Q3 ∩ Q5G=H3

1

2 3

4 5

6

c

7

8

d
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Efficient Algorithms

Trivial graphs

1

3

4

2 5

7

8

6

Definition:  A connected graph G is trivial if it contains a non-empty clique C 
such that G \ C is the disjoint union of at most |C|-1 cliques and every vertex 
in C is adjacent to every vertex in G\ C.
Observation:

A graph is trivial iff it is the cube of some tree of diameter at most 4.
Trivial graphs can be recognized in linear time.
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Efficient Algorithms
• Ce consists of all maximal cliques containing e

Characterization of cubes of…
Theorem 6: Let G be a connected non-trivial graph. Let F be the subgraph
of G consisting of all forced edges in G. Then, G is the cube of a graph with girth
at least 10 iff the following conditions hold.

(i) For each e ∈ F, there exists a unique maximal clique Qe∈ Ce such that
(a) For every two distinct non-disjoint forced edges e and e’ , e ∪ e’ ⊆ Qe∩ Qe’

(b) For every Q ∈ C(G) \ {Qe | e ∈ F } and for all forced edges e1, e2 in Q, Qe1∩ Q = Qe2∩ Q
(ii) For each e ∈ F, Ce \ {Qe } can be partitioned into non-empty disjoint sets Ae and Be with

(a) Q ∩ Q’ = e iff Q ∈ Ae and Q’ ∈ Be or vice versa
(b) setting Ae = ∩Q ∈ AeQ , Be = ∩Q ∈ Be Q , all pairs of maximal cliques in Ae have the same 

intersection Ae , all pairs of maximal cliques in Be have the same intersection Be

(c) Qe= Ae ∪ Be and  |Ae | ≥ |Ae | +2 , |Be | ≥ |Be | + 2
(d) F[Ae ∩ VF ] and F[Be ∩ VF ] are stars with distinct universal vertices in e  

(iii) C(G) = ∪e∈F Ce

(iv) VG \ ∪e∈F Qe consists of exactly the simplicial vertices of G  
(v) F is connected and have girth at least 10.
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Efficient Algorithms

Recognizing if G is the cube of some H with girth...

List all maximal cliques of G in time O(nm2)

G
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Efficient Algorithms
• Ce consists of all maximal cliques containing e

Recognizing if G is the cube of some H with girth...

G

List all maximal cliques of G in time O(nm2)
Compute the forced edges of G to form the subgraph F of G in time O(m2 )
The lists Ce for each e∈F can be computed in time O(m2)
Testing conditions (i) – (v) can be done in time O(nm2)

Partition Ce= Ae∪{Qe}∪Be

for each e∈ F
K := {Qe | e∈ F }
Ae = ∩Q∈AeQ , Be = ∩Q∈ BeQ
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Efficient Algorithms

Recognizing if G is the cube of some H with girth...

Testing conditions (i) – (v) can be done in time O(nm2)
If conditions (i) – (v) are satisfied then construct H is constructed as follows:

Put F into H
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Efficient Algorithms

Recognizing if G is the cube of some H with girth...
• Partition Ce= Ae∪{Qe}∪Be for each e∈ F.
• .K := {Qe | e∈ F }.
• Ae = ∩Q∈AeQ , Be = ∩Q∈ BeQ

Put F into H
For each Qe∈K with e=xy, put all edges xu, u ∈Ae \ VF and yv, 
v∈ Be \ VF , into H

Ae

Be

x

y
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Efficient Algorithms

Recognizing if G is the cube of some H with girth...
• Partition Ce= Ae∪{Qe}∪Be for each e∈ F.
• .K := {Qe | e∈ F }.
• Ae = ∩Q∈AeQ , Be = ∩Q∈ BeQ

Put F into H
For each Qe∈K with e=xy, put all edges xu, u ∈Ae \ VF and yv, 
v∈ Be \ VF , into H

For each Q ∉ K
containing forced edge e

• Choose a vertex 
cQ∈ (Q∩Qe) \ VF

• Put all edges 
cQv, v∈ Q \ VH , into H. 
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Efficient Algorithms

Corollaries

In the characterization for cubes of graphs with girth at least 10, if we replace
the condition (v) by  “ F is a (C4,C6,C8)-free bipartite” or “ F is a tree ” then:

There is a good characterization and an O(nm2)-time recognition for cubes 
of (C4,C6,C8)-free bipartite, while CUBE OF BIPARITE GRAPH is NP-C.  

There is a good characterization and an O(nm2)-time recognition for cubes 
of trees.
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Conclusion

Hardness results:   

k-TH POWER OF BIPARTITE GRAPH is NP-complete for all fixed k ≥3. 

k-TH POWER OF  GRAPH is NP-complete for all  fixed k ≥2. 

k-TH POWER OF CHORDAL GRAPH is NP-complete for all fixed k ≥2. 

Efficient algorithms:

Provide a good characterization of squares of strongly chordal split 
graphs that gives a recognition algorithm in time O(min{n2, mlogn }) for such 
squares.

Give a good characterization of cubes of a graph with girth at least ten 
that leads to a recognition algorithm in time O(nm2) for such cubes. 
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Open Problems 

Proper interval
P 

Interval graphs
?

Chordal graphs
NP-C

Strongly chordal graphs
Split 

graphs
NP-C ?

Strongly 
chordal

split 
graphs

P

What is the complexity of recognizing powers of 
strongly chordal graphs?  
interval graphs?
chordal bipartite graphs (bipartite graphs without cycles of length at least 
six)? 
Graphs with large girth ?

Thank you for your attention !

Interval graphs ?

Recognizing 
squares of
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